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Abstract 19 

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and 20 

virulence, yet this nutrient is sequestered by the innate immune system during infection. When 21 

iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small regulatory RNAs (sRNAs), 22 

which post-transcriptionally repress expression of non-essential iron-containing proteins thus 23 

sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are 24 

arranged in tandem on the chromosome, allowing for the transcription of a longer heme-respon-25 

sive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been studied extensively, 26 

the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, 27 

we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cul-28 

tures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to 29 

wild type, while the mRNAs for these proteins were not affected by prrH mutation. We identified 30 

complementarity between the PrrH sRNA and sequence upstream of the pchE mRNA, suggesting 31 

potential for PrrH to directly regulate expression of genes for pyochelin synthesis. We further 32 

showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not 33 

shaking conditions. Moreover, we discovered controlling for the presence of light was critical for 34 

examining the impact of PrrH on pchE expression. As such, our study reports on the first likely 35 

target of the PrrH sRNA and highlights key environmental variables that will allow for future char-36 

acterization of PrrH function. 37 
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Importance 39 

In the human host, iron is predominantly in the form of heme, which Pseudomonas aeru-40 

ginosa can acquire as an iron source during infection. We previously showed that the iron-respon-41 

sive PrrF sRNAs are critical for mediating iron homeostasis during P. aeruginosa infection; how-42 

ever the function of the heme-responsive PrrH sRNA remains unclear. In this study, we identified 43 

genes for pyochelin siderophore biosynthesis, which mediate uptake of inorganic iron, as a novel 44 

target of PrrH regulation. This study therefore highlights a novel relationship between heme avail-45 

ability and siderophore biosynthesis in P. aeruginosa. 46 

  47 
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Introduction 48 

P. aeruginosa is a versatile environmental organism and opportunistic pathogen that can 49 

survive in a wide range of environments. As a pathogen, P. aeruginosa causes acute lung and 50 

blood infections in cancer patients and 10% of all hospital-acquired infections (1-4). P. aeruginosa 51 

also causes life-long chronic lung infections in individuals with cystic fibrosis (CF) and is a signif-52 

icant contributor to chronic wound infections in diabetics and surgical patients (5-7). To evade the 53 

immune system during infection, P. aeruginosa deploys numerous virulence factors, including 54 

exotoxin A (8-10), type three secretion (11-13), and redox-active phenazine metabolites (14-16). 55 

P. aeruginosa can also form biofilms, or adherent communities encased in a self-produced ex-56 

opolysaccharide (EPS) matrix, which protect the bacteria from immune assault during device-57 

mediated (e.g. ventilator associated pneumonia) and chronic infections (17-19). P. aeruginosa is 58 

innately resistant to many therapeutic agents, and the emergence of multi-drug resistant (MDR) 59 

strains of P. aeruginosa leads to persistent infections, longer hospital stays, and increased mor-60 

tality rates (20). Biofilm formation during chronic infection further complicates treatment due to 61 

increased tolerance of these communities against antimicrobials (21). Timely expression of viru-62 

lence-related genes is essential for survival in the host, and P. aeruginosa regulates virulence-63 

associated processes in response to a variety of environmental cues, including nutrient availability 64 

and quorum sensing factors (22). Understanding the regulatory pathways that mediate virulence 65 

trait expression may therefore reveal novel strategies for therapeutic intervention. 66 

As with many other pathogens, P. aeruginosa requires metallonutrients for growth and 67 

virulence. P. aeruginosa has a particularly high requirement for iron, which plays a central role in 68 

metabolism, oxygen and redox sensing, protection from oxidative stress, and nucleic acid syn-69 

thesis (23). To limit pathogen growth, the host restricts iron and other essential metals in a strat-70 

egy called “nutritional immunity” (24). P. aeruginosa overcomes nutritional immunity through a 71 

variety of mechanisms, including the synthesis and uptake of two siderophores – pyoverdine and 72 
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pyochelin – which scavenge the oxidized (ferric) form of iron (Fe3+) from the host iron sequestra-73 

tion proteins lactoferrin and transferrin (25-27). In reducing environments, P. aeruginosa acquires 74 

the reduced (ferrous) form of iron (Fe2+) via the Feo system (28). P. aeruginosa can also acquire 75 

iron from heme, representing the most predominant source of iron in the human body (29). Heme 76 

acquisition is mediated by the heme assimilation (Has) and Pseudomonas heme uptake (Phu) 77 

systems, which transport heme into the cytosol (30), and a cytosolic heme oxygenase HemO that 78 

cleaves the heme tetrapyrrole to yield biliverdin and inorganic iron for use in cellular processes 79 

(31). Several studies have suggested that siderophore-mediated iron uptake is critical for acute 80 

infections (26, 32), while ferrous and heme uptake become more prominent in chronic, biofilm 81 

mediated infections that are characterized by biofilm communities, steep oxygen gradients, and 82 

persistent inflammation (33-37).  83 

Despite its essentiality, iron catalyzes the formation of reactive oxygen species via Fenton 84 

chemistry, leading to damage of membranes, proteins, and DNA. In P. aeruginosa and many 85 

other bacteria, the Ferric uptake regulator (Fur) when bound to cytosolic Fe2+ becomes an active 86 

transcriptional repressor of genes involved in iron uptake (38, 39). P. aeruginosa Fur also re-87 

presses expression of two non-coding small RNAs (sRNAs) called PrrF1 and PrrF2 (40). The PrrF 88 

sRNAs function by complementary base-pairing with, and destabilization of, mRNAs coding for 89 

non-essential iron-containing proteins, resulting in what has been termed the “iron sparing re-90 

sponse” (41, 42). Owing to the central role of iron in P. aeruginosa physiology, deletion of both 91 

the prrF1 and prrF2 genes results in a significant growth defect in low iron media, decreased 92 

production of quorum sensing molecules, increased susceptibility to tobramycin during biofilm 93 

growth, and attenuated virulence in an acute murine lung infection model (43-48).  94 

