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ABSTRACT 
Biomarker discovery in neurological and psychiatric disorders critically depends on 
reproducible and transparent methods applied to large-scale datasets. 
Electroencephalography (EEG) is a promising tool for identifying biomarkers. However, 
recording, preprocessing and analysis of EEG data is time-consuming and mostly subjective. 
Therefore, we developed DISCOVER-EEG, an open and fully automated pipeline that enables 
easy and fast preprocessing, analysis and visualization of resting state EEG data. Data in the 
standard EEG-BIDS structure are automatically preprocessed and physiologically meaningful 
features of brain function (including oscillatory power, connectivity and network characteristics) 
are extracted and visualized using two open-source and widely used Matlab toolboxes 
(EEGlab and FieldTrip). We exemplify the use of the pipeline for biomarker discovery in healthy 
ageing in the LEMON dataset, containing 212 healthy participants. We demonstrate its utility 
to speed up biomarker discovery in a clinical setting with a new dataset containing 74 patients 
with chronic pain. Thus, the DISCOVER-EEG pipeline facilitates the aggregation, reuse and 
analysis of large EEG datasets, promoting open and reproducible research on brain function.  
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INTRODUCTION 
Biomarkers that relate brain function to cognitive and clinical phenotypes can help in the 
prediction, treatment, monitoring and diagnosis of neurological and psychiatric disorders1,2. 
The successful identification of biomarkers crucially depends on the application of reproducible 
and transparent methods3 to large-scale datasets4. Furthermore, to translate biomarkers into 
clinical practice, they need to be generalizable, interpretable and easy to deploy in clinical 
settings. 

Electroencephalography (EEG) is a promising tool for biomarker discovery, as it is non-
invasive, safe, widely used in clinical and research contexts, portable and cost-efficient. 
Consequently, EEG biomarker candidates have been described in depression5-7, post-
traumatic stress disorder7,8 and chronic pain9. Most of these biomarker candidates have been 
discovered in resting state data, during which spontaneous neural activity is captured. 
However, the acquisition of EEG data is often laborious and the preprocessing and analysis of 
EEG data involve manual steps that are time-consuming, subjective and dependent on expert 
knowledge. Thus, EEG datasets often have small sample sizes and low replicability10, 
hindering their use for biomarker discovery.  

In recent years, technological advances have expedited EEG data collection. For instance, 
mobile and dry-electrode headsets now allow for much faster data acquisition than traditional 
EEG setups with wet electrodes11. Moreover, progress has been achieved in automatizing and 
speeding up EEG preprocessing12-15. In addition, recent EEG-based connectivity and network 
measures have been shown to provide crucial information about brain function in 
neuropsychiatric disorders16-18. These advances can significantly further the development of 
EEG-based biomarkers of neuropsychiatric disorders. However, a complete and transparent 
workflow integrating all these elements to promote biomarker discovery in large cohorts of 
participants is still missing. 

Here, we present DISCOVER-EEG, a comprehensive EEG pipeline for fast aggregation, 
preprocessing and analysis of resting state EEG data. So far, there is no single tool that 
automatically preprocesses EEG data and extracts physiologically meaningful EEG features 
(like oscillatory power, connectivity, network characteristics) for use in biomarker identification. 
Our pipeline accomplishes this goal in an easy-to-use manner building upon and combining 
well-established toolboxes for EEG preprocessing and analysis. It thereby facilitates the 
aggregation and analysis of large-scale datasets, as it is applicable to a wide range of EEG 
set-ups, including mobile and dry-electrode systems, and fosters sharing and reusability of the 
data by handling EEG-BIDS standardized data19. Additionally, it can be applied to healthy 
populations as well as populations with different neuropsychiatric disorders, extending its use 
to different research and clinical contexts. 

