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Abstract

The structure of the genome, specifically repetitive and duplicated regions, leads to difficulty in
accurately characterizing variation across a variety of sequencing technologies and variant
detection methods. The Genome in a Bottle consortium generates variant benchmarks for DNA
Reference Materials from seven human cell lines to reliably identify errors in comparison variant
sets, as well as stratification files for error analysis in specific genomic regions. Current genome
stratifications include discrete bins of homopolymer size, tandem repeat size, mappability, and
segmental duplications focusing on regions subject to bias in sequencing technologies and/or
variant calling methods. To move to a data-driven approach for genome stratification
development and interrogation of variant calling errors, we developed a stratification model -
StratoMod. StratoMod is built with an interpretable machine learning classifier, Explainable
Boosting Machines (EBMs), to predict variant calling errors from features derived from genomic
and sequencing data. EBMs quantify univariate effects and pairwise interactions, which
facilitates understanding how each feature contributes to a prediction. Here, we describe the
design, training, testing, and application of StratoMod, including demonstrating its ability to
identify characteristics of sequencing reads and repetitive genome regions that are likely to
generate variant calling errors. Specifically, StratoMod identified distinct associations with errors
for A/T vs. G/C homopolymer lengths, and quantified sources of error for a new sequencing
technology. We also demonstrated that the model could predict clinically-relevant variants that
may be missed by certain methods, using DeepVariant calls from Illumina as an example. For
this example, we produced a resource of difficult-to-map genes with challenging variants and
large challenging INDELs. Using this model with GIAB benchmarks facilitates a deeper
quantitative understanding of sources of variant calling errors from a wide variety of methods.

Introduction

The current era of sequencing offers an array of short read and long read technologies to
identify the bases of a DNA molecule, each with its own strengths and weaknesses.1 Biases
arise from characteristics of these technologies, such as PCR-based library preparation,
sequencing chemistry, and read length. In addition, the bioinformatics methods used to map or
assemble reads and filter false positive variants can either mitigate or exacerbate these biases
when making variant calls. These biases can theoretically be overcome by combining
complementary technologies; this recently enabled the first complete human genome
assembly2, as well as ongoing work from the Human Pangenome Reference Consortium to
develop 350 reference quality assemblies.3 Furthermore, many challenging medically relevant
genes occur in challenging regions.4–7 To fully take advantage of rapidly advancing technologies,
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it is important to identify and understand their biases.

The Genome in a Bottle consortium (GIAB) established and continually updates a set of variant
benchmarks for DNA reference materials derived from a large batch of seven human cell
lines.7–9 Each benchmark is a variant call format (VCF) file representing the differences between
any of the GIAB samples and a given reference such as GRCh38 within the benchmark regions.
GIAB develops these benchmarks by using the strengths of different sequencing technologies,
which often have varying error rates and mappability depending on the region being sequenced.
These benchmarks then can be used to reliably identify errors in sequencing technologies and
variant calling methods. The current small variant benchmark regions include ~94% and ~92%
of the reference sequence for the HG002 GIAB sample on GRCh37 and GRCh38, respectively.
This includes more difficult regions than previous benchmarks but still excludes the most difficult
regions and variants.8 To compare these benchmarks with a candidate set of variants, best
practices typically utilize a sophisticated bioinformatics tool to account for different variant
representations.10

Since these benchmarks include variants from regions of varying difficulty, it is often useful to
bin performance assessments by genome context (eg, if the variant is in a homopolymer,
segmental duplication, etc) and variant type (SNV or INDEL). GIAB maintains a set of bed files
to perform this performance assessment which are called “stratifications.” As an example, we
used the GIAB stratifications in the precisionFDA Truth Challenge V2 to compare the strengths
and weaknesses in different genomic contexts of sequencing technologies.1 These
stratifications can be binned into the following categories, are expected to have an impact on
variant call accuracy: Low Complexity, Functional Technically Difficult, Genome Specific,
Functional Regions, GC content, mappability,11 Other Difficult or erroneous reference regions,7
Segmental Duplications, Union of multiple categories, Ancestry of the reference,12 and sex
chromosomes. By using these stratifications, we were able to show that Oxford Nanopore
Technologies (ONT) reads had higher performance in segmental duplications and
hard-to-map-regions whereas Illumina excelled in low complexity regions.

While stratifications can be useful in assessing performance, they themselves do not provide a
model for where errors are likely to occur. To this end, a variety of approaches have been used
to model sequencing errors, mostly as part of variant calling in order to filter false positives. For
example, GATK Variant Quality Score Recalibration uses Gaussian Mixture Models to identify
abnormal read characteristics.13 More recently several deep learning models have been
developed to minimize the need for expert-curated features by taking in sequences from the
reference and characteristics of aligned reads in a small region around each candidate
variant.14–17 Additional methods have been designed by clinical laboratories to understand which
variants are enriched for false positives and should be orthogonally confirmed by another
method like Sanger sequencing.18,19 All of these methods have been very useful, particularly for
filtering false positives in variant calls, but they have important limitations. For example, deep
learning and many machine learning methods lack interpretability, and all of the above methods
focus mostly on sequencing read characteristics at the expense of genome context, and they do
not predict false negatives.

Clinical assays test for thousands to millions of different variants, so their validation relies on
‘representative variants’: categories of variants of different types and in different genome
contexts. The Association for Molecular Pathology recommends the use of representative
variants in their bioinformatics guidelines20, and these must satisfy FDA’s requirements for
regulatory submissions.21 While GIAB’s stratifications could be used to select categories of
representative variants, there is no systematic approach to select which of the numerous
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stratifications are important for a particular assay beyond general recommendations to select
some variants from ‘challenging types’ and ‘challenging genome contexts’.

