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Summary
Chronological age prediction from DNA methylation sheds light on human aging, indicates poor
health and predicts lifespan. Current clocks are mostly based on linear models from hundreds of
methylation sites, and are not suitable for sequencing-based data.

We present GP-age, an epigenetic clock for blood, that uses a non-linear cohort-based model of
11,910 blood methylomes. Using 30 CpG sites alone, GP-age outperforms state-of-the-art
models, with a median accuracy of ~2 years on held-out blood samples, for both array and
sequencing-based data. We show that aging-related changes occur at multiple neighboring
CpGs, with far-reaching implications on aging research at the cellular level. By training three
independent clocks, we show consistent deviations between predicted and actual age,
suggesting individual rates of biological aging.

Overall, we provide a compact yet accurate alternative to array-based clocks for blood, with
future applications in longitudinal aging research, forensic profiling, and monitoring epigenetic
processes in transplantation medicine and cancer.
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Graphical abstract

● Machine learning analysis of a large cohort (~12K) of DNA methylomes from blood
● A 30-CpG regression model achieves a 2.1-year median error in predicting age
● Improved accuracy (≥1.75 years) from sequencing data, using neighboring CpGs
● Paves the way for easy and accurate age prediction from blood, using NGS data
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Motivation
Epigenetic clocks that predict age from DNA methylation are a valuable tool in the research of
human aging, with additional applications in forensic profiling, disease monitoring, and lifespan
prediction. Most existing epigenetic clocks are based on linear models and require hundreds of
methylation sites. Here, we present a compact epigenetic clock for blood, which outperforms
state-of-the-art models using only 30 CpG sites. Finally, we demonstrate the applicability of our
clock to sequencing-based data, with far reaching implications for a better understanding of
epigenetic aging.

Introduction
Chronological age prediction using DNA methylation emerged from seminal studies by Horvath1,
and Hannum and colleagues2. Both used Illumina DNA methylation arrays, and integrated the
methylation levels at a predefined set of 353 or 71 CpG sites (respectively) across the genome
in a linear regression model to predict age, yielding impressive predictions. Intriguingly, these
models inherently assumed faster changes in DNA methylation levels until the age of 20 years,
after which methylation levels were modeled at a constant rate throughout adulthood1.

The molecular mechanisms of aging are yet to be fully uncovered, and the factors that drive
changes in DNA methylation with age are not well understood. These changes may either be
consistent and predictable, such as alterations in DNA methylation as a result of accumulating
stress3, or spontaneous and unpredictable, such as under-performance of the DNA methylation
maintenance system after DNA replication.

Epigenetic clocks are a valuable tool in the research of human aging and the genetic and
environmental factors that influence it4. In addition to opening a unique window for research
opportunities, the prediction of chronological age from methylation data may have applications
in multiple fields, such as analysis of DNA samples from crime scenes; indication of poor health
and all-cause mortality prediction using “age acceleration” metric, defined as the difference
between chronological and predicted age5–8; identification of early graft-versus-host disease
(GvHD) in organ transplant recipients9 and more.

New and improved epigenetic clocks for chronological age prediction have been developed in
recent years, using alternative sets of CpG sites. Most clocks were developed as a linear model
based on the Illumina BeadChip platform, some using hundreds of CpG sites10,11, and others
using only a few CpGs12,13. Few non-linear models were introduced, including those using neural
networks14,15. The high cost of the Illumina BeadChip platforms hinders accessible use of such
chronological age predictors, and thus several less-accurate clocks trained on small
pyrosequencing datasets with few CpG sites were also proposed, mostly for forensic use16–18.

In addition to chronological age predictors, the field of biological age predictors has recently
gained much attention. These predictors integrate DNA methylation levels with additional clinical
biomarkers to predict an individual’s healthspan and lifespan, including their risk for mortality,
physical functioning, cognitive performance, and more8,19,20. While these models provide a
broader view on health and aging, they do not serve the same purpose as chronological age
predictors, and are limited to a small number of donors for which multi-omics integrative data
were collected, as well as detailed clinical information.
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In this work we present GP-age, a non-parametric cohort-based epigenetic clock for
chronological age prediction from blood samples, based on a Gaussian Process regression
(GPR) model. We collected a large cohort of 11,910 human blood methylomes, measured for
healthy individuals at a wide variety of ages, and identified a small set of 30 age-related CpGs.
Given a query blood sample, the methylation levels at these sites are compared against the
training cohort, and the ages of similar samples are integrated to predict age. As we show, using
a small set of 10-30 carefully selected CpGs, GP-age outperforms larger state-of-the-art
models. Finally, we demonstrate the applicability of GP-age to studying aging using methylation
arrays or sequencing data, providing an accessible and accurate alternative to current clocks
and opening new avenues for the study of epigenetic changes at multiple neighboring
age-related CpG sites.

Results

A dataset of 11,910 blood-derived methylomes of healthy donors across various ages
We assembled a large dataset of publicly-available blood-derived methylomes from 19
genome-wide methylation array studies, obtained from blood samples in a variety of ages and
scenarios2,21–37.

Overall, our data contains 11,910 blood methylomes, from donors aged 0-103 years (Fig. 1).
One of these studies37, a large dataset (n=665) that spans a wide range of ages, was selected
as a held-out independent validation set, to unbiasedly assess our prediction results.
Importantly, this database was not included in the training of previously published epigenetic
clocks, allowing a direct and unbiased comparison between GP-age and other state-of-the-art
models1,2,10.

Samples from all other studies were randomly split into a training set cohort (70%, total of
n=7,860 samples) and a held-out test set cohort (30%, n=3,385 samples). The train and the test
sets show similar age distributions across all datasets. All methylomes were used as published,
following their original preprocessing and normalization by various methods2,21–37.
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Figure 1: Description of datasets. A total 11,910 blood methylomes were collected from 19 studies.
Shown are publication names, GEO accessions, number of samples per dataset, age ranges (median
age marked in red), and PMID numbers.

Selection of age-associated CpG sites
We aimed to identify a set of CpGs sites that are highly informative of age. For this, we
calculated the correlations between chronological age and methylation levels in train set
samples across datasets. Spearman rank correlation was specifically used, to not assume
linearity (as in Pearson correlation). Other measures (e.g. Mutual Information) were also tested,
but did not reveal additional non-monotonic sites informative of age.