We demonstrate the use of this pipeline in two openly-available resting state EEG datasets. In 
the first one, the LEMON dataset20 including 212 young and old healthy participants, we show 
how reusing a dataset can inspire the discovery of biomarkers in healthy ageing. We 
specifically present an example analysis investigating differences in EEG features between old 
and young healthy populations. In the second one, we present a new dataset part of an 
ongoing project on biomarker discovery in chronic pain. To date, it includes 74 patients with 
chronic pain recorded with a mobile dry-electrode EEG system in a clinical setting. The 
application of the DISCOVER-EEG pipeline to this dataset demonstrates how to facilitate and 
speed up the acquisition and processing of large new datasets for the discovery of robust and 
reliable biomarkers.  
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METHODS 
Design principles 
Open-source and FAIR code 

We developed an automated workflow for fast preprocessing, analysis and visualization of 
resting state EEG data (Figure 1) following open science and FAIR principles (Findability, 
Accessibility, Interoperability and Reusability)21. The code of the DISCOVER-EEG pipeline is 
published on GitHub and linked to an OSF project (https://osf.io/mru42/), which is thoroughly 
documented and uniquely referenced by a DOI (Findability). The code can be easily 
downloaded (Accessibility) and receive contributions (please refer to the section Code 
availability). To ensure its Interoperability and Reusability, the pipeline is based on two open-
source Matlab toolboxes, EEGLab and FieldTrip22, which are widely used, maintained and 
supported by the developers and the neuroimaging community (i.e. through forums and mailing 
lists). Basing the pipeline on validated and established software ensures its compatibility with 
future software updates. Moreover, it facilitates the interaction with experts in EEG analysis, 
who also gave advice and supported the pipeline during its development. The code of the 
current pipeline is intended to represent a basis that will integrate and benefit from feedback 
of the neuroimaging community. 

Data reusability and large-scale data handling 

As biomarker discovery needs large datasets, we designed the pipeline in view of data 
reusability and large-scale data handling. To this end, we followed the FAIR principles of 
scientific data management23 and incorporated the EEG-BIDS standardized data structure19 
as a mandatory input of the pipeline. Most EEG setups and electrode configurations are 
compatible with the pipeline thanks to the EEGLab plugin bids-matlab-tools. Additionally, we 
tested that the pipeline is compatible with data recorded by mobile EEG devices with dry 
electrodes, which further facilitates the fast creation of large EEG datasets. 

The pipeline was designed for resting state EEG data, during which spontaneous neural 
activity is recorded. Resting state data can be recorded easily in healthy and patient 
populations, in different study designs (e.g. cross-sectional, longitudinal) and in different types 
of neuropsychiatric disorders. Therefore, the use of resting state data facilitates the application 
to different settings and research questions. EEG recordings might also be accompanied by 
standardized patient reported outcomes, such as the PROMIS questionnaires24, which can 
assess symptoms (e.g., pain, fatigue, anxiety, depression) across different neuropsychiatric 
disorders and thus, enable cross-disorder analyses. Together, these considerations contribute 
to the scalability and generalizability of the workflow. 

Ease of use, transparency and interpretability 

The pipeline was designed to be easy to use, in order to make it also accessible to those EEG 
users who are not proficient in coding. It consists of two main functions: main_pipeline.m, in 
which the preprocessing, feature extraction and visualization of the data are carried out, and 
define_params.m, in which parameters for preprocessing and feature extraction are defined. 
This latter file is the only one that needs to be adapted to the dataset and/or user-specific 
demands. When executing the pipeline, parameters are saved to a separate file to ensure 
reproducibility. 

Additionally, the pipeline focuses on transparency and interpretability of results. For that 
reason, a PDF report is generated for each recording, in which the intermediate steps of the 
preprocessing (Figure 2) and the extracted EEG features (Figure 3) are visualized. These 
visualizations can serve as quality control checkpoints and help to detect shorter or corrupted 
files, misalignment of electrodes or missing data through fast visual inspection25. Along with 
their visualization, the preprocessed data and the extracted features of each recording are 
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saved to separate files that can be later used for statistical group analysis and/or biomarker 
discovery. These output files can be easily imported to other statistical packages or working 
environments, such as R or Python26,e.g., for applying machine learning or deep learning 
models.  

 
Figure 1. Outline of the DISCOVER pipeline. The left column shows all preprocessing steps 
and extracted EEG features. The right column shows visualizations for selected steps and 
features for one EEG recording of the LEMON dataset. APF = Alpha Peak Frequency; BIDS 
= Brain Image Data Structure; c.o.g. = center of gravity; Cont = Control; DorsAttn = Dorsal 
Attention; dwPLI = debiased weighted Phase Lag Index; ICA = Independent Component 
Analysis; SalVentAttn = Salience-Ventral Attention; SomMot = Somato-Motor; Vis = Visual. 