In this work, our goal was to develop an interpretable model to predict the likelihood of calling a
variant correctly given its genome context. Interpretability was desired to allow end users of our
model to understand how each feature (which corresponds to an aspect of genome context)
contributes to a given prediction.22 To this end, we chose Explainable Boosting Machines
(EBMs)23, which are a specific implementation of generalized additive models (GAMs) where
model predictions are derived from additive effects of univariate and pairwise functions of
dataset features (see methods for equation form). Each of these functions can be plotted
individually to assess its impact on the response. EBMs have previously been shown to identify
patterns in data that were obscured by other models, including confounding effects that can only
be explained by domain experts.24 In our use case, this aspect is especially important for
clinicians who generally are required to justify their decisions to patients or other stakeholders
(beyond simply saying “the model told me”).

This modeling approach using EBMs with genomic context features, which we call StratoMod,
offers several advantages over the current strategy for assessing performance based on GIAB
stratifications. First, StratoMod is much more precise. In the case of homopolymers, the genome
stratification approach would have required a decision to threshold discrete bins of
homopolymer lengths such as 4 to 6 bp, 7 to 10 bp, >10 bp, and >20 bp; in this case errors can
only be reported in terms of these discrete bins. In contrast, the EBM model reports errors in
terms of a continuous scale (log-odds), in which users can more precisely identify the impact of
homopolymer length on likelihood of an error which in turn can highlight biases or strength of
different sequencing technologies. Second, this model approach allows multiple genome
contexts to be assessed simultaneously. Since EBMs can also include bivariate terms, we can
inspect the interaction between homopolymer and INDEL length for instance. Since INDELs
themselves can have varying difficulty depending on their length, sign (e.g. insertion or
deletion), and method by which they are measured, it would be useful to understand how
homopolymers (or other genome context) modulates this difficulty. This would also be important
for assessing structural variants (INDELs >50bp), which we did not address in this work but are
nonetheless of interest to the field.
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Figure 1: Graphical overview of explainable boosting machines framework for genomic context.
a) Conceptual framework for mapping “genomic context” to a machine-understandable value
(with homopolymer length as an example) b) Flow chart for the analysis pipeline.

Results

Figure 1 shows the overall approach of StratoMod. For this study, we trained multiple iterations
of StratoMod to assess distinct research questions as outlined in the following sections. In each
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case, we trained two individual models for INDELs and SNVs separately. Furthermore, all false
positive (FP) and false negative (FN) errors were determined with respect to the GIAB v4.2.1
benchmark VCFs for the corresponding genome sample using GRCh38 as the reference. Lastly
we simplified the analysis by removing SVs, MNVs, multiallelic variants, genotype errors, and
any variants that appeared in the MHC regions from both the benchmark and query VCF input
files.

Use case 1: Predicting False Positives in PCR-free vs PCR-plus

Model training and feature interpretation

We first asked if StratoMod could be used to predict where Illumina PCR-plus and PCR-free
sequencing technologies have higher sequencing or mapping error rates that could produce
false positive variant calls (Fig 2a). This choice in comparison was motivated by the fact that
PCR amplification is known to produce insertions and deletions in homopolymer repeats
(stutter25) (Fig 2b) and thus we hypothesized that the model would be able to precisely show the
effect of homopolymer length on error rate, in addition to other repetitive genomic contexts.

We trained two models (for SNVs and INDELs) using PCR-free/plus VCF files with all
DeepVariant candidate variants (no filtering) from HG004 compared against the GIAB HG004
v4.2.1 benchmark VCF. We used candidate variants for this use case in order to assess the
relationship between the features and sequencing/mapping errors, independent of the variant
filtering process. Each model was trained on false positive (FP, defined as extra variants not
matching a benchmark variant and genotype but in the benchmark regions)10 and true positive
(TP, defined as variants matching a benchmark variant and genotype) variant call classifications,
as reported by vcfeval. The model utilized 24 main effect (univariate) features, including 1
categorical feature denoting the sequencing technology (PCR-free/plus). These main effect
features included quantified characteristics of homopolymers, tandem repeats, segmental
duplications, and other repetitive elements, as well as depth of coverage (DP) and variant allele
fraction (VAF). Each model also included interaction terms between the 24 main effects and the
PCR-free/plus categorical feature, allowing the model to show the behavior of each main effect
conditional on technology (see Methods and Supp Table 1 for complete list of features). Each
model was trained using an 80/20 test split on HG004 (Ashkenazi Jewish ancestry); we
additionally tested the model on HG007 (Han Chinese ancestry) to assess its generalizability to
other genomes. We observed that both precision and recall (measured by AUC) were similar
between HG004 and HG007 (with HG007 lagging slightly behind as expected given it was the
holdout dataset) (Fig 2c, Supp Fig 1). The negative class in the training sets for SNV and
INDEL were 63% and 85% percent respectively (Supp Table 2).