The prrF1 and prrF2 genes are located in tandem on the P. aeruginosa chromosome, 95 

allowing for the transcription of a distinct third sRNA called PrrH (49). PrrH shares a promoter and 96 

transcriptional start site with PrrF1, yet its expression is also dependent on read-through of the 97 

prrF1 Rho-independent terminator, prrF1-prrF2 intergenic region, and prrF2 sequence (Fig. 1A). 98 
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Due to sharing a promoter with prrF1, transcription of PrrH is similarly repressed by iron (49). 99 

However, PrrH has also been shown to be regulated by heme (49, 50). Moreover, the PrrH sRNA 100 

contains a unique sequence, derived from the prrF1-prrF2 intergenic region (PrrH-IG, Fig. 1A), 101 

that may be able to interact with and alter stability or translation of a distinct regulon of mRNAs. 102 

The entire prrH sequence, including the PrrH-IG region, is broadly conserved in P. aeruginosa 103 

clinical isolates, and the PrrH transcript is detected in clinical sputum samples, suggesting im-104 

portance of this sRNA during infection (34). An inherent challenge of studying PrrH is separating 105 

its functions from those of the PrrF sRNAs, since it is not possible to transcribe PrrH without the 106 

prrF1 and prrF2 genes (Fig. 1A). Given the model that the PrrH-IG region is required for PrrH 107 

function, we previously generated a prrF locus allele with a deletion of the PrrH-IG region (∆prrH-108 

IG) to distinguish PrrH and PrrF functions. We found that the PrrH-IG sequence is not responsible 109 

for any of the previously identified phenotypes of the ∆prrF mutant (44). Thus, the role of PrrH in 110 

mediating iron and heme homeostasis to date remains unclear. 111 

In the current study, we continued our analysis of the ∆prrH-IG mutant, as well as a distinct 112 

prrH mutant, to further investigate PrrH function. These strains were characterized by multiple 113 

approaches, including simultaneous RNAseq and proteomics analyses. Our results revealed 114 

genes for pyochelin biosynthesis as possible targets of PrrH regulation. We subsequently showed 115 

that prrH mutation led to increased expression of pchE, and we identified static growth conditions 116 

as more permissive of this regulation. We further found that controlling for light, which can be 117 

sensed by P. aeruginosa through the photoreceptor BphP, led to more consistent and robust 118 

repression of pchE by PrrH, suggesting this signal may have confounded previous PrrH regulation 119 

studies. Lastly, we show that heme represses expression of the pchE gene, though the precise 120 

role of PrrH in this regulation remains unclear. Overall, our data indicate that heme and PrrH affect 121 

expression of pyochelin siderophore biosynthesis, either by distinct or overlapping pathways. 122 

 123 

 124 
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 125 

Fig 1. Characterization of transcripts produced by the ∆prrH-IG mutant. Organization of the prrF locus 126 

and design of complement plasmids (A). The WT comp includes the entire prrF locus plus 235 bp upstream 127 

of the prrF1 promoter to ensure regulation of locus is uninhibited. The ∆H-IG comp also includes the 235 128 

bp region upstream of the prrF1 promoter but has 40 bp of the prrF1-prrF2 intergenic region removed. The 129 

short comp contains the entire prrF locus but only includes 184 bp upstream of the prrF1 promoter. Location 130 

of qRT-PCR primers and probes are indicated in pink (PrrH) and red (PrrF). The PrrF primers and probes 131 

cannot distinguish between PrrF1 and PrrF2. Northern blot probes are labeled in blue. For qRT-PCR (B,C), 132 

PrrF and PrrH transcription are shown as an average of 3 biological replicates, relative to WT PAO1 in low 133 

iron. Northern blot (D) is a representative from multiple experiments using radiolabeled DNA probes specific 134 

to each transcript. 135 

 136 

  137 
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Results 138 

Characterization of prrH mutants. To investigate the functions of PrrH, we used the WT 139 

and ∆H-IG complementation system previously developed by our laboratory (Fig. 1A) (44). In this 140 

system, the ∆prrF mutant is complemented with either the entire prrF locus (WT-comp) or the prrF 141 

locus lacking 40 bp of the prrF1-prrF2 intergenic region (∆H-IG-comp) (Fig. 1A) in trans using the 142 

pUCP18 vector. Strains labeled as wild type (WT) and ∆prrF are the indicated PAO1 strains car-143 

rying the empty pUCP18 vector. As previously observed (44), quantitative real-time PCR (qRT-144 

PCR) using the primers in Figure 1A shows that WT-comp expresses PrrF and PrrH in low but 145 

not in high iron M9 minimal medium (Fig. 1B). Furthermore, the PrrF, but not the PrrH, transcript 146 

is detected in the ∆H-IG comp strain, indicating this strain is a prrH mutant that can still express 147 

PrrF (Fig. 1C). Both PrrF and PrrH are expressed at about 3-fold higher levels in the comple-148 

mented strains compared to the WT vector control, likely due to ectopic expression from the 149 

pUCP18 plasmid.  150 

To confirm the qRT-PCR results, northern blot analysis was performed with probes spe-151 

cific for PrrF1, PrrF2, and PrrH as indicated in Figure 1A. As expected, the PrrF1 and PrrF2 152 

transcripts were detected in RNA isolated from the WT-comp and the ∆H-IG-comp strains grown 153 

in iron-depleted medium (Fig. 1D). In agreement with the qPCR results, both complemented 154 

strains expressed higher levels of PrrF than the WT vector control (Fig. 1D). Because the PrrH 155 

probe anneals to the intergenic region adjacent to the deleted 40 bp (Fig. 1A), we were also able 156 

to determine that the ∆H-IG comp strain expresses a shorter PrrH transcript compared to that 157 

expressed in the WT vector control and WT-comp strain, indicating that the ∆H-IG allele produces 158 

a truncated PrrH sRNA (Fig. 1D).  159 

We next characterized the transcripts of a distinct prrH mutant. This mutant was originally 160 

constructed as a prrF complementation plasmid that contained less sequence upstream of the 161 

prrF1/prrH transcriptional start site than the “WT comp” used in the above discussed studies. This 162 

plasmid, which we refer to as the “short-comp”, was designed to contain the entire prrF1-prrF2 163 
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locus with only 184 bp upstream of the prrF1/prrH transcriptional start site, as compared to 235 164 

bp upstream that is included in the WT-comp (Fig 1A) (44). Confirming our previous observation 165 