Preprocessing  
Automatic preprocessing of EEG data favors objectivity, replicability and speed of EEG 
preprocessing. Thus, in recent years, notable efforts have been made to automatize the 
preprocessing of EEG data. Contributions to single preprocessing steps, such as the EEGLab 
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plugin ICLabel for automatic classification of artifactual independent components12 and early-
step preprocessing pipelines such as PREP have been proposed. Moreover, full automatic 
preprocessing pipelines have been published for specific populations and settings, including 
pediatric populations15,27 and mobile brain-body imaging28, and specifically focusing on Event 
Related Potentials (ERP) or resting-state study designs13,14,29,30. Our pipeline builds upon these 
advances and extends them by adding an automatic computation and visualization of 
physiologically meaningful EEG features that can serve as potential biomarkers. We followed 
a pragmatic approach towards preprocessing and adopted a simple, established and 
automatic workflow in EEGLab proposed by Pernet et al.14 and originally developed for ERP 
data. We adapted the pipeline to resting-state data and detail the seven preprocessing steps 
below. 

Loading the data 

The input of the pipeline must be EEG data in BIDS format19, including all mandatory sidecar 
files. We recommend to check the BIDS-compliance with the BIDS validator  (http://bids-
standard.github.io/bids-validator/). By default, only EEG channels with standard electrode 
positions in the 10-5 system31 are preprocessed. However, it is possible to preprocess non-
standard channels if all electrode positions and their coordinate system are specified in the 
pertinent BIDS sidecar file. Optionally, after loading, the data can be downsampled to a 
frequency specified by the user after the application of an anti-aliasing filter. 

1. Line noise removal 

Line noise is removed with the EEGLab function pop_cleanline(). The CleanLine plugin 
adaptively estimates and removes sinusoidal artifacts using a frequency-domain (multi-taper) 
regression technique. CleanLine, as compared to band-stop filters, does not introduce gaps in 
the power spectrum and avoids the frequency distortions created by filters. This step was 
added to the Pernet et al.14 pipeline to explore brain activity at gamma frequencies (> 30 Hz). 
The line noise frequency (e.g., 50 Hz or 60 Hz) must be specified in the BIDS file sub-
<label>_eeg.json to be appropriately removed. 

2. High pass filtering and bad channel rejection 

Artifactual channels are detected and removed with the function pop_clean_rawdata(). The 
first step of this function is the application of a high pass filter with the function clean_drifts() 
with a default transition band of 0.25 to 0.75 Hz. A channel is considered artifactual if it meets 
any of the following criteria: 1) If it is flat for more than 5 seconds, 2) If the z-scored noise-to-
signal ratio of the channel is higher than a threshold set to 4 by default, 3) If the channel time 
course cannot be predicted from a randomly selected subset of remaining channels at least 
80% of the recorded time. Channels marked as artifactual are removed from the data. The 
mentioned parameters are the defaults proposed by Pernet et al.14.  

3. Re-referencing 

Data is re-referenced to the average reference with the function pop_reref(). Optionally, the 
time course of the original reference channel can be reconstrued and added back to the data 
if the user specifies it in define_params. The name of the reference electrode name must be 
specified in the BIDS file sub-<label>_eeg.json. 
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Figure 2. Visualization of the outcome of the preprocessing part of the DISCOVER pipeline. 
Example of one EEG recording of the LEMON dataset. In the independent component 
classification (second row), bad channels correspond to the channels that were removed in 
the bad channel removal step (first row). Bad channels were not included in the independent 
component analysis. IC = independent component.  