The EBM underlying StratoMod is a GAM, meaning a prediction from the model is determined
by additive contributions of different genomic and sequencing features, which we refer to as the
score for each feature value. In general, the score indicates the feature’s contribution to the log
odds of the variant being a TP vs. an FP (e.g. a decrease in score of 1 means the odds of a FP
occurring are 2.7 times more likely). Overall, the largest driving features (unsurprisingly) were
VAF and DP as read from the input VCF files (Supp Fig 2), as many errors had low VAF and
abnormally low or high DP (Supp Fig 3). However, other features with large effect included
homopolymer length and homopolymer imperfect fraction (Supp Fig 3). When observing the
homopolymer length feature profiles directly from the model, we found that the likelihood of a FP
generally increased with increasing length as expected from PCR stutter and sequencing
biases. For INDELs, PCR-plus generally predicted more errors, with relatively small interactions
between PCR and homopolymer length (Fig 2d). Most homopolymers fell between the lengths
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of 0 to 50 or 0 to 15 bp for A/T and G/C homopolymers respectively, with the number of TPs and
FPs decreasing exponentially with increasing length and ~100x more TPs in A/T than in G/C
homopolymers longer than 10 bp (Supp Fig 4). Previous work had found that the number of FP
INDELs in A/T homopolymers was much larger than in G/C homopolymers,26 which was
reflected in the feature rankings by Stratomod, but Stratomod also showed that G/C
homopolymer length similarly predicts higher FP rates. Additionally, these feature plots provide
more precise information regarding the length at which a certain relative error threshold will be
crossed. In the case of SNVs, A homopolymers became more error-prone compared to the
non-homopolymer baseline (the dotted lines in Fig 2d) after 10 bp; G homopolymers of any
length were more error prone (note that both A and G homopolymer profiles were similar to their
complements, see Supp Fig 4). Increased SNV error rates in G/C homopolymers have been
attributed to inhibition of base elongation in GC-rich regions during sequencing by synthesis27 or
to formation of non-B-DNA stem-loop motifs at G quadruplexes.28 For INDELs, these thresholds
were conditional on the sequencing technology, where PCR-free and PCR-plus were more
error-prone than baseline after 13 and 11 bp respectively for A homopolymers. For G
homopolymers this drop off occurred around 10 bp for both PCR-free and PCR-plus (note that in
the case of C homopolymers these thresholds were 12 and 10 bp for PCR-free and PCR-plus
respectively, see Supp Fig 4).

For INDELs, we also observed an unexpected increase from baseline (i.e., a higher likelihood of
TP vs. FP relative to non-homopolymers) in both A and G homopolymers for short lengths of
between 4 and ~10 bp, with a peak around 8 bp. Because the EBM score is a function of both
TP and FP rates, we hypothesized that the rate of true variants (TPs) increases faster than the
rate of sequencing errors (FPs) in short homopolymer regions. Supporting this hypothesis, the
ratio of TPs to FPs was higher for short homopolymers than for non-homopolymers, which may
be caused by the higher rate of true INDEL variants in homopolymers (e.g., 39% of benchmark
INDELs are in homopolymers 7 to 10 bp, while only 1.7% of the benchmark regions are in these
homopolymer regions). Indeed, when plotting the TP and FP rates per base pairs covered by
each homopolymer size, we saw that the TP rate increased faster than the FP rate for small
homopolymers. As the homopolymer length increased, the FP/bp rate increased more than the
TP/bp rate, which was reflected in the decreased EBM score. Interestingly, the TP/bp and FP/bp
rates decreased for very large homopolymers, likely because large homopolymers are more
likely to be excluded from the v4.2.1 GIAB benchmark, reflecting a limitation of the current
training dataset (Supp Fig 5). These results explain the increase in EBM score for short
homopolymers, followed by a decrease, before flattening out due to the small number of very
long homopolymers included in the v4.2.1 benchmark. This deep-dive into a counter-intuitive
result highlights both the challenges in interpreting the model’s results, particularly that it is
modeling the ratio of TPs to FPs rather than the FP rate per genomic bp, as well as its power in
identifying unexpected associations of features with error rates.

We also noticed that the EBM INDEL scores had some sharp downward peaks for particular
values of segmental duplication length and identity (Supp Fig 6a). When examining variants in
the 2 largest peaks near 20 kbp, we found that they were caused by segmental duplication
between chr7:142,450,000-142,526,000 on GRCh38 inside the T cell receptor beta locus. This
region has a known issue in GRCh38, and the patch contains a ~20 kbp insertion, which is an
extra tandem copy of the segmental duplication and causes many FP variant calls in Illumina
and HiFi (Supp Fig 6b). It also intersects with 2 types of problematic reference regions
identified in the recent T2T variants work: GRCh38 collapsed duplications and gnomAD
inbreeding coefficient FPs, both of which annotate regions with FPs due to reads from extra
copies of the region that are in most genomes but missing from the reference.12 This result
highlights a strength of this model to identify unexpected relationships between features and
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errors, and also suggests the possibility of adding new features associated with reference errors
to future versions of the model.

These results indicate that these models can be used to precisely quantify FP error rates with
respect to a meaningful, interpretable genomic context, which in turn could be useful in defining
more accurate stratifications.
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Figure 2: StratoMod revealed context-specific regions where false positives are likely to occur
and show relative performance of PCR-free and PCR-plus technologies. a) Overview of
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experimental setup. Two VCFs from PCR-free and PCR-plus were compared to the GIAB
benchmark, concatenated, and annotated before fitting SNVs and INDELs in the EBM
framework. HG005 was annotated and used to test the EBM model. b) IGV session depicting a
false positive call identified by this model c) performance characteristics of HG004 (train) and
HG007 (test). d) EBM plots showing A and G homopolymer profiles. The x axis in all plots was
truncated to only show homopolymers <50bp and <15bp for A and G respectively. The bar plots
on the left of each plot show the value for non-homopolymers (“missing”). The y axis in the top
row is the log odds of a TP outcome. Each colored dotted line in the top row is the “baseline”
error rate for the corresponding sequencing technology. The bottom plots show the distribution
of homopolymer lengths (TPs are above the dotted line and FPs are below).