(44), qRT-PCR analysis shows that the PrrF, but not the PrrH, transcript is detected in RNA iso-166 

lated from the short-comp strain (Fig 2A, B). We next performed northern blot analyses with 167 

probes specific for PrrF1, PrrF2, and PrrH. The short-comp strain exhibited lower levels of the 168 

PrrF2 sRNA and higher levels of the PrrF1 sRNA as compared to WT-comp (Fig. 2C). Addition-169 

ally, a PrrH transcript was detected from the short-comp strain, but it was slightly shorter than the 170 

PrrH transcript produced by the WT strain (Fig. 2C). These observations were unexpected, as 171 

the short complement was designed to only lack sequence well upstream of the prrF1/prrH tran-172 

scriptional start site. To investigate this further, we sequenced the short complement plasmid and 173 

discovered a rearrangement in the prrF2 region, as shown in the cartoon in Figure 2D. Specifi-174 

cally, 27 nucleotides flanking the prrF2 start site (from -12 to +25) were translocated to down-175 

stream of the prrF2 Rho-independent terminator (Fig. 2D). This would, therefore, account for both 176 

the fainter PrrF2 transcript and truncated PrrH transcripts that were detected in the northern blots. 177 

While we were still able to detect a PrrH transcript in the short comp, the re-arrangement led to a 178 

PrrH transcript that was truncated in a distinct manner from the ∆H-IG mutant. Thus, we used 179 

both the short-comp and ∆H-IG prrH mutants to investigate PrrH regulation in this study.  180 

 181 
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 182 

Fig. 2. The short prrF complement has a rearrangement in prrF2. qRT-PCR analyses of PrrF (A) and 183 

PrrH (B) transcription are shown as an average of 3 biological replicates, relative to WT PAO1 in low iron. 184 

Northern blot (C) is a representative from multiple experiments using radiolabeled DNA probes specific to 185 

each transcript (PrrF1, PrrF2, and PrrH). RNAs were isolated from samples collected after 8 hours of aer-186 

obic growth in M9 media supplemented with 50 nM FeCl3 (-Fe, low iron) or 100 µM FeCl3 (+Fe, high iron) 187 

at 37˚C. Panel D illustrates the re-arrangement that occurred in the short comp. Location of the northern 188 

blot probes used in 3C are shown in blue (PrrH) and orange (PrrF2). The qRT-PCR primers/probe for PrrH 189 

are shown in red. Sequencing was performed by Eurofins Genomics. Sequencing results were aligned and 190 

analyzed using MacVector software. 191 

 192 

Transcriptomic and proteomic analysis of PrrF and PrrH regulation in PAO1 reveals 193 

pyochelin biosynthesis as a potential PrrH target. Subsequent to validating the ∆H-IG-comp 194 

strain as a truncated prrH mutant, we performed RNAseq (51, 52) and label-free proteomics (53) 195 

on cultures of the WT vector control, ∆prrF vector control, WT-comp, and ∆H-IG-comp strains 196 
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grown in M9 minimal media, with or without FeCl3 or 5µM heme supplementation. Five biological 197 

replicates for each group were processed and the resulting data analyzed as described in the 198 

Materials and Methods to generate a log fold change (LFC) for each RNA or protein in response 199 

to: 1) iron or heme supplementation of each strain, 2) deletion of the prrF locus by comparing the 200 

WT and ∆prrF vector controls, and 3) deletion of the H-IG sequence by comparing the WT-comp 201 

and ∆H-IG-comp strains. Full datasets are provided in the supplementary materials as Datasets 202 

S1 (RNASeq) and S2 (Proteomics). As expected, proteins involved in pyoverdine, pyochelin, and 203 

heme uptake, as well as their corresponding mRNAs, were repressed by iron in each of the 204 

strains, though the intensity of iron regulation varied somewhat amongst the individual strains, 205 

particularly at the protein level (Supplementary Materials, Fig. S1A). Also as expected, most of 206 

the known PrrF target mRNAs, and the proteins they encode, were activated by iron in the WT 207 

vector control, WT-comp, and ∆H-IG strain, and this regulation was reduced or eliminated in the 208 

∆prrF vector control (Supplementary Materials, Fig. S1A), indicating that the plasmid-derived 209 

PrrF sRNAs function similarly to those transcribed from the chromosome. Regulatory patterns for 210 

these know iron-regulated genes and proteins varied slightly between the WT-comp and WT vec-211 

tor control, but they were comparable when comparing the WT-comp and ∆H-IG-comp strains 212 

(Supplementary Materials, Fig. S1A).  213 

We next determined how loss of the H-IG sequence affected PAO1 gene expression by 214 

comparing the transcriptomes and proteomes of the ∆H-IG-comp strain, grown in low iron, to that 215 

of the WT-comp strain, also grown in low iron. This analysis revealed no statistically significant 216 

differences in the transcriptomes of these strains (Supplementary Materials, Fig. S1B), while 217 

the proteome of the ∆H-IG comp was substantially altered compared to that of the WT comp 218 