4. Independent Component Analysis and automatic IC rejection 

Independent Component Analysis (ICA) is performed with the function pop_runica() using the 
algorithm runica. Artifactual components are automatically classified into seven distinct 
categories (‘Brain’, ’Muscle’, ’Eye’, ’Heart’, ’Line Noise’, ‘Channel Noise’ and ’Other’) by the 
ICLabel classifier12. Note that ICA is performed only on clean channels, as bad channels 
detected in step 2 were removed from the data. Therefore, the category ‘Channel Noise’ in the 
IC classification refers to channel noise remaining after bad channel removal in step 2. By 
default, only components whose probability of being ‘Muscle’ or ‘Eye’ is higher than 80% are 
subtracted from the data14. Due to the heuristic non-deterministic nature of the ICA algorithm, 
its results vary across repetitions. That is, every repetition of the ICA algorithm leads to small 
differences in the reconstructed time series after the removal of artifactual components. While 
these deviations are small, we noticed that they affect the removal of bad time segments (step 
6). For that reason, the pipeline performs 10 times steps 4, 5 and 6 and selects the bad time 
segment mask that is most similar to the average bad time segment mask across all 
repetitions. This reduces the variability of rejected time segments markedly. 

5. Interpolation of removed channels 

Channels that were removed in step 2 are interpolated with the function pop_interp() using 
spherical splines32. This step was added to the Pernet et al.14 pipeline to hold the number of 
channels constant across participants. 

6. Bad time segment removal 

Time segments containing artifacts are removed with the Artifact Subspace Reconstruction 
(ASR) method33 implemented in the function pop_clean_rawdata(). This method automatically 
removes segments in which power is abnormally strong. First, a clean segment of data is 
identified according to the default ASR settings and used for calibration. Calibration data 
contains all datapoints in which less than 7.5% of channels are noisy. Here, a channel is 
defined as noisy if the standard deviation of its RMS is higher than 5.5. Therefore, the length 
of the calibration data depends on the specific recording. Then, in a sliding window fashion, 
the whole EEG signal is decomposed via PCA and the principal subspaces of the window 
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segment are compared with those of the calibration data. Segments with principal subspaces 
deviating from the calibration data (20 times higher variance) are removed. Again, default 
parameters are in line with Pernet et al.14. 

7. Data segmentation into epochs 

Lastly, the continuous data are segmented into epochs with the function pop_epoch(). By 
default, data are segmented into 2-second epochs with a 50% overlap. Epochs containing a 
discontinuity (e.g. because a segment containing an artifact was discarded) are rejected 
automatically. Data segmentation was adapted from Pernet et al.14, which focused on event-
related data. The proposed epoch length was chosen to establish a balance between the 
stationarity of the signal and the reliability of the later extracted features. 

EEG feature extraction 
The multiple possibilities of analyzing EEG data pose a challenge when deciding which brain 
features to analyze. Here, we focused on a reduced set of features that can be physiologically 
interpreted, as explainable biomarkers have more chances to be clinically useful1.  

In electrode space features based on the power spectra of the EEG signal. Specifically, power 
in the theta (4 to < 8 Hz), alpha (8 to < 13 Hz), beta (13 to 30 Hz) and gamma (> 30 to 80 Hz) 
bands is extracted, with the band limits defined by the COBIDAS-MEEG guidelines34 and 
maintained throughout all features. Furthermore, the Alpha Peak Frequency (APF), i.e. the 
frequency at which a peak in the power spectrum in the alpha range occurs, is determined. 
Power changes in these frequency bands have been found in a broad spectrum of 
neuropsychiatric disorders35. In addition, there is evidence that the APF correlates with 
behavioral and cognitive characteristics36 in aging and disease37. 

In source space, we extract features based on functional connectivity and graph measures that 
characterize brain networks. Functional connectivity measures constitute promising biomarker 
candidates in neuropsychiatric disorders16,17. In EEG, functional connectivity measures are 
commonly classified as either phase-based or amplitude-based. These two types of 
connectivity capture different and complementary communication processes in the brain38. 
This pipeline thus includes two connectivity measures with low susceptibility to volume 
conduction: the phase-based debiased weighted Phase Lag Index (dwPLI)39 and the 
amplitude-based orthogonalized Amplitude Envelope Correlation (AEC)40. Both connectivity 
measures are assessed in source space in the four frequency bands mentioned before (theta, 
alpha, beta, and gamma). Furthermore, this pipeline characterizes brain networks using 
common graph theory measures41. For each connectivity measure and frequency band, we 
compute two local graph measures for each source location: the degree and the clustering 
coefficient. We further compute three global graph measures that characterize the whole 
network: the global clustering coefficient, the global efficiency and the smallworldness. 