Comparison of EBM performance to DeepVariant performance within candidate regions

We next compared the accuracy of StratoMod’s FP vs TP classifications to DeepVariant’s, for
the candidates generated by DeepVariant. We first examined the calibration of DeepVariant’s
genotype quality score (GQ) (Fig 3a) and StratoMod’s probability score (Fig 3b). As expected
from DeepVariant’s richer information used for classification, it provided useful phred-based
quality scores up to empirical scores of >50 (1 in 100,000 error rate) vs. the v4.2.1 benchmark,
though it was somewhat overconfident for INDELs. StratoMod provides well-calibrated scores
up to about 35 (1 in 3000 error rate) for SNVs and 25 (1 in 300 error rate) for INDELs. In Figure
3b, we assign a label on “1” to any StratoMod probability > .5 and “0” otherwise. We then made
a Venn diagram showing intersections between DeepVariant and StratoMod predicted TP labels
against the benchmark when combining SNVs and indels for PCR-free and PCR-plus Illumina.
99.4% of the benchmark variants were classified as TPs by both StratoMod and DeepVariant.
Of the remaining 0.6%, most (36,675) were classified incorrectly as FPs by StratoMod and as
TPs by DeepVariant, whereas 1,765 were correctly classified as TPs by StratoMod and not
DeepVariant. In addition, StratoMod incorrectly classified 44,629 variants as TPs that were
correctly filtered by DeepVariant, many more than the 3,930 uniquely incorrect TPs in
DeepVariant. When intersecting these uniquely mis-classified variants with features,
DeepVariant uniformly performed better, but ~25% of false variants uniquely classified as TPs
by DeepVariant were in regions difficult to map with 250 bp reads, suggesting DeepVariant may
benefit from additional genome mappability features.
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Figure 3: Comparison of Stratomod calibration and accuracy relative to deep learning-based
method DeepVariant. a) Predicted genotype quality score (GQ) from DeepVariant plotted
against an empirically derived GQ measure, -10*log10(FP/(FP+TP)), using the GIAB v4.2.1
small variant benchmark. b) PHRED-scaled plots depicting calibration for how well StratoMod
confidently predicts TPs (or values near 1 for its predictions) similar to a typical genotype quality
score c) Comparison of StratoMod and DeepVariant performance against the benchmark values
for the candidate sites from DeepVariant used in our model.

Comparison of EBMs to other commonly used models

We compared the performance of an EBM model to XGBoost (XGB), Random Forest (RF),
Logistic Regression (LR), and Decision Tree (DT) models in classifying variants as errors using
the same training and testing data. In all cases, performance was comparable when examining
the area under the curve (AUC) for the receiver operator characteristic (ROC) curve and
precision-recall (PR) curves (Table 1). Note that the RF SNV model did not complete within the
constraints imposed by our compute cluster.

While similar, StratoMod performed slightly better than both DT and LR models and slightly
worse than RF and XGB models for both SNVs and INDELs. This is not surprising considering
that RF and XGB are much more flexible than EBMs, and EBMs in turn are more flexible than
LR models. DT models might be more flexible than EBMs given that they have less restrictions
when building trees, but DT models also tend to be brittle as they are not ensemble models
(unlike EBMs). Notably, the models that did perform slightly better than EBMs were also
blackbox models (e.g. unable to be inspected analogously to EBMs).

These data demonstrated that for this use case, using EBMs for the classification algorithm in
StratoMod performed similarly to other commonly used models. Slight performance benefits
may be had with blackbox models such as random forest or XGBoost, albeit with a loss of
interpretability and potentially much higher compute requirements.
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Table 1: Comparison of EBM performance to those of other popular machine-learning methods.
OOM: out of memory

Variant Metric StratoMod DT LR RF XGB

INDEL ROC 99.5% 99.2% 99.2% 99.8% 99.8%

INDEL PR 99.7% 99.4% 99.5% 99.9% 99.9%

SNV ROC 99.8% 99.4% 99.5% OOM 99.9%

SNV PR 99.9% 99.8% 99.9% OOM 100.0%

Use case 2: Predicting False negatives in Illumina PCR-free and PacBio HiFi variant calling
pipelines

Model training and feature interpretation

We also produced similar models to the previous section, but for FNs vs. TPs and comparing
Illumina PCR-free to PacBio HiFi DeepVariant variant calls. In contrast to the previous section,
we compared the variant calls from the two technologies after DeepVariant’s filtering, so that we
could understand FNs caused by filtering. The model was trained analogously using the GIAB
v4.2.1 small variant benchmarks (Fig 4a), except we used HG002 as the training sample,
HG004 and HG007 as the testing samples, and predicted TP and FN (as opposed to FP)
variant call labels. We also did not include DP and VAF features so that we could understand
how well FNs for a variant calling method could be predicted from sequence context alone.
Finally, after training the model, we used it to predict FN rates for variants in ClinVar, to
understand variants that a given method might miss; note that the GIAB benchmarks do not
have sufficient pathogenic and likely pathogenic variants to validate model performance for
these variants, so our validation strategy included manually inspecting a subset of outcomes.