(Supplementary Materials, Fig. S1C). To validate observed changes in the PrrH-affected prote-219 

ome, we conducted a subsequent proteomics experiment with the WT-comp, ∆H-IG-comp, and 220 

short-comp strains grown in M9 minimal medium with and without iron supplementation. As ob-221 

served in the first experiment, proteins involved in pyoverdine, pyochelin, and heme uptake were 222 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524833doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524833
http://creativecommons.org/licenses/by-nc-nd/4.0/


similarly repressed by iron in all three strains, and PrrF-repressed targets showed similar effects 223 

in response to iron supplementation across all three strains (Fig. 3A), demonstrating that both 224 

prrH mutants exhibited iron and PrrF regulation similar to the WT strain. Also as observed for the 225 

first experiment, the proteomes of the ∆H-IG comp (Fig. 3B) and the short-comp (Fig. 3C) were 226 

significantly altered when compared to the WT-comp strain. Curiously, we also noted substantial 227 

differences in the proteomes of the short-comp and ∆H-IG strains (Fig. 3D). Moreover, proteins 228 

that were either upregulated or downregulated in each prrH mutant compared to the WT-comp in 229 

this dataset showed limited overlap with one another (Fig 3E, ∆H-IG-affected proteomes are rep-230 

resented by green circles, short-comp-affected proteomes are represented by yellow circles). 231 

Likewise, proteins that were either upregulated or downregulated upon H-IG deletion in the first 232 

(Fig. 3F, represented by pink circles) and second (Fig. 3F, represented by purple circles) prote-233 

omics experiments showed little overlap.  234 
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Fig 3. Short complement and ∆H-IG complement substantially alter the proteome. Proteomics results 236 

when comparing protein samples collected after 8 hours of aerobic growth in M9 media supplemented with 237 

50 nM FeCl3 at 37˚C. (A) Heatmap of a select group of iron-, heme-, and PrrF-regulated proteins shown as 238 

the log2 fold change of the abundance ratio between high iron and low iron. Undetected proteins are colored 239 

in black (ND). (B-D) Volcano plots comparing the protein abundance of the ∆H-IG comp versus WT comp 240 

(B), short comp versus WT comp (C), and ∆H-IG comp versus short comp (D). The log2 fold change is 241 

shown on the x-axes and the -log of the FDR p-value is on the y-axes. Horizontal dashed lines indicate 242 

FDR p=0.05 and vertical dashed lines indicate LFC = ±1. (E-F) Comparison of the dysregulated proteins in 243 

the ∆H-IG comp from experiments 1 and 2 are shown as Venn diagrams. (E) Panel E shows the overlap of 244 

the dysregulated proteins in the ∆H-IG comp and short comp, each compared to WT comp, from experiment 245 

2. (F) Panel F shows the overlap of the dysregulated proteins in the ∆H-IG comp compared to WT between 246 

experiments 1 and 2. To be included in the Venn diagram analysis, changes in protein levels must have 247 

demonstrated an FDR p-value <0.05 and -0.5≤ LFC ≥0.5. 248 

 249 

Since the above datasets showed little consistency in robust PrrH effects, we sought to 250 

identify smaller yet more consistent regulatory effects of prrH mutation. To investigate this, we 251 

performed STRING network analysis on the proteins that were differentially regulated in any one 252 

of the three comparisons (∆H-IG comp/WT comp from experiment 1, ∆H-IG comp/WT comp from 253 

experiment 2, and short comp/WT comp from experiment 2). To capture proteins that were weakly 254 

but statistically significantly affected in each experiment, we lowered the LFC cutoff value for 255 

proteins to be analyzed to 0.5 (-0.5≤ LFC ≤0.5). STRING network analysis revealed numerous 256 

dysregulated functions and pathways amongst the proteins affected in all three experimental com-257 

parisons (Supplementary Materials, Fig. S2-S3). However, many of these clusters were not 258 

consistently dysregulated. For example, the phenazine biosynthesis cluster was upregulated 259 

upon prrH mutation in the first experiment yet downregulated by prrH mutation in the second 260 

experiment. We also observed inconsistencies between comparisons when we considered how 261 

iron, heme, and PrrF affected genes in each of these clusters. For example, proteins in cluster A 262 
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(sulfur metabolism) showed variable regulation by PrrH and were repressed in the prrF mutant 263 

but induced by iron (Supplementary Materials, Fig. S2-S3).  264 

Despite the variations in the effects of PrrH amongst the different experiments, we identi-265 

fied two clusters in which the effects of PrrH on proteins involved in specific cellular functions 266 

were consistent across all three comparisons. Cluster M included proteins for 2-alkyl-4(1H)-quin-267 

olone biosynthesis which were reduced upon mutation of PrrH in all three comparisons (Fig. 4). 268 

In contrast, Cluster N was comprised of pyochelin proteins that were largely induced by PrrH 269 

mutations in all three comparisons (Fig. 4). Consistent with the analysis shown in Figure S1, 270 

none of the RNAs encoding these proteins were significantly affected by PrrH mutation in the 271 

RNASeq analysis of the first experiment (Fig. 4). Further analysis of Cluster M proteins showed 272 

that these proteins were also affected by prrF deletion, which is consistent with previous studies 273 

from our group (34, 48). Moreover, while iron repressed the levels of RNAs for the Cluster M 274 

proteins, heme did not affect levels of the Cluster M proteins (Fig. 4), suggesting they are not 275 

specifically regulated by PrrH. In contrast, proteomics and RNAseq showed no effect of PrrF on 276 

proteins in Cluster N (Fig. 4). Moreover, heme repressed proteins in Cluster N, but had no effect 277 

on the corresponding RNAs (Fig. 4), consistent with the lack of transcriptome effects observed 278 

upon mutation of the PrrH sRNA (Supplementary Materials, Figure S1). Therefore, we focused 279 

on the pyochelin biosynthesis genes and proteins in Cluster N as potential novel targets of the 280 