Power and connectivity features are computed using the preprocessed and segmented data 
in FieldTrip. Graph theory measures are computed with the Brain Connectivity Toolbox41. 
Specific parameters on feature extraction are defined in the function define_params and 
detailed below. 

1. Power spectrum 

Power spectra are computed with the FieldTrip function ft_freqanalysis between 1 and 100 Hz 
using Slepian multitapers with +/-1 Hz frequency smoothing. For 2-second epochs, the 
maximum frequency resolution of the power spectrum is by definition the inverse of the epoch 
length, i.e. 0.5 Hz. As frequency band limits are determined by the spectral resolution, the 
pipeline zero-pads the epochs to 5 seconds, which yields a resolution of 0.2 Hz, to better 
capture the frequency range of the bands. Thus, the frequency band limits for theta, alpha, 
beta and gamma are 4 to 7.8 Hz, 8 to 12.8 Hz, 13 to 30 Hz and 30.2 to 80 Hz, respectively. 
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Power spectra are computed for every channel and then averaged across epochs and 
channels to obtain a single global power spectrum. This global power spectrum is saved to 
sub-<label>_power.mat files and visualized with the different frequency bands highlighted in 
different colors (Figure 3). 

2. Alpha Peak Frequency 

APF is computed based on the global power spectrum in the alpha range (8 to 12.8 Hz). As 
there are different strategies for computing the APF, the two most often reported in the 
literature42 are calculated: the frequency at which the highest peak occurs (peak maximum) 
and the center of gravity (c.o.g.) of the alpha band. The peak maximum is computed with the 
Matlab function findpeaks(). If there is no peak in the alpha range, no value is returned. The 
center of gravity is computed as the power-weighted average of frequencies in the alpha band. 
Both measures are visualized in the same figure depicting the power spectrum averaged 
across channels and epochs (Figure 3). Individual APF values are also saved to the sub-
<label>_peakfrequency.mat files. 

3. Source reconstruction 

To mitigate the volume conduction problem when computing functional connectivity 
measures43, we perform a source reconstruction of the preprocessed data with an atlas-based 
beamforming approach. For each frequency band, the band-pass filtered data from sensor 
space is projected into source space using an array-gain Linear Constrained Minimum 
Variance (LCMV) beamformer44. As source model, we selected the centroids of 100 regions of 
interest (ROIs) of the 7-network version of the Schaefer atlas45. This atlas is a refined version 
of the Yeo atlas and follows a data-driven approach in which 100 parcellations are clustered 
and assigned to 7 brain networks (Visual, Somato-Motor, Dorsal attention, Salience-Ventral 
attention, Limbic, Control, and Default networks). The lead field is built using a realistically 
shaped volume conduction model based on the template of the Montreal Neurological Institute 
(MNI) available in FieldTrip (standard_bem.mat) and the source model. Spatial filters are finally 
constructed with the covariance matrices of the band-passed filtered data and the described 
lead fields. A 5% regularization parameter is set to account for rank deficiencies in the 
covariance matrix and the dipole orientation is fixed to the direction of the maximum variance 
following the most recent recommendations46. An estimation of the power for each source 
location is obtained using the spatial filter and band-passed data. A visualization of the source 
power in each frequency band (Figure 3) is provided by projecting the band-specific source 
power to a cortical surface model provided as template in FieldTrip (surface_white_both.mat).  
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Figure 3. Visualization of the outcome of the feature extraction part of the pipeline. Example 
for one recording of the LEMON dataset (same recording as Figure 2). Power-based 
measures are extracted in electrode (power spectrum averaged across channels, APF) and 
source space (power topographies). Functional connectivity measures are estimated in 
source space for 100 pairs of brain regions organized in 7 different functional networks (Visual, 
Somato-Motor, Salience, Ventral-Attention, Limbic, Control, and Default). Brain network 
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measures are characterized by local (degree and clustering coefficient) and global (global 
clustering coefficient, global efficiency and smallworldness) graph measures computed on the 
thresholded connectivity matrices. AEC = Amplitude Envelope Correlation; APF = Alpha Peak 
Frequency; c.o.g. = center of gravity; Cont = Control; DorsAttn = Dorsal Attention; dwPLI = 
debiased weighted Phase Lag Index; SalVentAttn = Salience-Ventral Attention; SomMot = 
Somato-Motor; Vis = Visual. 