The human genome contains many copies of transposable elements such as LINEs, LTRs, and
SINEs, which can cause mapping challenges, particularly for short reads. These elements often
overlapped our difficult-to-map regions, but we added them as additional features to understand
their effect on FN rate beyond our difficult-to-map features. Any variant in a LINE was more
likely to be missed than those not in LINEs, and the difference in predicted score between
Illumina and HiFi became larger as length increased (Fig 4c). There was a spike in the FN rate
around 6000 bp long (corresponding to full-length L1 LINEs), possibly because full-length LINEs
are more recent and similar to each other; this may be an indication that adding additional
features such as subclasses of LINEs may increase the accuracy and interpretability of the
model. Interestingly, SINEs had the opposite effect as LINEs and predicted fewer SNV FNs in
Illumina than HiFi, possibly because SINEs typically have a long homopolymer at one end (Fig
4c).

Similar to transposable elements but with fewer copies, segmental duplications are large (>1000
bp) genomic regions with at least 85% sequence similarity, causing challenges with short and
long read mapping. The SNV model showed that any segmental duplication size predicts more
FNs than non-segmental duplications, and increases in segmental duplication size predict more
FNs, as expected (Fig 4d). Furthermore, the FN rate for HiFi was uniformly lower than that of
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Illumina; however, this difference was less for increasing segmental duplication lengths, possibly
because the longer HiFi read length has less advantage when the segmental duplication is
longer than the read length, particularly if it is not also in one of the difficult to map region
features. The FN rate also increases with increasing segmental duplication similarity, particularly
above 98%, with a roughly constant difference between HiFi and Illumina (Fig 4d).

Both HiFi and Illumina were more likely to miss variants in hard-to-map regions as expected
(Fig 4e). However, the decrease in TP log-likelihood was much higher in Illumina (about 4 and 5
for 100 and 250 bp respectively) compared to HiFi (about 2 and 4 for 100 and 250 bp
respectively). Particularly in the case of 100bp sized regions, our model predicted that the
likelihood of correctly calling a SNV in a hard-to-map region with HiFi was about the same as
the baseline of Illumina.

For INDELs, we investigated homopolymers and tandem repeats (Fig 4f). For T homopolymers
specifically (which were similar to A homopolymers in Supp Fig 7), we found that the overall
error rate of HiFi is much higher than that of Illumina, which was expected given the known error
profile of HiFi with respect to INDELs. Furthermore, the rate of FN likelihood in HiFi began
accelerating relative to Illumina at around 10 bp for T homopolymers. For tandem repeats, FNs
were less likely in Illumina at lengths less than 125bp, but then HiFi had fewer errors for lengths
greater than this cutoff. This underscores the importance of long reads for finding variants in
longer repeats; while HiFi may have an intrinsically higher error rate for INDELs relative to
Illumina, this disadvantage is negated in longer repeats where Illumina reads become shorter
than the repeat so that HiFi is less prone to have mapping errors. This effect was likely not seen
in homopolymers due to their lengths being much shorter than the Illumina read lengths.
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Figure 4. StratoMod found context-specific regions where variants are likely to be missed in
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either HiFi or Illumina analysis pipelines. a) Experimental overview b) IGV session depicting
false negative calls identified by this model c-f) EBM interaction feature plots for SNV segmental
duplications (c), SNV transposable elements (d), SNV hard-to-map regions (e) and INDEL
homopolymers (f).

Performance assessment and prediction of missing clinically-relevant variants

We tested these models on both HG004 and HG007 to assess generalizability to different
genomes. Overall, the model performance was worse between training and testing on HiFi
compared to Illumina (Supp Fig 1, Supp Fig 8a), most likely because the VCFs used for
training and testing had inconsistent coverage (Supp Table 5). For Illumina, we observed that
performance (AUC under PR and ROC curves) was comparable between all samples, indicating
generalizability of our model (Fig 5a) despite the fact that the negative class for these models
was <1% (Supp Table 2). However, we also observed that in the case of the INDEL model, the
two testing samples actually performed better than the training sample. While this is likely due to
inherent differences between samples, data, and/or benchmarks that we are not capturing
adequately with our model (for example, HG007 and HG002 are of different ancestries which
may have variants of varying difficulty and/or heterozygosity in the regions we included in our
model), these performance metrics showed that at least the models did not totally fail when
tested on an entirely different human genome.

We next assessed the ability of our model to predict the likelihood of missing clinically relevant
variants with Illumina-DeepVariant, focusing on this callset because it has a higher FN rate than
HiFi-DeepVariant. We fed a ClinVar VCF through our model (without labels since our
benchmarks have very few ClinVar variants) and extracted the probabilities of missing a variant.
We also examined the contribution of each feature to those probabilities to “explain” why some
variants were likely to be missed. To focus on variants of more clinical interest, we only
considered variants marked as “pathogenic” or “likely pathogenic” in the ClinVar VCF. In the
case of SNVs and INDELs this resulted in 99905 and 64583 variants (Supp Fig 6b). We then
filtered variants whose likelihood of being missed was greater than 10% and plotted them in a
heatmap showing the local contribution of each feature (Fig 5b, Supp Files 1 and 2). The vast
majority of variants were called with relatively high confidence of being a TP (Fig 5c) and the
model was well-calibrated at the 10% FN cutoff we used (Supp Fig 9).