To avoid age-related sites that change at a slow rate, therefore relying on accurate estimations
of DNA methylation levels and thus require deep sequencing depth, we preferred CpG sites
whose overall methylation gain/loss during adulthood is above 20% (Fig. 2E, Methods). It
should be emphasized that samples from the held-out validation set (GSE84727) were strictly
excluded from these feature selection processes.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524874doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524874
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Selection of the age set CpG sites for GP-age. (A) Shown are Spearman correlation
coefficients for all CpGs from the BeadChip 450K array (blue dots), calculated across training samples
≥20 years old. 964 CpGs with absolute Spearman coefficients ρ≥0.4 were selected for further analysis
(yellow dots). (B-E) Example of average methylation levels across aging, for four CpG sites. For each
5-year bin, shown are the average methylation levels (blue dots; vertical bars show 95% confidence
intervals, CI). Dashed lines and red vertical bar (E) mark the 20-100y methylation range. CpGs with low
methylation range (i.e., flat slopes), offer limited age-predictive value and are not included in our age set
(e.g. cg06641624 (C), cg15951188 (E)). Conversely, dynamic sites (e.g. cg16867657 (B), cg19283806
(D)) offer high predictive value. (B) A CpG with positive age correlation: Spearman ρ=0.88, meth.
range=0.34 (C) A non-correlative CpG: Spearman ρ=-0.01, meth. range=0.04 (D) A CpG with negative
correlation: ρ=-0.74, range=0.26 (E) Age correlated CpG (ρ=0.4) with meth. range=0.11 (not selected) (F)
Comparison of correlation (x-axis) vs. the methylation range (y-axis). CpGs with range≥0.2 are shown in
red (ρ≥0.4, n=30 CpGs) or green (ρ≤-0.4, n=50 CpGs). 80 out of 964 correlative CpGs were selected.

Specifically, we analyzed the train set samples across all 485,512 BeadChip 450K array CpGs,
retained CpGs with ≤20% of missing values across samples, and calculated their correlation
with age (Fig. 2). CpG sites with absolute Spearman correlation ≥0.4 were selected for further
analysis (all showing FDR-corrected p-values ≤1e-200). We then computed the methylation
range for each CpG, defined as the difference between maximum and minimum methylation
values in adulthood, and removed CpGs with span ≤20% (Fig 2E). Overall, our feature selection
stages concluded in 80 age-related CpG sites (Fig. 2F). These CpG sites are indicative of age
and are robust to sequencing noise (Methods). Selecting alternative thresholds (at each stage
of our selection process) did not greatly change the results below.
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Aiming to develop a compact model applicable to targeted multiplex bisulfite PCR sequencing,
we wished to further reduce the number of CpG sites used. For this, we clustered the candidate
CpG sites by their methylation levels across samples to k=30 clusters, and selected the most
correlative CpG from each cluster (Methods). Intuitively, CpGs from the same cluster show
similar methylation patterns, and therefore contribute little additional information.

Gaussian Process regression models
We then integrated the k=30 CpG sites into a non-parametric cohort-based Bayesian age
predictor, based on Gaussian Process (GP) regression models (Fig. 3A). This is a flexible class
of models, estimating the probability distributions over a continuous feature (e.g., chronological
age) across multiple (possibly infinite) functions that fit the input data. Unlike parametric
regression models (e.g. linear regression models, which assume a constant rate in methylation
changes), GPs do not define priors over the parameters of a given set of functions, but rather a
distribution over multidimensional functions that are not explicitly defined38. Moreover, as these
basis functions are not limited to linear functions, they do not require that nonlinear corrections,
such as Horvath's mAge transformation1, be applied in the pre-processing step.

In practice, it is easier to think of GP models in their dual representation: Gaussian kernels are
used to measure the similarity across the DNA methylation patterns of train set cohort samples,
resulting in the intra-similarity covariance matrix. Given test set samples, the model calculates
their similarities to each of the train set samples, which are normalized by the covariance matrix.
This results in a weight matrix that associates each test sample to train set samples that show
similar methylation patterns. Finally, these samples are weighted and combined to predict the
age of each test sample (Fig. 3B-F).

The accuracy of our age prediction model, GP-age, was evaluated by computing the root mean
square error (RMSE), which provides a good estimator for the standard deviation of prediction
errors. For direct comparison with previous works, we also calculated the median absolute error
(MedAE), in years. First, we evaluated the accuracy of the predictions of GP-age with 30 CpGs
on the train (7,860 samples from 18 datasets) and held-out test samples (3,385 samples from
18 datasets), resulting in median absolute errors of 2.08 and 2.10 years, respectively (Fig. 4A).
RMSE estimations were also very similar between the two sets (3.78 years, train; 3.96 years,
test), suggesting that the regression model did not overfit. Importantly, similar accuracy was
achieved for the held-out validation set (665 samples from GSE84727), with a median error of
2.24 years, and RMSE of 3.61 years (Fig. 4A). Repeating this procedure with other held-out
datasets showed similar results (Supplemental Fig. 2). In agreement with previous works2,17,39,
the prediction accuracy of GP-age decreases as age increases, as demonstrated by measuring
the average prediction error across 5-year bins (Fig. 4B, Supplemental Fig. 3).
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Fig. 3: Gaussian process
regression model (A)
Abstract visualization of a
GPR. Shown are example
observations (red dots),
along with the predictions
(blue line) and confidence
interval (light blue strip) of
the Gaussian process,
which is a distribution over
possible regression
functions from the
methylation vectors to
chronological age. The
Gaussian kernel defining
the GP and the distribution
of age predictions are
shown below. (B-F): Toy
example of age
prediction for 3 samples
based on 5 CpG sites
and a cohort of 12
training samples (from
real data). (B) Shown is a
cohort of 12 train samples,
containing methylation
levels of 5 CpG sites,
along with the donor ages.
(C) Three test samples
(methylation vectors over
the same 5 CpG sites) are
shown. The chronological
ages of the samples are
unknown. (D) The cohort
intra-similarity matrix, as
calculated with the
optimized Gaussian kernel
function. (E) The similarity
matrix between the test
and the train set samples
as calculated with an optimized Gaussian kernel function. (F) The weights assigned to each cohort
sample by each test sample are shown, with the resulting final prediction along the real ages of the test
samples.
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Fig. 4: Prediction accuracy of GP-age with 30 CpGs. (A) Chronological age vs. predicted age of
GP-age with 30 CpGs, across train, test and validation (GSE84727) set samples, yielding a median error
of ~2.1 years, and a RMSE of ~4 years, across different datasets (colors). Coefficient of determination R2

between prediction and age, RMSE, and MedAE are shown. (B) The median error of GP-age with 30
CpGs (red) and the Skin&Blood (green) methylation clocks across different 5-year bins of donor ages.