4. Functional connectivity 

After the creation of spatial filters in the four frequency bands, virtual time series in the 100 
source locations are reconstructed for each frequency band by applying the respective band-
specific spatial filter to the band-pass filtered sensor data. Then, the two functional connectivity 
measures (dwPLI and AEC) are computed for each frequency band and for each combination 
of the 100 reconstructed virtual time series. Average connectivity matrices for each band are 
visualized (Figure 3) and saved to separate files (sub-<label>_<conmeasure>_<band>.mat). 

The phase-based connectivity measure dwPLI is computed using the FieldTrip function 
ft_connectivityanalysis with the method wpli_debiased, which requires a frequency structure 
as input. Therefore, Fourier decompositions of the virtual time series are calculated in each 
frequency band with a frequency resolution of 0.5 Hz. Thereby, a connectivity matrix is 
obtained for each frequency of interest in the current frequency band. Connectivity matrices 
are then averaged across each frequency band resulting in one 100x100 connectivity matrix 
for each of the four frequency bands.  

The amplitude-based connectivity measure AEC is computed according to the original 
equations with a custom function compute_aec, as the original implementation was not 
available in FieldTrip. For each epoch, the analytical signal of the virtual time series is extracted 
at each source location with the Hilbert transform. For each source pair, the analytical signal 
at source A is orthogonalized with respect to the analytical signal at source B, yielding the 
signal A⟂B. Then, the Pearson correlation is computed between the amplitude envelope of 
signals B and A⟂B. To obtain the average connectivity between sources A and B, the Pearson 
correlation between the amplitude envelopes of analytical signal A and signal B⟂A is also 
computed and the two correlations coefficients are averaged. In this way, we obtain a 100x100 
connectivity matrix for each epoch. We finally average the connectivity matrices across 
epochs, resulting in one 100x100 connectivity matrix for each of the four frequency bands. 

5. Brain network characteristics 

Graph measures were computed on thresholded and binarized connectivity matrices41. 
Matrices were binarized by keeping the 20% strongest connections. This is an arbitrary 
threshold and it is good practice to test the reliability of results with different binarizing 
thresholds47. This threshold can be easily changed in the function define_params. 

The computed local measures are the degree and the clustering coefficient. The degree is the 
number of connections of a node in the network. The clustering coefficient is the percentage 
of triangle connections surrounding a node. The measures, thus, assess the global and local 
connectedness of a node, respectively. 

The computed global measures are the global clustering coefficient, the global efficiency and 
the smallworldness. The global clustering coefficient is a measure of functional segregation in 
the network and is defined as the average clustering coefficient of all nodes. The global 
efficiency is a measure of functional integration in the network and is defined as the average 
of the inverse shortest path length between all pairs of nodes. High global efficiency indicates 
that information can travel efficiently between regions that are far away. Smallworldness 
compares the ratio between functional integration and segregation in the network against a 
random network of the same size and degree. Smallworld networks are highly clustered and 
have short characteristic path length (average shortest path length between all nodes) 
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compared to random networks48. Local and global measures are visualized per recording and 
saved to files named sub-<label>_graph_<conmeasure>_<band>.mat (Figure 3). 
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RESULTS 
Testing the DISCOVER-EEG pipeline in two large, public datasets 
We applied the DISCOVER-EEG pipeline to two openly-available resting state EEG datasets: 
the LEMON dataset20 including 212 young and old healthy participants and the Chronic pain 
dataset, unpublished until now, which includes 74 patients with chronic pain recorded with a 
mobile dry-electrode EEG system (Figure 4). The application of DISCOVER-EEG to the 
LEMON dataset exemplifies how to reuse a public dataset and inspire the discovery of new 
biomarkers (please refer to the next Results section). The application to the Chronic pain 
dataset exemplifies how to speed up biomarker discovery in a clinical population and setting. 
The application of the pipeline to this second dataset was initially conceived as a proof of 
concept to test a dry-EEG system in translational research. However, the acquisition of 74 
EEG resting recordings within only 7 months, together with the fast and objective processing 
of the data, evidence the utility of new hardware advances and processing methods for the 
fast discovery of clinically-relevant brain biomarkers. Below we detail the characteristics of both 
datasets used, as well as the outcome of their preprocessing with the DISCOVER-EEG 
pipeline. This latter report could be of use in future studies interested in benchmarking different 
EEG configurations or EEG preprocessing strategies.  