For SNVs, all predicted FN calls except two were explained both by low mappability and being
in a highly similar/duplicated segmental duplication, with more than 20 FN SNVs predicted in
genes CYP21A2, CHEK2, NEB, PMS2, TUBB8, SMN1, STRC, PIK3CA, and ABCC6, as well as
genes that are falsely duplicated in GRCh38 (CBS, with fewer in KCNE1, U2AF1, and CRYAA),
with full list of genes and counts of predicted FNs in Supplementary File 3. This is plausible
given that these two regions types should overlap significantly and also should lead to
mismapped reads and hence missed variant calls. The two predicted FNs not in segmental
duplications were a cryptic splice acceptor at the edge of a full-length LINE in an intron of ATM
(NM_000051.4(ATM):c.2466+1552G>C), and a variant from one submitter in a VNTR in an
intron of PRPF31 (NM_015629.4(PRPF31):c.1374+654C>G).

Predicted INDEL FNs were also primarily in segmental duplications; however other features
such as INDEL length, and tandem repeat length explained some of the errors, indicating that
multiple error mechanisms may be at play. For example, potential FNs were predicted for
INDELs in VNTRs in ACAN, COL6A1, F7, MYO7A, AGRN, and CDKN1C (some of which are
inside an exon and some partly exonic but mostly intronic), as well as large insertions in
trinucleotide tandem repeats like DMPK, PHOX2B, and RUNX2, where expansions are
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associated with disorders. The remaining predicted FNs were large INDELs in non-repetitive
regions (a few incidentally in homopolymers), except for a cluster FNs in a few hundred bp
region of ANKRD11 that is identical to a region on chrX, but can be mapped accurately with
most paired-end reads. The full list of genes and counts of predicted FNs is in Supplementary
File 4.

Many of the above identified genes, tandem repeat regions, and variant types have previously
been known to be challenging. In addition to highlighting general genes and characteristics of
variants, this model predicted particular pathogenic variants that may be missed by a particular
sequencing and bioinformatics method (in this case, 35x Illumina-DeepVariant PCR-free WGS),
which may not be representative of all Illumina-based methods. This model could be used
similarly to predict variants that might be missed by any method that has been used to call
variants from benchmark samples like those available from GIAB.
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Figure 5: Assessment of FN Clinvar variants using Illumina reads. A) Performance of models on
each genome sample (note 80% of HG002 was used for training B) Heatmap of variants with a
10% or higher likelihood of being predicted as FN showing contributions of each feature within
the model. Note that all interaction terms were added to their univariate main effect features to
simplify visualization, and also note that negative scores contributed positively to a FN. C)
Cumulative distribution of FN variants vs probability of the model predicting a FN.
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Use case 3: Assessment of new sequencing technologies

New sequencing technologies are under active development, so we next tested if StratoMod
could be used to understand strengths and weaknesses of one new sequencing method from
Ultima that promises to be less expensive.29 We compared Illumina PCR-free variant calls to
those of Ultima, both filtered by DeepVariant analogously to the FN model outlined in use-case
2, except we trained/tested 80/20 on HG004 and tested entirely on HG007. The output labels to
be predicted were TP and FN, and thus this model was intended to show where variants might
be missed between the two technologies.

Performance between HG004 and HG007 for both SNV and INDEL models was comparable
(Supp Fig 1, Supp Fig 10a). However, performance for these models was overall comparably
lower than that for the PCR-free/plus model (despite PCR-free being the same VCF in both
models), likely due to the larger class imbalance between FN and TP vs FP and TP (Supp
Table 2).

Our analysis provides additional insight compared to what Ultima released in their white paper.29

In the case of homopolymers, we found that for SNVs, A homopolymers greater than 8bp have
higher FN rates compared to baseline; in G homopolymers this threshold is 6bp (Supp Fig
10b), with similar results for T and G homopolymers, respectively (Supp Fig 10b top row). For
INDELs, A homopolymers >11 bp are more error-prone than baseline, and 7bp in the case of G
homopolymers. The Ultima white paper broadly excludes all homopolymers >11bp regardless of
whether it is a A/T or G/C homopolymer or SNV or INDEL.

Additionally, in the case of tandem repeats we found that for SNVs and INDELs, the error rate in
A/T rich repeats drops precipitously above ~80%, which is much lower than the 95% threshold
excluded in the Ultima white paper (Supp Fig 10b bottom row). Also regarding tandem repeats,
we found that repeats longer than 30bp for both SNVs and INDELs had precipitously higher
error rates with increasing length (although the difference between Illumina and Ultima in these
cases was less substantial than for the A/T fraction and homopolymer length).

Compared to Illumina, the features we investigated that seemed to negatively diverge were A/T
percent for tandem repeats and homopolymer length. For other measures, Ultima and Illumina
were comparable, and in the case of longer tandem repeat lengths actually converged to
Illumina for higher lengths.

For all of these results, it is important to note that particular conclusions about technologies are
likely to change over time as methods improve. However, these data showed how this modeling
approach can be used to precisely identify the strengths and weaknesses of novel sequencing
techniques relative to existing tools, and models can be updated as new sequencing
technologies and variant calling models likely improve over time.

Discussion

In this work, we demonstrated that an inherently interpretable model with expert-designed
features for genome context can be used to gain a deeper understanding of sequencing and
variant calling errors.

Predicting false negatives from short and long reads enabled us to gain a quantitative
understanding of strengths and weaknesses of each technology with DeepVariant for different
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types of repeats. For example, difficult-to-map regions and repetitive elements that cause
challenges in mapping predict lower SNV FN rates for HiFi-DeepVariant, whereas longer
homopolymers and shorter tandem repeats predict lower INDEL FN rates for
Illumina-DeepVariant.