PrrH sRNA.  281 
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 282 

Fig 4. Proteins involved in alkylquinolone biosynthesis and pyochelin biosynthesis are dysregu-283 

lated in prrH mutants. Expression data from proteomics and RNAseq are presented as heat maps where 284 

up-regulated proteins are indicated in red and those down-regulated are in blue. Undetected proteins are 285 

colored in black (ND). ** indicate p<0.005 and * indicate p<0.05. 286 

 287 

Static growth reveals potential for PrrH-mediated repression of the pyochelin bio-288 

synthesis pchE mRNA. sRNA-mediated repression of gene expression is most often mediated 289 

by pairing at or near the Shine Dalgarno or translational start site of an mRNA, precluding the 290 

ribosome and in some cases resulting in destabilization of the mRNA. To determine the potential 291 

for PrrH to directly regulate expression of proteins involved in pyochelin biosynthesis or uptake, 292 

we analyzed the H-IG sequence to determine if pairing could occur with any of the PrrH affected 293 

pch mRNAs using CopraRNA (54-56). This analysis identified PrrH complementarity sites within 294 

the coding sequences of two distinct pyochelin genes: pchI and pchE (Fig. 5A), demonstrating 295 

the capacity of the PrrH-IG sequence to directly pair with at least two mRNAs encoding proteins 296 

for pyochelin biosynthesis. Of note, the pchI and pchE are located within a single operon (Fig. 297 

5A), suggesting PrrH may be able to bind at two distinct sites of the pchEFGHI mRNA. 298 
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We next sought to determine whether RNA levels for pyochelin biosynthesis are affected 299 

by PrrH mutation under conditions where this system is more strongly expressed. Recently, our 300 

lab observed that proteins involved in pyochelin biosynthesis are more robustly regulated by iron 301 

in static compared to shaking conditions (57), suggesting static conditions may be more permis-302 

sive for expression of pyochelin mRNAs. Therefore, we performed qRT-PCR on samples col-303 

lected from both static and shaking cultures and, indeed, we observed an increase in pchE tran-304 

scription in each prrH mutant compared to the WT-comp when grown in static, but not shaking, 305 

conditions (Supplementary Materials Fig. S4A). However, the increase in pchE expression, al-306 

beit statistically significant, was modest, and results of this experiment when repeated several 307 

weeks apart gave inconsistent results (Supplementary Materials Fig. S4B). Thus, while these 308 

data suggested that PrrH may affect pchE mRNA stability, they also indicated that confounding 309 

variables were continuing to affect our ability to study PrrH regulation. 310 

 311 

Ambient and infrared light affect PrrH’s impact on pchE mRNA levels. Recent studies 312 

from Mukherjee, et al, demonstrated that the photoreceptor BphP can mediate light-dependent 313 

changes in biofilm-related gene expression via the response regulator AlgB (58). The BphP pho-314 

toreceptor activity is dependent on a biliverdin chromophore produced via the BphO heme oxy-315 

genase, which serves independent functions from the HemO heme oxygenase that mediates ac-316 

quisition of iron from heme (59, 60). Owing to its potential role in heme homeostasis, we wondered 317 

whether BphP, and therefore light, may affect PrrH regulation of the potential pchE target. To 318 

begin testing this, we first assessed the impact of ambient light on static cultures of the WT-comp 319 

and ∆H-IG comp strains. Cultures were grown in a well-lit room (fluorescent lights on and near a 320 

window) to provide an “ambient light” source, and parallel cultures were wrapped completely in 321 

foil to produce a “dark” condition. Initial qPCR analysis revealed a significant decrease in PrrH 322 

expression in dark compared to light conditions (Fig. 5B), though this trend was reversed in a 323 

subsequent experiment (Supplementary Materials Fig. S4C). In contrast, we noted a significant 324 
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increase in pchE expression upon H-IG deletion in both light and dark conditions (Fig. 5C), a 325 

finding that was reproduced in a subsequent run of the experiment (Supplementary Materials 326 

Fig. S4D).  327 

 328 

Fig 5. Static growth and controlling for light promote consistent PrrH repression of the pchEF 329 

mRNA. (A) CopraRNA identified sequences with complementarity to PrrH upstream of pchF and within 330 

pchI. (B-E) qRT-PCR analysis of the PrrH sRNA (B,D) and pchE mRNA (C,E) levels relative to WT-comp 331 

shown as an average of 3 or 4 biological replicates. RNA was isolated from cultures grown in M9 media 332 

supplemented with 50 nM FeCl3, grown in static conditions at 37˚C for 8 hours, and exposed to either am-333 

bient or infrared (IR) light as described in the materials and methods. Expression is calculated as relative 334 
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to WT-comp in static, light conditions. Significance was calculated using a two-tailed Student’s t test with 335 

asterisks indicating the following P values: * indicates P<0.05, ** P<0.005, and *** P<0.0005. 336 

 337 

We next determined the impact of infrared (IR) light, which is specifically detected by the 338 

BphP phytochrome, on static cultures of the WT comp, ∆H-IG comp, and short-comp strains. IR 339 

light had no impact on expression of PrrH levels (Fig. 5D). However, IR light allowed for robust 340 

induction of pchE expression upon prrH mutation (Fig. 5E). While the mechanistic rationale for 341 

the effects of light on PrrH and pchE expression remain poorly understood, these experiments 342 

demonstrate how controlling for light as an environmental variable may be critical to studying the 343 

function of this unique sRNA. 344 

 345 

 Heme negatively affects pchE expression. Previous work demonstrates that heme pos-346 

itively affects PrrH sRNA levels via the PhuS heme binding protein (50). We therefore determined 347 

if heme also affected expression of pchE in the WT PAO1 strain, lacking the pucP18 vector, in 348 

static conditions either in the presence of IR light or wrapped in foil. At three hours post-inocula-349 

tion, one of each duplicate culture was supplemented with 5 µM heme, and cultures were grown 350 

for another 8 hours. Heme supplementation had a positive impact on PrrH levels, both in dark 351 

and IR light conditions (Fig. 6A); however due to variability in PrrH expression, the increase was 352 

only statistically significant when cultures were incubated in the dark (Fig. 6A). Notably, we ob-353 

served a robust and statistically significant decrease in pchE levels upon heme supplementation, 354 

both in IR and dark conditions (Fig. 6B). We did not observe any repression of the PrrF sRNAs 355 