LEMON dataset 

The LEMON dataset is a publicly available resting state EEG dataset of 212 young and old 
healthy participants acquired in Leipzig (Germany) to study mind-body-emotion interactions20. 
This dataset is divided into two groups based on the age of the participants: a ‘young’ group 
(20 to 35 years old; N = 141; 43 females) and an ‘old’ group (55 to 80 years old; N = 70; 35 
females). One participant (male) had an intermediate age and was not included in the posterior 
statistical analyses (next Results section). Resting state EEG was recorded with a BrainAmp 
MR plus amplifier using 62 active ActiCAP electrodes (61 scalp electrodes in the 10-10 system 
positions and 1 VEOG below the right eye) provided by Brain Products Gmbh, Gilching, 
Germany. The ground electrode was located at the sternum and the reference electrode was 
FCz. Recording sampling rate was 2500 Hz. Recordings contained 16 blocks of 1-minute 
duration, 8 with eyes closed and 8 with eyes open in an interleaved fashion. Here, we only 
analyzed resting state with eyes closed. In consequence, before the execution of the pipeline, 
all blocks corresponding to eyes-closed resting state were extracted and concatenated, 
including boundaries between blocks. Two recordings were discarded because the data was 
truncated. Therefore, 210 eyes-closed resting state recordings of 8 minutes duration were 
entered to the pipeline. 

Chronic pain dataset 

The Chronic pain dataset is part of an ongoing project on biomarker discovery in patients 
suffering from chronic pain (ClinicalTrials.gov, NCT05261243) and is openly available at OSF 
(see section Data availability). This study has been approved by the ethics committee of the 
TUM School of Medicine with the reference number 6/22 S-KH. To date, the dataset includes 
74 patients with chronic pain of mixed etiologies (22 to 85 years old, 41 females), who were 
recorded between March and November 2022. Resting-state recordings with eyes closed were 
carried out in a clinical setting with a mobile, dry-electrode EEG setup with 29 scalp electrodes 
(CGX Quick-32r, Cognionics Inc.) located in the 10-20 system. Ground and reference 
electrodes were located at the left ear (A1). Recording sampling rate was 500 Hz. Recordings 
have an average duration of 5 minutes. 

DISCOVER-EEG preprocessing outcome for both data sets 

After applying the DISCOVER-EEG pipeline to the LEMON dataset, 2 ± 2 channels (mean ± 
std.) were rejected on average, 7 ± 4 independent components were marked as ‘muscle’ or 
‘eye’ artifacts and subtracted from the data and 32 ± 42 seconds were labeled as bad 
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segments, leading to an average of 395 ± 58 clean 2-second epochs per recording. Similarly, 
in the chronic pain dataset, an average of 5 ± 3 channels (mean ± std.) were rejected, 1 ± 1 
independent components were marked as ‘muscle’ or ‘eye’ artifacts and subtracted from the 
data and 66 ± 67 seconds were labeled as bad segments, leading to an average of 221 ± 78 
clean 2-second epochs per recording. Figure 4 shows an overview of the preprocessing results 
for both datasets to give the reader an intuition of how the preprocessing part of the pipeline 
performs in two datasets with very different characteristics. Considering that recordings were 
performed in healthy vs. patient populations, these results point to a fair amount of data 
remaining after the preprocessing of dry-EEG recordings. This is in line with the results of a 
recent study showing that dry-electrode EEG setups present a similar quality to recordings 
acquired with active wet electrodes49. This could be very useful for the fast acquisition of new 
datasets and, hence, for clinical biomarker discovery. 