StratoMod newly enables prediction of variants that might be missed by a particular method
(sequencing and variant caller) if that method was used to sequence one or more benchmark
samples like those from GIAB. While previous studies have outlined challenging genes and
challenging types of variants in general, StratoMod can predict variants that might be missed by
a particular method along with the features that cause each variant to be challenging.

Finally, we showed that StratoMod can be used to understand the strengths and weaknesses of
new technologies, which is particularly important given recent innovations in short- and
long-read platforms. These technologies and associated variant callers are under active
development; StratoMod could be used by developers to understand how new innovations
improve results and where there is room for ongoing improvement.

We selected a relatively small set of features to maintain interpretability and reduce correlations
between related features as this reduces interpretability. We also evaluated a limited number of
interactions between features, because large numbers of feature interactions are challenging to
interpret. We expect adding and fine-tuning features and adding more interactions could
improve model performance, but would also create more challenges in interpretation and
visualization of results. The tree-based modeling approach enabled us to identify some
discontinuities in scores that point to possible improvements in feature design, such as
identifying peaks in segmental duplication length related to particular segmental duplications
with errors in GRCh38, and a peak in LINE length related to full-length LINEs. However, the
tree-based nature of the model also makes robust uncertainty estimates challenging relative to
other GAM-based approaches. These results also provide suggestions for features that could
be added to other models like those used by variant callers to filter false positives.

While we have demonstrated that StratoMod can be useful for diagnosing and understanding
variant calling errors, it was not intended to be a replacement for any existing variant caller. In
particular, up to 20% of FP variants are not assigned any genome context features, so
StratoMod uses only depth of coverage and variant allele fraction for classification. This limits
StratoMod’s ability to be as comprehensive as expected from a variant caller (Supp Fig 10).
Adding slop (i.e., extra bases around the repeat) can be important for some features, and we
experimented with adding 1 to 5 bp slop around homopolymers. We decided to use 1 bp to
simplify interpretation around nearby homopolymers, but this increased the number of variants
without a genome context feature, particularly for GC-rich regions. Despite this lack of
comprehensiveness, the model’s interpretability enables a more detailed understanding of how
types of repeats and their characteristics predict sequencing and mapping error rates for
PCR-free vs. PCR-plus Illumina sequencing. Understanding differences in sequencing and
mapping errors between technologies can be challenging due to differences in how candidate
variants are generated, so we did not use the model to predict false positives across
technologies, but instead predicted differences in false negatives after filtering for
DeepVariant-based callsets from Illumina and HiFi in the second use case.

The work presented here supports future stratification development in a more data-driven way.
More comprehensive benchmarks, such as those based on de novo assembly, will also provide
more accurate models of variant call errors, particularly in more difficult regions and for larger
variants. We also expect these models along with manual curation to help systematize the
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creation of new benchmarks by helping to understand the strengths and weaknesses of each
technology and variant caller so that we can know which method to trust when they differ.
Models like StratoMod will provide a new approach both for developing better benchmarks and
for using these benchmarks to understand strengths and weaknesses of a method and predict
which clinically-relevant variants may be missed.
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Methods

Variant labeling

The overall process to label a query VCF file such that it can be understood by the EBM model
is given in Fig 1b. The following is a more detailed description of this process:

Preprocessing
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To treat DeepVariant’s filtered variants as variant when doing the comparison with vcfeval, we
converted genotypes from ./. to 0/1 and 0/0 to 0/1. Furthermore, we removed all chromosomes
except 1-22 (as the GIAB benchmarks we used as the truth sets did not have X/Y or any
alternate chromosomes). Finally, we removed the MHC region from the benchmark and query
VCF files before comparison.

Comparison

We generated TP, FP, and FN labels using vcfeval with `--refoverlap –all-records` to preserve all
filtered variants (which were either kept or removed depending on the desired analysis). The
output vcf files corresponding to TP, FP, and FN labels were then concatenated and converted
to a bed file with an additional column holding the corresponding label for each variant. During
this step we also computed all VCF_* features (see below) from the VCF file itself. We also
removed multi-allelic variants (to simplify the analysis), multinucleotide variants (variants whose
REF and ALT were both >1bp and equal to each other) and structural variants (those whose
REF or ALT columns were longer than 50 bp). Importantly, we shifted the start/end columns
resulting from the VCF file leftwise by 1 to make the final result 0-based instead of 1-based for
proper intersection with BED files.

After this step we split the resulting bed files into SNV and INDEL streams.

Annotation

After generating all feature bed files (see below section) we merged the SNV and INDEL label
bed files from the previous step using multiple rounds of bedtools intersect with the -loj flag.

Pre-train processing

Prior to use in the EBM for training, we converted the labels (TP, FP, FN) to a 0/1 feature as
required for binary classification. For the FP model, we simply removed the FN label and
mapped FP -> 0 and TP -> 1. For the FN model(s), we wanted to remove the effect of including
filtered variants in the training set (as if we had never used `--all-records` with vcfeval) and thus
for all non-PASS variants, we mapped FP -> TN and TP -> FN, filtered only FN and TP labels,
and then mapped TP -> 1 and FN -> 0.

Since we used the -loj flag in the previous annotation step, many variants did not have any
values for a given feature (since on average a given variant will only intersect with a few regions
corresponding to our feature categories). For HOMOPOL_imperfect_frac and
TR_percent_AT_median we filled these missing values with -1 since 0 had real meaning for
these features. For all other features we filled in missing values with 0; for these features this
corresponded to 0-length or 0-count, and thus made numerical sense as a missing substitute.