Comparison to state-of-the-art age prediction methods
We next turned to analyze chronological age predictions of the test cohorts using published
state-of-the-art models, including the 353-CpG multi-tissue clock1, the 71-CpG methylation clock
by Hannum et al.2, and the 391-CpG Skin&Blood clock10. As Fig. 5B-C show, these models
achieve median errors of 3.9, 4.63, and 2.36 years, respectively, compared to a 2.1-year error
by the 30-CpG GP-age model, or a 1.89-year error by the 80-CpG GP-age model. GP-age also
outperforms these models on the independent validation set, with a median error of 2.24 years,
compared to 6.01, 3.01, and 7.24 years, respectively (Supplemental Fig. 4C). It shall be noted
GP-age is more accurate than the Skin&Blood model on young samples (aged 10 through 35)
as well as older ones (70 through 95), and is similarly accurate on samples aged 40-45 (Fig. 4B,
Supplemental Fig. 3).
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Fig. 5: Prediction
accuracy of GP-age
of different sizes and
of state-of-the-art
models. (A) Age vs.
age prediction across
test set samples.
MedAE of GP-age is
~2 years and RMSE is
<4 years, across the
different datasets
(colors). Increasing the
size of the model
increases its accuracy.
Black line: y=x. (B)
Age vs. age prediction
by previously
published models
across test set
samples. Predictions
are less accurate than
GP-age, across
different datasets.
Color legend is the
same as in (A). (C)
Using only 30 CpG
sites, GP-age (red) is
more accurate than
previously published
models (horizontal
dotted lines), and
simpler models trained
on the same set of
CpG sites (linear
regression model in
blue). Increasing the
model size increases
the accuracy.

Other models, including Vidal-Bralo et al.12, were also compared to GP-age, and were shown to
be less accurate (Supplemental Fig. 6). Unlike most previous models, the clock by Zhang et al.11

was trained on an impressively large dataset (~13K samples), including the Lothian Birth
Cohorts data40,41. While our results show that GP-age offers higher accuracy than all these
models, including Zhang et al. (514 CpGs, median abs. error ≥ 8 years) it is possible that this
model is tailored to older samples and will be more suitable when applied to special age
distributions.

Additional chronological age predictors that use 1,000 CpGs or more, were not compared as
they are outside of our scope of this manuscript11,14,15.
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Model complexity vs. accuracy
Next, we wished to study how the number of CpGs in the Gaussian Process regression models
affects their predictive power. Different model sizes were tested by clustering to k clusters and
choosing the most age-correlated CpG from each cluster (Methods). We therefore examined a
range of models varying from the full model of k=80 CpG sites, to the single CpG model at k=1.
Remarkably, a GPR model with a single CpG (ELOVL2) achieves a median absolute error of 3.3
years, whereas a model with k=10 CpGs outperforms all state-of-the-art models, with a median
error of 2.26 years. Overall, the 30-CpG GP-age model allows an optimal tradeoff between
prediction accuracy (2.1 years) and compactness, and is comparable to the k=50 and k=70
models (Fig. 5C), as well as the full k=80 CpGs model. Similar results are reported when using
the RMSE and MeanAE metrics (Supplemental Fig. 5), and on the held-out validation cohort
(Supplemental Fig. 7).

To ensure statistical stability, we applied 10 stratified 4-fold cross-validation runs for each value
of k, resulting in an estimated error of <0.01 for the reported median absolute error for each
model. In addition to estimating RMSE and median error (50th percentile of predictions), we also
estimated the prediction errors at the 25th, 75th, and 90th percentiles of samples (Supplemental
Table 1). Across all percentiles, GP-age consistently outperforms all other models.

Comparison to non-GPR models and alternations of the feature selection processes
Finally, we compared the GP models of different sizes to linear regression models, similar to the
ones used by previously published clocks (Fig. 5C, blue). For all model sizes, linear models
were consistently less accurate than the nonlinear cohort-based model, while using the exact
same sets of CpGs. To demonstrate the advantage of clustering correlated CpGs, we also
compared each model to a GPR model trained on the top-k age-correlated CpG sites (without
clustering). For all values of k≤30 CpGs, the clustered sets outperform the top-k sets
(Supplemental Fig. 8).

Retraining GP-age with the validation set
After observing similar prediction accuracy on held-out test data and three independent
validation sets (Fig. 4A, Supplemental Fig. 4, Supplemental Fig. 2), we hypothesized that the
model is general enough and invariant of different dataset normalizations, and thus combined all
19 datasets for an improved GP-age model. Samples were partitioned into test (30%, n=3,573)
and train (70%, n=8,337) sets, and GP-age models trained as described above. Overall, we
identified 1,034 age-correlated CpGs (|⍴|≥0.4, Supplemental Table 2), 71 of which with
methylation range ≥0.2. These were clustered, and updated sets of CpGs were selected
(Supplemental Table 3). Intriguingly, for k=30, 27 of the 30 CpGs overlap with the previously
selected model, supporting the robustness of the feature selection process. Overall, this model
resulted with a median train error of 2.06 years (RMSE=3.74), and a median test error of 2.10
years (RMSE=3.89). Downstream analyses (on held-out test data or external samples), were all
performed using these full GP-age models.
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Consistent prediction errors may reflect biological age
To detect consistent prediction errors that may reflect differences between chronological and
biological age, we trained three independent GPR models. For this, the 71 age-correlated CpGs
were split into three independent groups (composed of 19, 33, and 22 CpGs, from disjoint sets
of chromosomes), and GPR models were trained (Supplemental Table 3). The three models
show median absolute errors of 2.45, 2.42, and 2.75 years, respectively, on held-out test data.
Importantly, the models are as correlated with age as they are with each other (Supplemental
Fig. 9).

We next analyzed the pattern of prediction errors across these three independent clocks, and
specifically errors consistently larger than the median absolute errors of the models (Fig. 6).
Intriguingly, 8.5% of samples were predicted to be younger (“Y”) than their chronological age by
all three models, a 6-fold enrichment compared to the expected 1.4% under a null model
(binomial p-value ≤ 2e-133). Similarly, 7.5% of samples are consistently predicted as older (“O”),
a 4.5-fold enrichment compared to the 1.7% expected (p-value ≤ 2e-88). Enrichment was also
observed for the consistently age-matching (“M”) predictions (21% observed, 12.5% expected,
p-value ≤ 3e-46). These results suggest that only a small fraction of consistently biased samples
are random, while the remaining, 83% of consistently younger predictions, and 77% of
consistently older predictions, reflect true deviations between chronological and biological ages.

Fig. 6: Consistent prediction errors across independent GPR models suggest biological variance.
Enrichment of prediction error patterns across three independent clocks. Y: predicted as younger than
real age. O: predicted as older. M: prediction matches age, within the median abs. error. 8.5% of samples
are consistently predicted to be younger than real age (blue, 1.4% expected, fold change of 6.06), 7.5%
of samples are consistently predicted as older (burgundy, 1.7% expected, FC=4.48), and 21% are
predicted within median abs. error by all three models (lilac, 12.5% expected, FC=1.68).