(Fig. 6C), suggesting that heme repression of pchE is not due to Fur-mediated repression from 356 

the iron that is enzymatically released upon heme degradation. Thus, our data suggest that heme 357 

specifically represses expression of the pchE gene in WT PAO1. 358 

 359 
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 360 

Figure 6. Heme negatively affects pchE expression. Relative PrrH (A), pchE (B), and PrrF (C) transcript 361 

levels relative to WT PAO1 when grown in the presence of absence of infrared (IR) light. Data are an 362 

average of 4 biological replicates in M9 media supplemented with 50 nM FeCl3 or 5 µM heme grown stati-363 

cally at 37˚C for 8 hours. Significance was calculated using an unpaired t test with two-tailed P values where 364 

* indicates P<0.05, ** P<0.005, and *** P<0.0005. 365 

 366 

We next determined if heme repression of pchE was dependent on the PrrH sRNAs using 367 

the WT-comp, ∆H-IG, and short prrF complementation strains. The three strains were grown in 368 

static conditions, with or without heme supplementation as above, and analyzed for PrrH, pchE, 369 

and PrrF expression. We noted a similar positive but statistically insignificant effect of heme sup-370 

plementation on PrrH expression in this experiment (Supplementary Materials, Fig. S5A). Sur-371 

prisingly, we did not see any repression of pchE by heme in the WT comp strain, though heme 372 

did appear to eliminate the induction of pchE in the prrH mutants (Supplementary Materials, 373 

Fig. S5B). It is not clear why the heme regulation of pchE is not evident in the WT comp strain, 374 

though we did note in our omics studies (above) that iron regulatory pathways are somewhat 375 

altered in the complemented strains. Thus, we cannot assert, at this time, the role of PrrH in 376 

heme-mediated repression of pchE. However, our data do indicate a role for both heme and PrrH 377 

in affecting expression of pchE. 378 

 379 
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BphO is not required for PrrH- or heme-mediated regulation of pchE. Since our data 380 

suggest that IR light may affect reproducibility of PrrH regulation on pchE, we next sought to 381 

determine if the Bph phytochrome system affected expression of either PrrH or pchE. For this we 382 

used a deletion mutant of the gene encoding the BphO heme oxygenase, which generates ɑ-383 

biliverdin (ɑ-BVIX) as the chromophore for the BphP phytochrome. The ∆bphO mutant showed 384 

similar expression of PrrH, pchE, and PrrF under all conditions tested, regardless of IR light ex-385 

posure (Fig. 6). Thus, the impact of light on eliminating variability of this regulatory pathway does 386 

not seem to be directly due to the BphP phytochrome. Instead, light may affect other metabolic 387 

pathways that indirectly affect the ability of heme to affect expression of PrrH and pchE. 388 

 389 

Discussion 390 

This study aimed to determine the regulatory impact of the heme-responsive PrrH sRNA 391 

in P. aeruginosa. Heme has emerged as a significant factor in chronic P. aeruginosa infections 392 

over the past decade, with multiple studies demonstrating a reduced reliance on siderophore me-393 

diated iron uptake in the CF lung (33-37). Yet, only a few studies have rigorously addressed the 394 

global impacts of heme on P. aeruginosa gene expression. Here, we characterized two distinct 395 

prrH mutants, which express wild type levels of the PrrF sRNAs but produce truncated PrrH 396 

sRNAs, and we determined the impact of these mutants on global gene expression using 397 

RNASeq and proteomics. While experimental variations were observed in PrrH regulons from 398 

separate experiments, we were able to identify pyochelin as a consistently dysregulated gene in 399 

the prrH mutants and therefore a potential target of the PrrH sRNA. We further determined that 400 

static growth promoted PrrH-dependent changes in pchE RNA levels, and we identified ambient 401 

light as a likely confounding variable in our early studies. The impact of light builds on the recent 402 

discovery that BphP, an ɑ-biliverdin dependent photoreceptor (59), controls activity of the AlgB 403 

response regulator in P. aeruginosa (58). This discovery led us to consider how light might affect 404 
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PrrH-dependent heme regulation, allowing us to control for this variable in the current study. The 405 

result is the identification of pchE as the first verified PrrH-responsive gene in P. aeruginosa. 406 

To our knowledge, a link between heme regulation and siderophore synthesis has only 407 

been shown in one other bacterial species, Staphylococcus aureus (61). The S. aureus staphylo-408 

ferrin B (Sbn) biosynthetic locus contains a gene encoding the SbnI protein, which induces ex-409 

pression of the sbn operon in its apo form, and functions in Sbn synthesis when bound to heme 410 

(61). Thus, SbnI plays a bifunctional role in siderophore biosynthesis and modulating heme-de-411 

pendent regulation of siderophore gene expression. The P. aeruginosa PhuS protein similarly 412 

appears to have a bifunctional role, as it binds to the prrH/prrF1 promoter in its apo form, and 413 

functions as a shuttle to HemO when bound to heme (50, 60, 62, 63). Here, we show that PrrH 414 

negatively impacts expression of pchE, and we show that heme similarly blocks pchE gene ex-415 

pression in P. aeruginosa. These results highlight heme as a preferred iron source under static 416 

growth conditions, which promotes biofilm intiation and may more closely mimic chronic biofilm 417 

infections where heme is a preferred iron source.  418 

The impact of heme uptake and regulation on P. aeruginosa virulence has become in-419 

creasingly appreciated in the past decade. Recent work demonstrated a role for the unique β and 420 