Feature Engineering

Model features were grouped into 5 main categories. See Supplemental Table 1 for a list of all
features. The prefix of each feature corresponds to its category. An overview of each feature
category and their method of generation follows:

VCF features (prefix = VCF)

VCF_DP and VCF_VAF were taken from the query VCF file without modification. VCF_input
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was used as an index to track the query VCF file where multiple inputs were used in the model.
VCF_indel length was taken as the difference between the ALT and REF columns (thus positive
values represented insertions).

Homopolymers (prefix = HOMOPOL)

Perfect homopolymers (eg homopolymers with no other interrupting bases) with lengths >= 4bp
were generated directly from the reference using an in-house python script and saved to a bed
file. This bed file was then split into each of the four bases. Each individual
homopolymer-per-base file was then merged using bedtools with -d 1 (to get “imperfect”
homopolymers which have at least two stretches of the same base >= 4pb with one different
base in between). We then added 1bp slop to each end of the merged regions in order to detect
errors immediately adjacent to the homopolymer itself. For each homopolymer region, we used
the length (without slop) as well as the fraction of imperfectness (the number of
non-homopolymer bases over the length). Note that in our formulation, imperfect fraction
approaches a theoretical maximum of 20% in the limit as length increases.

Tandem Repeats (prefix = TR)

Tandem repeat features were based off of the simple repeat finder UCSC database. We used
bedtools merge to summarize a subset of the columns in this database (period, copyNum,
perMatch, perIndel, and score; note that we renamed these in our feature set to better
distinguish them). For each of these columns we computed the min, max, and median value
when merging, and also stored the count of the number of merged repeats. Furthermore, we
computed the percent of GC and AT content in each region using the individual base percent
columns present in the database, and merging analogously to the previous columns. Finally,
computed the length of the tandem repeat region directly using the coordinates present in the
database file. We added 5bp slop to each region, and removed all regions with period/unitsize
== 1 as these corresponded to homopolymers which were represented in a different feature
category.

Segmental Duplications (prefix = SEGDUP)

Segmental duplication features were merged in a similar manner to the tandem repeat columns,
except we used the genomicSuperDups database from UCSC. We only used the alignL and
fracMatchIndel columns, and computed the min, max, and mean of these as well as the count of
regions that were merged. We did not add slop to these features.

Repeat Masker (prefix = REPMASK)

Repeat masker features were based on the rmsk database from UCSC. For entries whose class
was SINE, LINE, or LTR, we filtered by class and merged using bedtools. We then calculated
the length of each merged region (conditioned on class). We did not add slop to these regions.
In the case of SINE and LTR, we converted each feature to binary by setting each length to 1
(and then any non-intersecting variants would get a 0 representing that they did not intersect
this region).

Hard-to-map (prefix = MAP)

We used the GEM-based11 lowmappabilityall.bed.gz (100bp) and
nonunique_l250_m0_e0.bed.gz (250bp) from the GIAB v3.0 stratifications1 as the basis for this
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feature. For both of these bed files, we simply appended a column filled entirely with 1’s
representing a binary feature where 1 means “in a hard to map region” and 0 otherwise.

Model Training

We used the interpretml package30 from Microsoft Research to train the EBM models. We
specifically used the ExplainableBoostingClassifier which has the following form:
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Here g is the logit link function and each fi is either a univariate or bivariate decision tree in
terms of its input(s).

These were trained using a random 80/20 train/test split. For interactions, we specifically
included all interactions that included VCF_input as well as indel_length vs all four of the
homopolymer length features. All other settings were left at default.

Model Comparisons

To compare EBMs with other commonly used models in the machine learning space, we used
the FP/TP EBM model with Illumina PCR-Free/Plus and ran the associated data through the
following algorithms with the following hyperparameter tuning schemes:

Model Implementation Hyperparameter levels

Decision Tree rpart (R) Cost_complexity: 0.00001,
0.0001, 0.001, 0.01, 0.1

Logistic Regression glmnet (R) Penalty: 0.000001, 0.000001,
0.00001, 0.0001, 0.001, 0.01,
0.1, 1, 10

Mixture: 0, 0.5, 1

Random Forest ranger (R) mtry : 1, 4, 7

trees: 500, 1000, 2000

XGBoost xbgoost (python/gpu accel) max_depth : 3, 6, 9

n_estimators: 100, 500, 1000

gamma: 1, 10, 100

All models were trained on a compute cluster with 512GB memory, 2 20 core Intel Xeon E52698
v4 CPUs and 8 Nvidia Tesla V100 (per node). Each job was allowed 3 days of compute time. Of
all the algorithms used (including EBMs) only xgboost was able to take advantage of GPU
acceleration.
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ClinVar Analysis

We used the November 5 2022 release of the ClinVar VCF (clinvar_20221105.vcf.gz). We
added a FORMAT (GT) and SAMPLE (0/1) column to the VCF and used hap.py
(https://github.com/Illumina/hap.py) to compare the v4.2.1 benchmark VCF and BED
(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/ChineseTrio/HG005_NA2463
1_son/NISTv4.2.1/GRCh38/). Restricting to “likely pathogenic” or “pathogenic” variants in the
ClinVar VCF, this resulted in 133 matching variants from HG005.

Software Packages

See Supplemental Table 3 for a list of software packages and their versions that were used in
this work.

The source for StratoMod can be found on github: https://github.com/ndwarshuis/stratomod
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