Methylation trends of clock CpG sites
To better understand the age-related dynamics of the 71 CpG sites in GP-age, we divided the
CpG sites to those gaining methylation over age (n=33), and those losing methylation (n=38).
Intriguingly, while both positively and negatively age-correlated sites were identified, we
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observed a small enrichment for CpG sites that gain methylation with age (Fig. 7A). Accordingly,
when training two separate models, the epigenetic clock that uses positively correlated
(“gaining”) sites shows a higher accuracy than the one based on negatively correlated ones
(“losing”) (Fig. 7B, Supplemental Fig. 10), with median errors of 2.54 and 3.45 years,
respectively. Interestingly, the gap between the two clocks becomes smaller when the ELOVL2
CpG site cg16867657, is excluded from the positive set, leading to a median error of 2.83 years.
These results suggest that age-related changes in DNA methylation involve both hyper- and
hypo-methylation.

Fig. 7: Methylation-
gaining CpGs are
more correlated with
age than methylation-
losing CpGs. (A)
Histogram of the
Spearman correlation
of methylation and age
of the GP-age clock
CpG sites. (B) Model
trained with only
methylation-gaining
CpG sites (orange) is
more accurate than
models trained with
methylation-losing CpG
sites (purple). This is
still observed when the
ELOVL2 CpG is
excluded (orange). The
full GP-age model
outperforms these
models (red).

Accurate age predictions from whole-genome bisulfite sequencing data
Encouraged by these results, we wished to establish our 30-CpG epigenetic clock in
sequenced-based DNA methylation data from blood, in addition to methylation array data as
previously shown. Unlike methylation arrays, whole-genome bisulfite sequencing (WGBS)
methylation data is relatively shallow with typically no more than 30 sequenced reads
(fragments) covering each CpG (30x). Yet, neighboring CpG sites are also sequenced and could
be an additional source of data, at least in genomic regions with block-like methylation
patterns42–45. We therefore turned to test the performance of GP-age on such data.

GP-age with 30 CpG sites was applied to two blood WGBS datasets. Initially, average
methylation was calculated at k=30 CpGs of the GP-age model, and age was directly predicted.
As Fig. 8 shows, this resulted in a median error of 3.0 years (RMSE=6.10) on buffy coat
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methylomes sequenced by Jensen et al. at 29x depth from n=7 donors aged 20-4746. We also
applied GP-age to a set of n=23 deeply sequenced (83x) leukocyte methylomes of donors aged
21-75, recently published by us 45, resulting in a median error of 3.55 years (RMSE=4.92).

Fig. 8: Weighted average of neighboring CpG sites in WGBS data. (A-B) Genomic region of a CpG
was defined with a genomic segmentation into methylation blocks. A Laplace kernel (dotted red line) was
used to assign weights to the CpGs in the neighborhood (solid red line). Methylation levels of CpG sites
in the neighborhood are shown. (C) RMSE and MedAE errors of GP-age and reference models (with and
without neighbors), across datasets. The lowest error for each dataset is marked in bold. (D) Age
prediction across the two sequencing datasets. Top: Using a single-CpG resolution methylation level for
each CpG from the age set. Bottom: Using a Laplace kernel for a methylation level estimation by a
weighted average of methylation levels of neighboring CpGs.

Encouraged by these results, we wished to incorporate the methylation values of neighboring
CpG sites, to compensate for the relatively low coverage of the data. For this, we segmented
the human genome (hg19) into homogenous methylation blocks45, and averaged the target CpG
with surrounding sites, weighted using an exponentially decaying Laplace kernel (Methods). As
Fig. 8 shows, this further improved GP-age’s predictions on WGBS datasets, yielding a median
error of 1.75 years on the Jensen et al. dataset46, and 2.29 years on the Loyfer et al. dataset45.
The difference in accuracy between the two datasets could be explained by the different ages in
the two datasets (Supplemental Fig. 11B-D). This again is consistent with the previously
reported decrease in the accuracy of epigenetic clocks as age increases.

Notably, previously published array-based methylation age models1,2,10, all showed higher errors
of 5-15 years for the two datasets (Fig. 8C). We reason that this is partly due to age-correlated
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CpG sites that do not change greatly overall (low methylation range), and are therefore hard to
approximate at WGBS sequencing depths. Other age prediction models used pyrosequencing
data13,17,47 at few CpG sites, mostly for forensic use. GP-age with 30 CpGs outperforms these
models as well (Supplemental Fig. 11A).

Discussion
In this article we present GP-age, a non-parametric cohort-based chronological age prediction
model, and compare it to previously published state-of-the-art models. While other epigenetic
clocks were developed for different tissues, or as multi-tissue predictors, in this work we focus
on whole blood, as it is easily accessible. Future work may be to apply a similar method to
develop Gaussian Process-based epigenetic clocks for other tissues.

GP-age uses a cohort of 11,910 blood methylomes, measured using Illumina BeadChip
450K/EPIC methylation arrays. These are made available as a resource to the methylation age
community. Samples from various cohorts were merged, and split into test and train sets. Sets
of non-redundant age-correlated CpGs were then selected. In this cross-cohort analysis, we
specifically did not renormalize samples from different datasets, so CpG sites with batch
differences were implicitly selected against. We then trained a non-parametric Gaussian
Process regression model, which uses these CpGs to compare a query sample against the train
set cohort, find similar methylomes, and predict the query age based on train set ages and
intra-cohort dependencies.

As we show, A 30-CpG GP-age model achieves a median absolute error of 2.1 years across
3,573 held-out test samples, outperforming state-of-the-art methods (on the same data). An
even more compact model, consisting of only 10 CpGs, is comparable to state-of-the-art clocks
with a median error of 2.26. Similar results were achieved on parallel GP-age models, for which
one of the datasets was considered as a validation set, and its samples were excluded from
feature selection and model training (Fig. 4A and Supplemental Fig. 2, showing three different
such validation sets).

Depending on the desired model size and accuracy, 10-, 30- or 71-CpG GP-age models are
suggested for age prediction, as these models provide a good tradeoff between compactness
and accuracy. As we further show, the model is also applicable to next-generation sequencing
data, where a Laplace kernel is used to augment the methylation levels of the age prediction
CpGs by their neighboring CpGs. This resulted in a similar prediction accuracy of ~2 years.