δ biliverdin isomers in post-transcriptional regulation of the Has heme uptake system (64), which 421 

is required for P. aeruginosa virulence (51). Expression of the Has system is also subject to heme 422 

binding to the secreted HasA hemophore, which binds to the HasR outer membrane receptor. 423 

This, in turn, initiates a cell surface signaling (CSS) cascade through the HasI extracytoplasmic 424 

function (ECF) sigma factor and cognate HasS anti-sigma factor (64). As indicated above, PhuS 425 

functions as another heme-dependent regulatory protein, by binding in its apo form to the 426 

prrF1/prrH promoter to affect PrrH expression (50). Heme has additionally been implicated in 427 

virulence gene regulation via the BphP photoreceptor, which requires ɑ-biliverdin produced by 428 

the BphO heme oxygenase (58, 59). This recent study showed that AlgB acts as the response 429 
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regulatory to the BphP sensor kinase activity when sensing light, allowing light to negatively im-430 

pact biofilm formation (58). Notably, heme degradation by BphO does not contribute to P. aeru-431 

ginosa’s ability to use heme as an iron source, but instead seems to turn over intracellularly pro-432 

duced heme (60, 62). It is, therefore, intriguing that light was a confounding environmental varia-433 

ble in our studies of PrrH regulation, suggesting that these heme-dependent regulatory systems 434 

are interlinked. Our studies suggest that the Bph system does not directly impact expression of 435 

PrrH or pchE (Fig. 6). Studies of IR light regulation via BphP revealed a large metabolic regulon 436 

(58), which may in turn indirectly influence many aspects of P. aeruginosa iron and heme home-437 

ostasis. Studies into how the PrrH heme regulatory system intersect with photosensing are con-438 

tinuing in our groups. 439 

Understanding how heme regulation functions in P. aeruginosa has been complicated by 440 

additional factors, including the transient presence of heme as an extracellular iron source. Once 441 

extracellular heme is transported into the cell, it is shuttled to HemO to be degraded to biliverdin 442 

which, as described above, exerts its own regulatory effects on gene expression. Heme oxygen-443 

ase also releases iron that can then function through the Fur protein to repress expression of 444 

heme-responsive genes, including hasR and prrF1/prrH. Thus, time-dependent observations of 445 

heme flux, promoter activity, RNA levels, and protein expression are likely all critical for under-446 

standing heme-dependent regulatory effects. Notably, supplementation of cultures with higher 447 

concentrations of heme (≥ 20 µM) has been pursued in other works, yet these levels have the 448 

potential to initiate toxicity toward cell membranes, nonspecific oxidative-cleavage prior to uptake, 449 

and the formation of μ-oxo-dimers resulting in stable and biologically unavailable heme polymers. 450 

In the current study, we began assessing the impact of heme on PrrH and pchE levels during 451 

static growth, while all previous heme regulatory studies have been conducted in shaking growth. 452 

Similar to observations by our group regarding the impacts of static growth on global iron regula-453 

tion (47), our work here suggests that heme and PrrH regulation is altered under static conditions. 454 

Static culture conditions result in slower growth of P. aeruginosa, which will require us to reassess 455 
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the timing of heme uptake and metabolism to release iron under these conditions. Static cultures 456 

also likely result in heterogenous communities with varying heme uptake and regulatory activities. 457 

Continued work on heme uptake and regulation in complex P. aeruginosa communities, such as 458 

within static cultures and biofilm communities, is required to understand more physiologically rel-459 

evant implications of these regulatory pathways.  460 

An additional complexity for studies described here is the overlapping sequence of the 461 

PrrF and PrrH sRNAs. Two recent studies ascribed a variety of physiological functions to PrrH, 462 

yet both studies used knockouts and complementation constructs containing the entire prrF-prrH 463 

sequence (65, 66). Therefore, any observations or phenotypes derived from these strains cannot 464 

simply be designated as specific to PrrH. The genetic strategy previously developed by Reinhart, 465 

et al (67) allowed us to overcome this issue by focusing on the sequence that is unique to PrrH. 466 

We note that this system is not ideal because PrrF and PrrH are overexpressed in these strains, 467 

leading to some changes in global gene expression (Fig. S1, 3), and indeed the WT comp showed 468 

a different effect of heme on expression of pchE (Fig. S4, 6). We continue to work toward genetic 469 

strategies that will allow us to specifically affect PrrH function while allowing the PrrF sRNAs to 470 

remain unaffected. 471 

Overall, this study identified the first regulatory target of the PrrH sRNA as pchE and pro-472 

vided evidence that this regulation could occur through direct post-transcriptional regulation of the 473 

pchE mRNA. Additionally, we provide evidence that light may affect systems involved in heme 474 

regulation, necessitating careful control of this environmental condition for our studies. Current 475 

and future work will examine time-dependent effects of heme supplementation on these systems, 476 

and work toward identifying more global impacts of the PhuS and PrrH regulatory molecules. 477 

 478 

  479 
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Materials & Methods 480 

Bacterial strains and growth conditions. Strains used in this study are listed in Table 481 

S1. P. aeruginosa strains were maintained on LB or BHI agar or broth. Strains carrying the com-482 

plementation plasmids were maintained with carbenicillin (250 µg/mL). Media was supplemented 483 

with iron or heme as follows: 50 nM FeCl3 (-Fe), 100 µM FeCl3 (+Fe), and 1 µM or 5 µM Heme 484 

(+He) prepared as previously described (44). Overnight cultures were grown in LB or BHI broth, 485 

aerobically (250 RPM, 37˚C) and washed in M9 media (Teknova, Hollister, CA) prior to inoculating 486 

into M9 supplemented with iron or heme to a starting OD600=0.05. Shaking cultures were grown 487 

in 1:10 (media:flask) ratios, shaking aerobically at 250 RPM, 37˚C and collected at 8 hours for 488 

analyses. Static cultures were grown in 24-well cell culture plates (Greiner Bio-One, Kremsmun-489 

ster, Austria) at 37˚C and collected at 8 hours for analyses. For ambient light conditions, cultures 490 

were grown in a well-lit room (fluorescent overhead lights and near a window during the day). For 491 

infrared (IR) light conditions, plates were placed under a 730 nM LED Lightbar (Forever Green 492 