It shall be noted that previous studies presented highly compact chronological epigenetic clocks,
sometimes involving as few as three CpGs. Nonetheless, these compact models presented
inferior accuracy, with median absolute errors of 5-21 years on our Illumina 450K and
sequencing data12,13,16–18,47. Conversely, we provide an epigenetic clock that is more accurate
than commonly used models1,2,10, and at the same time compact enough to allow direct
measurement using multiplex targeted PCR, making these models simpler and more accessible
compared to DNA methylation arrays.
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Overall, GP-age predictions of chronological age outperform current state-of-the-art models
while using fewer CpG sites, thus opening the way for various applications in aging, forensics,
transplantations or more, using low-cost targeted PCR sequencing data. These results were
achieved by three independent means. First, we selected a set of CpG sites whose average
methylation changes with age. As we showed, using these sites to train a linear regression
model, similar to the ones used by Horvath1,10 and Hannum et al.2, already achieves a median
absolute error of 2.70 years. The compactness of the model is achieved by selecting one
representative from each cluster, thus minimizing similarities between model CpGs. Second, we
assembled a large training cohort which allows cohort-based models to identify similar
methylomes for each query set. Third, Gaussian Process regression models add accuracy by
not being limited to a fixed number of neighbors (as in KNN), and use intra-cohort similarities to
further determine how these samples are weighed. Thus, through a more complex assignment
of weights to train samples, GP-age utilizes more information from the cohort, resulting in higher
accuracy.

Several of the CpG sites that were automatically selected by our model are known to be
associated with age-related genes or have been previously included in epigenetic clocks. Most
notable is ELOVL2 2,48,49, single-handedly providing a median absolute error of 3.3 years in our
cohort-based algorithm. Intriguingly, exclusion of ELOVL2 resulted in a median error of 2.49
years using a GP-age model with 10 sites (and 2.28 years using 30 sites). Additional genes
were previously associated with aging, including FHL22,10,48,49, OTUD7A2,49, CCDC102B2,49,
TRIM592,10,50, RASSF551, GRM252, ZEB253,54, Zyg11A49, TP7355, IGSF1156, MARCH1157,
SORBS152, ANKRD1158, and EDARADD1,2,10,59. The remaining CpGs, including cg20816447
(CC2D2A), cg06155229 (PMPCB), cg06619077 (PDZK1IP1), cg19991948 (TIAL1),
cg22078805 (FAM171A2), and cg17621438 (RNF180), were not, to the best of our knowledge,
previously associated with aging and should be further studied. The set of CpG sites used by
GP-age consists of both methylation-gaining and methylation-losing sites. Intriguingly, a GPR
model that uses only methylation-gaining CpGs predicts age better than a GPR model that uses
only methylation-losing CpGs (Fig. 7). This observation is still valid when the ELOVL2 CpG is
excluded, and raises questions regarding the biochemical processes that underlie the changes
of the epigenetic landscape with age.

As previously reported1,10,12, changes in age-correlated CpGs reflect cellular changes upon
aging, and cannot be explained by quantitative changes of different cell types in the blood
(Methods, Supplemental Fig. 12). Furthermore, differences between predicted and chronological
age could reflect a biological signal rather than predictions inaccuracy, as we demonstrated with
coordinated prediction errors from three independent models (Fig. 6). Thus, although GP-age
was not trained as a biological age predictor per se19,20, the high availability of DNA methylation
data (e.g. the large cohort presented here), opens opportunities to directly study the molecular
mechanisms of aging, as well as variation across individuals, which could not be conveniently
addressed using current biological age clocks or datasets that involve additional biochemical
features.
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Age prediction errors across multiple samples are often summarized as the median absolute
error (MedAE), which could be somewhat different than the root mean squared error (RMSE).
While the median error provides an upper bound of the error for half the samples (regardless of
the other half), the RMSE score provides the standard deviation of predictions across all
samples. The differences between RMSE and MedAE scores are observed in the prediction
statistics of both the array-based models (Fig. 8C) and the targeted PCR-based models
(Supplemental Fig. 11A). For GP-age and the array-based models, these differences are
partially explained by the lower accuracy achieved for older ages (Fig. 4B), in agreement with
previous studies2,17,39. Importantly, GP-age outperformed state-of-the-art models in both
measures.

We show that both GP-age and the Skin&Blood clocks are more accurate on younger samples,
with the highest improvement by GP-age achieved on ages 10-45 and 70-95 (Fig. 4B).
Importantly, specific models explicitly trained on target age groups did not improve the prediction
accuracy. Similarly, female- or male-only clocks have not obtained higher accuracy on held-out
test data (data not shown). These results suggest that the methylation clock presented here
reflects universal processes involved in aging.

GP-age also showed increased accuracy when predicting age from next-generation sequencing
data. Here we augment this information by incorporating neighboring CpGs, with their
importance decaying exponentially the further they are from the target CpG site (Fig. 7). This,
combined with the small set of CpGs, suggests that GP-age could be used to predict
chronological age from blood samples using sequencing data, including genomic DNA enriched
by hybrid-capture panels for specific age-related regions, or even multiplex targeted-PCR data,
which are more accessible than methylation arrays, and with shorter turnaround time.

As we show, methylation arrays provide extensive information regarding the methylation
landscape of a given sample, but for the purposes of chronological age estimation, a small set
of CpGs suffices. Future research should validate GP-age on targeted PCR data. Notably,
GP-age shows higher accuracy than forensic age prediction models13,17,47 when tested on
identical sequencing data.

Notably, the improved predictions in WGBS samples using information from neighboring CpG
sites, suggests that aging-related epigenetic changes occur - at least for some genomic loci - at
DNA methylation blocks42,45, rather than at isolated independent CpGs (as may seem from DNA
methylation array data). Further, this raises questions regarding the underlying processes of
epigenetic aging. A possible research direction may be the examination of the recruitment of
methylases and demethylases to specific loci, their dynamics, their processivity across
neighboring sites, and how these change with age. Most importantly, we show that NGS data
from 30 CpG sites at a sequencing depth of 30x achieves <2 year accuracy. This implies that
~1,000 DNA molecules at regions carefully selected, are enough for accurate age prediction.

The use of GP-age could involve a variety of applications, including forensic profiling,
transplantation medicine, and health monitoring. While the models presented here were trained
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and tested on blood-derived methylomes from healthy humans, future works could further
expand this approach to other species, tissues, or clinical conditions. Most importantly, its
unique simplicity and shorter turnaround times could facilitate longitudinal studies that will shed
light on the molecular processes underpinning human aging.

Methods

Data and code availability
The data analyzed in this study were deposited at Gene Expression Omnibus (GEO) under
accession GSE207605. A standalone implementation for age prediction from array methylomes
is available at https://github.com/mirivar/GP-age or from the lead contact.

450K Dataset
We assembled a large whole-blood DNA methylation dataset by combining 11,910
blood-derived methylomes from 19 publicly availables individual datasets, measured on the
Illumina 450K or EPIC array platform (Fig. 1). All donors included in our dataset were healthy,
with ages spanning the range of 0-103 years with a median of 43 years. The partition into the
train and test sets was performed randomly, with 30% of the assembled dataset (3,573 samples,
median age of 43 years) assigned for test and held out, and the remaining 70% (8,337 samples,
median age of 44 years) were used for feature selection and model training. For the initial
analysis, one dataset (GSE84727) was held-out and used for validation. Normalized beta values
from the original datasets were downloaded from GEO and used without additional
normalization or batch correction, to facilitate use of the GP-age model by future datasets.
Missing values of each CpG site were imputed with the average beta value of that CpG across
other samples, using SimpleImputer from the python package scikit-learn60 (version 0.24.2).

CpG feature selection
Low-quality CpG sites, with >20% of missing values across train samples, were removed. The
Spearman correlation between methylation levels and age was calculated independently for
each CpG site from the Illumina 450K platform, across train samples. For a more robust
correlation estimation, in order to avoid outlier effect by young (<20 years) samples, datasets
including exclusively young donors (GSE154566, GSE105018, GSE36054 and GSE103657)
were excluded from correlation analysis (Supplemental Fig. 1). Overall, 964 CpG sites showed
an absolute spearman ρ≥0.4 (or 1,034 sites across all 19 datasets, including GSE84727), and
were retained for downstream analysis.

Next, the range of methylation levels was calculated for each CpG independently by calculating
the methylation average in adults (≥20) in 5-year bins, and calculating the difference between
the maximal and minimal values. CpGs sites with range <0.2 were excluded, yielding a set of 71
candidates (when the validation set GSE84727 was included; 80 when not). These were
clustered using the spectral clustering algorithm by Ng, Jordan and Weiss61, with
k∊{1,5,7,10,15,20,25,30,40,50,70,80} clusters, and the top correlated CpG was selected from
each cluster. For most analyses, we used k=30, but k=10 and k=80 are also reported.
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Gaussian Process regression
A Gaussian Process regression (GPR) model was developed to predict the age of donors given
their methylome. GPR is a flexible non-parametric Bayesian approach for regression. In our
model, the inputs are blood-derived methylomes over k=30 CpG sites, and the outputs are the
ages of the donors. The model was trained using the python GPy package (version 1.10.0)62,
with the default hyper-parameters adjustments.

A Gaussian Process (GP) is a probability distribution over possible functions that fit a set of
points. Formally, it is a collection of random variables, any finite number of which have a joint
Gaussian distribution38. Given a finite set of input points:

a mean function:

and a covariance function:

A GP can be written as:𝑓

if the outputs have a Gaussian distribution described by:

, where and . The mean function is
usually assumed to be the zero function, and the covariance function is a kernel function chosen
based on assumptions about the function to be modeled. In our modeling, we used the
commonly used RBF kernel function, defined as:

where is the variance hyper-parameter, and is the length-scale hyper-parameter which𝑠2 𝑙
controls the smoothness of the modeled function, or how fast it can vary.

In summary, with noise-free observations, the training data comprises of input-output pairs such
as:

where the inputs are and the outputs are distributed according to a

normal distribution: .

Often, the output variables are assumed to further include some additive Gaussian noise η. In
which cases the training data can be written as:
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whereas , with . Under these assumptions, where the noise is

independent and of equal variances, and outputs could be written as .

To fit a GP for a regression task, the hyper-parameters of the model are
optimized with respect to the training data. If the mean of the GP is set to zero, Python’s GPy
package estimates the hyper-parameters by minimizing their negative log marginal likelihood:

Given a test point , its output distribution is defined by , and can be
analytically derived. From the definition of a Gaussian process, the finite set are
jointly distributed as:

where

.
Adding the Gaussian noise to the observations, the finite set are jointly
distributed as:

Conditioning the joint Gaussian prior distribution on the observations gives the following
conditional distribution:

For a set of new samples, instead of a single test sample:

a prediction can be made by taking the mean of the well-defined conditional distribution:

where

Thus, given the training data, the distribution of predictions of a new point or set of points is
given by a closed analytical form. In our model, the inputs are methylation vectors, and the
outputs are the donor ages. The mean of the distribution can be used as the final prediction of
the regression model.

It shall be noted that the mean term of the conditional distribution of the new output variable
derived from the joint Gaussian distribution could be viewed as a weighted sum of the train set
ages (Fig. 3). Here, the weights are based on the covariance between the input sample and the
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train data samples, then multiplied by the inverse of the covariance of the train set cohort data
(with Gaussian noise added). Intuitively, this procedure gives higher weights to train set samples
with methylomes similar to the query, but penalizes train set samples that are similar to each
other, as they do not provide additional information. That way, the GP builds a nonlinear
relationship between input vectors and output variables.

Comparison to previously published 450K-based models
Previously published chronological age predictors1,2,10 were tested on our test set using the R
methylclock package (v 0.7.7)63. An intercept of -5.5 was added to the Hannum et al. clock, for
calibration. The Zhang et al. clock11 was tested with their provided code, and the Vidal-Bralo et
al. clock12 was tested with a linear regression model using their published coefficients.

Training of other regression models
Using the same CpG sites as of GP-age, we trained linear regression models and KNN models
for chronological age predictions. The models were trained with LinearRegression (default
parameters) and KNeighborsRegressor (n_neighbors=3, p=1, weights=’uniform’) from the
python package scikit-learn (version 0.24.2)60, accordingly.

Stratified 4-fold cross validation
To check the robustness of GP-age, we performed 10 repetitions of stratified 4-fold
leave-one-out cross validation. The samples were divided by binning the donor ages into 5-year
bins, and in each repetition, each bin was divided into four subgroups. A single subgroup was
retained for validation each time, resulting in four different models for each repetition. The errors
across repetitions of cross validations were logged. The mean error and its 95% confidence
interval were calculated, using a t-distribution with n-1 degrees of freedom.

Independent models and coordination of prediction errors
The 71 age-correlated were divided into three groups, such that the CpGs in each group are
from distinct chromosomes. Three GP-age models were then learned, from the training
samples, as described above. The median absolute error was then determined for each clock,
as well as percent of training samples with a greater positive error (over-estimation, ‘O’, average
of ~26% of training samples across three clocks), or a greater negative error (under-estimation,
‘Y’, average of ~24% across three clocks). These percentages were used to estimate the
expected frequency of each pattern of prediction errors across three clocks. Binomial
distribution was used to estimate the statistical significance of enrichment at specific patterns
(OOO, YYY).

Blood deconvolution
All 11,910 methylomes were deconvoluted using our previously published human DNA
methylation atlas44 (https://github.com/nloyfer/meth_atlas), including seven blood cell types.
Proportions of each cell type were then grouped across samples in 5-year bins.