Indoors, Inc, Seattle, WA). Plates were wrapped in foil for dark conditions. For RNA isolation, 493 

cultures were mixed with an equal volume of RNALater (Sigma-Aldrich, St. Louis, MO) and stored 494 

at -80˚C until processing.  495 

 496 

Quantitative real-time PCR (qRT-PCR). RNA was isolated following manufacturer’s sug-497 

gested protocol using the RNeasy Mini Kit (Qiagen, Hilden, Germany). An additional DNase I 498 

(New England Biolabs, Ipswich, MA) treatment was performed at 37˚C for 2 hours, ethanol pre-499 

cipitated, and eluted in RNase- free water. qRT-PCR was performed as previously described (43, 500 

44). Primer and probe sequences are listed in Table S2. 501 

 502 

Northern blot analyses. RNA was isolated following manufacturer’s suggested protocol 503 

using the RNeasy Mini Kit (Qiagen, Hilden, Germany). 5 µg (PrrF1, PrrF2) or 20 µg (PrrH) of total 504 

RNA was electrophoresed on a 10% denaturing urea TBE gel (Bio-Rad, Hercules, CA). The RNA 505 
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was then transferred to a BrightStar-Plus Positively Charged Nylon Membrane (Invitrogen, Carls-506 

bad, CA) using a Trans-Blot Turbo Transfer System (Bio-Rad) and crosslinked for 2 minutes using 507 

a UV Crosslinker (VWR, Radnor, PA). The blots were incubated with ɣ32-P 5’-labelled probe at 508 

42˚C overnight and imaged using a phosphor screen on a Typhoon FLA 7000 Variable Mode 509 

Imager System (GE Healthcare, Chicago, IL). Probe sequences are listed in Table S2.  510 

 511 

RNAseq. Cultures were grown in shaking conditions as described above, without any ad-512 

ditional controls for light. Cultures were collected (at 8 hours of growth) directly into RNALater. 513 

Iron was supplemented at a concentration of 50 nM (low iron) or 100 µM (high iron), while heme 514 

was used at 5 µM. Sample preparation and subsequent RNA extraction and analyses were per-515 

formed as previously described (51). RNA integrity was validated using an Agilent 2100 Bioana-516 

lyzer. Libraries were prepared with samples with an RNA Integrity Number (RIN) greater or equal 517 

to 8. Ribosomal RNA was depleted using the Ribo Zero kit and samples were converted into 518 

Illumina sequencing libraries using the ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre, 519 

Illumina). Libraries were sequenced using Illumina HiSeq (2 x 150 bp reads). Three biological 520 

replicates were sequenced in each group and an average of 40 million reads were obtained for 521 

each sample. Reads were mapped against the reference genome of P. aeruginosa PAO1 522 

(NC_002516) with the following settings: mismatch cost = 2, insertion cost = 3, deletion cost = 3, 523 

length fraction = 0.8, similarity fraction = 0.8. Fold changes in gene expression, and statistical 524 

analyses were performed using the extraction of differential gene expression (EDGE) test as im-525 

plemented in CLC Genomics, which is based on the Exact Test. Differential gene expression was 526 

calculated by comparing samples and setting a fold-change cut-off as described in the figure 527 

legends. Genes were included in further analysis only if differences in expression yielded a FDR 528 

p-value of p ≤ 0.05. 529 

 530 
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Quantitative label-free proteomics. Cultures were grown in shaking conditions as de-531 

scribed above, without any additional controls for light. Cultures were collected at 8 hours of 532 

growth. Iron was supplemented at a concentration of 50 nM (low iron) or 100 µM (high iron), while 533 

heme was used at 5 µM. Sample preparation and subsequent proteomics analyses were per-534 

formed as previously described (47, 68, 69). In brief, cells were harvested by centrifugation at 535 

2000 rpm for 30 s at 4 °C, and then subsequently lysed in 4% sodium deoxycholate, reduced, 536 

alkylated, and trypsinolyzed on filter as previously described (70). Tryptic peptides were sepa-537 

rated on a nanoACQUITY UPLC analytical column (BEH130 C18, 1.7 μm, 75 μm x 200 mm, Wa-538 

ters) over a 165 min linear acetonitrile gradient (3-40%) with 0.1 % formic acid using a Waters 539 

nanoACQUITY UPLC system and analyzed on a coupled Thermo Scientific Orbitrap Fusion Lu-540 

mos Tribrid mass spectrometer. Full scans were acquired at a resolution of 120,000, and precur-541 

sors were selected for fragmentation by higher-energy collisional dissociation (normalized colli-542 

sion energy at 30%) for a maximum 3-second cycle. Tandem mass spectra were searched 543 

against the Pseudomonas genome database PAO1 reference protein sequences (71) using the 544 

Sequest-HT and MS Amanda algorithms with a maximum precursor mass error tolerance of 545 

10 ppm (72, 73). Carbamidomethylation of cysteine and deamidation of asparagine and glutamine 546 

were treated as static and dynamic modifications, respectively. Resulting hits were validated at a 547 

maximum false-discovery rate (FDR) of 0.01 using the semi-supervised machine learning algo-548 

rithm Percolator (74). Protein abundance ratios were measured by comparing the MS1 peak vol-549 

umes of peptide ions, whose identities were confirmed by MS2 sequencing. Label-free quantifi-550 

cation was performed using an aligned AMRT (Accurate Mass and Retention Time) cluster quan-551 

tification algorithm (Minora; Thermo Fisher Scientific, 2017). Protein interactions were analyzed 552 

using STRING 10.5 and visualized with Cytoscape 3.8.0 (75, 76) 553 

 554 
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