WGBS data for validation
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Two whole-genome bisulfite sequencing datasets have been used in our study. First, we used a
dataset published by Jensen et al.46 in their study of cell-free DNA in pregnant women. The
dataset contains, along with other samples, the methylation levels of 7 samples isolated from
maternal buffy coat cells. Bam files were downloaded from dbGaP (accession number
phs000846), and analyzed by wgbstools using the bam_to_pat function64. Second, we analyzed
a dataset published by us45, including 23 WGBS white blood cells (WBC) samples from healthy
donors.

Testing on WGBS
Single CpG resolution of WGBS dataset was obtained with wgbstools, a computational suite we
recently developed64, using the beta_to_450K function which calculates the average methylation
levels of each CpG. These were then analyzed by GP-age for age prediction. We also
augmented the methylation level estimation at each target CpG by considering neighboring𝑥
CpGs within the same DNA methylation block45, and averaging their methylation levels using𝑥

𝑖

an exponentially decaying Laplace kernel:

with being a parameter controlling the length scale of effect of CpG neighbors. Here, we used𝑑
=3.𝑑
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Supplementary Figures

Supplemental Fig. 1: Removal of datasets exclusive for young (<20) donors for correlation
analysis. (A-B) Shown are average methylation levels of cg16867657 in different samples across all
datasets (A); or after removal of the young age datasets: GSE154566, GSE105018, GSE36054, and
GSE103657 (B).

Supplemental Fig. 2: Prediction accuracy of parallel GP-age models trained with different held-out
validation sets. (A-B) Chronological age vs. predicted age by GP-age models that were trained without
the held-out validation sets GSE87648 (A) and GSE42861 (B), with 30 CpG sites, across train, test and
validation set samples. Coefficient of determination R2 between prediction and age, RMSE, and MedAE
are shown.
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Supplemental Fig. 3: Prediction accuracy of GP-age across age bins in 450K data. (A) Shown are
the RMSE of GP-age (with 30 CpGs) and Skin&Blood methylation clocks across different bins of donor
ages. Compared to the Skin&Blood, GP-age is similarly accurate across middle-age bins, and more
accurate across older- and younger-aged bins. (B)-(C) The MedAE (B) and RMSE (C) of GP-age of 10,
30 and 80 CpG sites and the Skin&Blood methylation clocks across different bins of donor ages.
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Supplemental Fig. 4: Prediction accuracy of GP-age and other clocks. (A-B) Chronological age vs.
predicted age by GP-age models that were trained without the validation set with 10 (A) and 80 (B) CpG
sites, across train, test and validation set samples. Coefficient of determination R2 between prediction
and age, RMSE, and MedAE are shown. (C) Predictions of previously published models on the
independent validation set.
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Supplemental Fig. 5: Prediction accuracy of GP-age of different model sizes. The RMSE (A)
and the mean absolute error (B) of GP-age and linear model across different model sizes. GP-age
outperforms previously published models. Increasing the model size increases the accuracy.
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Supplemental Fig. 6:
Prediction accuracy of
GP-age of different
model sizes, with
additional models. The
median error (A), RMSE
(B) and the mean
absolute error (C) of
GP-age, linear model and
KNN model across
different model sizes.
GP-age also outperforms
the additional previously
published models.
Increasing the model size
increases the accuracy.
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Supplemental Fig. 7:
Prediction accuracy of
GP-age on independent
validation data. The
median absolute error (A),
RMSE (B), and the mean
absolute error (C) of
GP-age, linear model and
KNN model across different
model sizes, on the
independent validation
cohort GSE84727. GP-age
outperforms previously
published models.
Increasing the model size
increases the accuracy.
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Supplemental Fig. 8: Spectral clustering yields a superior set of CpG sites for age prediction.
Shown is the root mean squared error of GP-age, linear model, KNN model and a GPR model which
doesn’t use spectral clustering for feature selection across different model sizes. GP-age outperforms the
GPR model which uses the most correlative CpG sites for each model size when 5-25 CpG sites are
used.
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Supplemental Fig. 9: Comparison of three independent clocks. Top: shown are comparisons
between chronological (x-axis) and predicted age (y-axis) in test samples, for each of the three
methylation clocks. Bottom: comparisons between age predictions in each pair of models.
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Supplemental Fig. 10: Methylation-gaining CpGs are more correlated with age than
methylation-losing CpGs. RMSE (A) and mean average error (B) of GPR models. A model trained
with only methylation-gaining CpG sites (orange) is more accurate than models trained with
methylation-losing CpG sites (purple). This is still observed when the ELOVL2 CpG is excluded
(orange). The full GP-age model outperforms these models (red).
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Supplemental Fig. 11: Predictive accuracy of GP-age in WGBS data. (A) RMSE and MedAE errors of
GP-age (with and without neighbors) and reference models, across datasets. (B) Age prediction across
the two sequencing datasets. Top: Using GP-age with a Laplace kernel for a methylation level estimation
by a weighted average of methylation levels of neighboring CpGs. Bottom: Using Pan et al. clock47. (C-D)
Shown are the RMSE of GP-age and Pan et al. 47 methylation clocks across different bins of donor ages
for data from Jensen et al. (C) and Loyfer et al. (D). GP-age is more accurate across most age bins.
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Supplemental Fig. 12: Blood cells composition across age. DNA-methylation deconvolution blood
samples estimate the cellular composition of blood across different ages. While some cell types (T cells,
Neutrophils) slightly change their relative proportion in the blood, these changes are far too small to
explain the large differences observed in the methylation levels of age-related CpG sites (absolute
change of 20-50%).

Percentile GP-age
(10 CpGs)

GP-age
(30 CpGs)

GP-age
(80 CpGs)

Multi-tissue
clock

Skin&Blood
clock

Hannum et al.
clock

25th 0.92 0.88 0.81 1.63 0.99 2.25
50th (median) 2.26 2.10 1.89 3.9 2.36 4.63

75th 4.41 4.03 3.69 6.91 4.35 7.52
90th 6.91 6.27 5.85 9.98 6.63 10.32

Supplemental Table 1. Absolute prediction errors at the 25th, 50th (median), 75th and 90th percentiles of
samples, for each model.

Supplemental Table 2. List of 1,034 age-correlative CpG sites. Sites are sorted by their absolute value
Spearman correlation with age, and their correlation p-value, correlation FDR-corrected p-value and
methylation range are listed.
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CpG chr pos
Spearman

ρ
meth.
range

neigh. gene CpG type cluster #
in final

set?
in clock
a/b/c

cg16867657 chr6 11044877 0.883 0.345 ELOVL2 TSS1500 8 TRUE b
cg22454769 chr2 106015767 0.809 0.434 FHL2 TSS200 9 TRUE c
cg06639320 chr2 106015739 0.771 0.287 FHL2 TSS200 2 TRUE c
cg04875128 chr15 31775895 0.757 0.361 OTUD7A Body 29 TRUE a
cg19283806 chr18 66389420 -0.746 0.265 CCDC102B 5'UTR 7 TRUE b
cg24724428 chr6 11044888 0.737 0.28 ELOVL2 TSS1500 14 TRUE b
cg07553761 chr3 160167977 0.715 0.236 TRIM59 TSS1500 25 TRUE c
cg24079702 chr2 106015771 0.712 0.362 FHL2 TSS200 4 TRUE c
cg14556683 chr19 15342982 0.654 0.215 EPHX3 Body 4 FALSE a
cg07547549 chr20 44658225 0.636 0.205 SLC12A5 Body 2 FALSE b
cg08128734 chr1 206685423 -0.628 0.36 RASSF5 Body 1 TRUE c
cg23500537 chr5 140419819 0.622 0.223 2 FALSE a
cg12934382 chr3 51741135 0.619 0.26 GRM2 1stExon 13 TRUE c
cg08468401 chr3 14303131 -0.613 0.26 10 TRUE c
cg05404236 chr13 110437093 0.612 0.292 IRS2 1stExon 4 FALSE b
cg20816447 chr4 15480781 -0.609 0.221 CC2D2A Body 23 TRUE c
cg17110586 chr19 36454623 0.601 0.233 4 FALSE a
cg24466241 chr1 53308908 0.598 0.223 ZYG11A Body 14 FALSE c
cg18473521 chr12 54448265 0.572 0.251 HOXC4 Body 9 FALSE a
cg00573770 chr2 145278485 -0.564 0.269 ZEB2 TSS1500 5 TRUE c
cg06335143 chr1 53308654 0.561 0.203 ZYG11A Body 22 TRUE c
cg06155229 chr7 102937535 -0.558 0.221 PMPCB TSS1500 3 TRUE b
cg03032497 chr14 61108227 0.552 0.273 30 TRUE c
cg12899747 chr3 25391527 -0.542 0.235 10 FALSE c
cg06619077 chr1 47656003 -0.541 0.205 PDZK1IP1 TSS1500 20 TRUE c
cg17804348 chr1 3649473 0.539 0.206 TP73 Body 15 TRUE c
cg00329615 chr3 118706648 -0.538 0.27 IGSF11 Body 27 TRUE c
cg23479922 chr5 16179633 0.533 0.268 March11 1stExon 17 TRUE a
cg09017434 chr5 16179660 0.532 0.214 March11 1stExon 17 FALSE a
cg10501210 chr1 207997020 -0.53 0.57 11 TRUE c
cg19991948 chr10 121335173 -0.528 0.221 TIAL1 3'UTR 24 TRUE a
cg03738025 chr6 105388694 0.528 0.216 14 FALSE b
cg27312979 chr10 97094453 -0.52 0.26 SORBS1 Body 18 TRUE a
cg14766700 chr11 58911067 -0.519 0.21 FAM111A 5'UTR 7 FALSE b
cg23186333 chr11 35161900 -0.515 0.232 CD44 Body 6 TRUE b
cg21184711 chr7 122488330 0.514 0.215 CADPS2 Body 9 FALSE b
cg22730004 chr1 158656718 -0.512 0.211 SPTA1 TSS1500 23 FALSE c
cg19421125 chr12 6882856 -0.499 0.212 LAG3 Body 7 FALSE a
cg15894389 chr13 47470857 -0.498 0.256 HTR2A 1stExon 6 FALSE b
cg10835286 chr2 66657913 -0.495 0.247 3 FALSE c
cg25413977 chr2 66651619 -0.492 0.235 12 TRUE c
cg11807280 chr2 66654644 -0.49 0.372 12 FALSE c
cg22078805 chr17 42432046 0.488 0.228 FAM171A2 Body 26 TRUE c
cg02872426 chr6 110736772 -0.484 0.373 DDO TSS200 3 FALSE b
cg00303541 chr3 51741280 0.481 0.204 GRM2 5'UTR 13 FALSE c
cg04295144 chr19 10407184 0.474 0.239 ICAM5 Body 8 FALSE a
cg19729744 chr3 194752020 -0.471 0.284 1 FALSE c
cg24794228 chr19 52391166 0.461 0.214 ZNF577 Body 25 FALSE a
cg17621438 chr5 63461216 -0.459 0.215 RNF180 TSS1500 19 TRUE a
cg05017994 chr5 964562 0.451 0.21 3 FALSE a
cg21878650 chr5 64558623 -0.45 0.223 ADAMTS6 Body 21 TRUE a
cg15804973 chr6 137114513 -0.449 0.236 MAP3K5 TSS1500 24 FALSE b
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cg07797372 chr1 64602654 -0.447 0.223 ROR1 Body 20 FALSE c
cg27152890 chr19 45900241 0.446 0.248 PPP1R13L Body 26 FALSE a
cg17471939 chr1 3600879 0.439 0.233 TP73 Body 15 FALSE c
cg18887458 chr7 115995934 -0.438 0.201 21 FALSE b
cg15243034 chr11 77907656 0.437 0.235 USP35 Body 2 FALSE b
cg04503319 chr16 89368367 -0.437 0.25 ANKRD11 Body 28 TRUE a
cg03350900 chr6 107955689 0.43 0.201 SOBP Body 22 FALSE b
cg09809672 chr1 236557682 -0.416 0.223 EDARADD 1stExon 16 TRUE c
cg14577707 chr4 184797463 -0.416 0.211 18 FALSE c
cg24892069 chr10 33562205 -0.412 0.398 NRP1 Body 1 FALSE a
cg00602811 chr2 145278564 -0.409 0.245 ZEB2 TSS1500 27 FALSE c
cg05991454 chr4 147558435 0.407 0.214 22 FALSE c
cg23126342 chr13 67801125 -0.406 0.262 PCDH9 Body 18 FALSE b
cg09988805 chr2 43278552 0.405 0.245 8 FALSE c
cg19344626 chr19 16830749 -0.403 0.338 NWD1 TSS200 11 FALSE a
cg20059012 chr12 53613154 -0.403 0.217 RARG Body 23 FALSE a
cg21826784 chr1 11795937 -0.402 0.219 AGTRAP TSS1500 19 FALSE c
cg07164639 chr6 110736958 -0.401 0.245 DDO TSS1500 5 FALSE b
cg11693709 chr15 40542019 -0.4 0.31 PAK6 5'UTR 16 FALSE a

Supplemental Table 3. List of 71 CpG sites with a Spearman correlation and methylation range over the
defined ratios. Sites are sorted by their absolute Spearman correlation coefficient. Also shown are
methylation range and neighboring genes, as well as the cluster number and whether the CpG site was
included in the final list of 30 “age set” CpG sites. Last column lists, for each CpG, in which of three
independent clocks it was included.
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