 
Figure 4. Overview of the datasets used to test the DISCOVER-EEG pipeline and the results 
of their preprocessing. Demographics include histograms depicting the age of the participants 
in bins of 5 years. Recordings depict the layout of the EEG setup and the average duration of 
the recordings. Vertical bars in the LEMON recordings represent the 1-minute blocks in which 
the data was acquired. DISCOVER-EEG preprocessing presents the preprocessing variables 
expressed in percentage relative to the number of electrodes (rejected channels, rejected ICs) 
or length of the recording (rejected time segments). Boxplots visualize the distribution of these 
variables. The median is indicated by a red horizontal line and the first and third quartiles 
indicated with the black boxes. The whiskers extend to 1.5 times the interquartile range. Blue 
dots overlaid to the boxplots represent the individual recordings of each dataset. ICs = 
Independent Components. 

Using DISCOVER-EEG to inspire explainable, age-related biomarkers 
Preventive medicine is essential in clinical care. Therefore, non-invasive biomarkers aiming to 
detect risk factors for certain diseases in the general population are very much sought after. 
Recently, the measure of brain age, i.e. the expected level of cognitive function of a person 
with the same chronological age, has been proven a useful marker of cognitive decline in 
heathy and clinical populations50,51. Brain age is usually estimated by machine learning models 
trained to predict the chronological age of a participant based on neuroimaging data. One 
criticism of these methods is their limited neuroscientific interpretability, as it is not transparent 
which features the models use to predict brain age50. It would be therefore highly useful to 
explore which physiologically meaningful brain features change with age, as they could 
potentially turn into explainable biomarkers predictive of cognitive decline and 
neurodegeneration. Traditional neuroimaging studies have already shown correlations 
between healthy ageing and functional and structural changes in the brain52. In the EEG field 
specifically, alterations of brain features, such as a reduction (slowing) of APF and a general 
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decrease of functional connectivity and network integrity, have been associated with healthy 
ageing and cognitive decline53,54.  

To demonstrate the use of the DISCOVER-EEG pipeline for predictive biomarker discovery, 
we explored age-related differences in resting state EEG in the LEMON dataset. These EEG 
features could eventually turn into predictive or risk biomarkers of neurodegeneration and 
cognitive decline after extensive validation. 

Example analysis: age-related differences in resting state EEG 

To demonstrate the value of DISCOVER-EEG for the identification of age-related differences 
in physiologically explainable EEG features, we conducted an exploratory analysis of the 
LEMON dataset. To this end, we statistically compared the features automatically extracted by 
the pipeline in the ‘old’ and ‘young’ groups using Bayesian statistics performed in Matlab with 
the bayesFactor package55. As the aggregation of the automatically extracted single-
participant features for group analysis can be challenging for the unexperienced user, we have 
added the script used to perform this group analysis and the visualization of group-level data 
to the pipeline code (Figure 5).  

We tested whether old participants had different APF values than young participants with two-
sided independent samples Bayesian t-tests. Two tests were performed, one for each APF 
measure (the local maximum and the center of gravity). Results show very strong evidence in 
favor of the alternative hypothesis, i.e. a lower APF in the old compared to the young group, 
when the APF is computed as local maximum peak (BF10 = 325.5), but inconclusive evidence 
when the APF is computed as the center of gravity (BF10 = 1.1) (Figure 5, first row).  

We further tested whether there were differences in the connectivity matrices between young 
and old participants. For each connectivity measure (dwPLI and AEC) and frequency band 
(theta, alpha, beta, and gamma), we compared the connectivity values of each undirected 
source pair between the young and the old groups. Thus, we performed 9900 two-sided 
independent samples Bayesian t-tests per connectivity matrix. In Figure 5, second row, we 
depict t-values color-coded to show the direction of effects. Statistical tests showing strong 
evidence in favor (BF10 > 30) or against (BF10 < 1/30) the alternative hypothesis are not faded 
out. We observed strong evidence in favor of a reduction of phase-based connectivity in old 
participants predominantly in the alpha band as well as a reduction of amplitude-based 
connectivity (Figure 5, second row, non-masked blue values). 

We finally tested whether there were any differences between old and young participants in 
the graph measures. For the local graph measures, we performed one test per source location, 
i.e. 100 independent sample Bayesian t-tests for each graph measure, connectivity measure 
and frequency band. For the global measures, we performed a two-sided independent sample 
Bayesian t-test per graph measure, connectivity measure and frequency band. With regard to 
global measures, most prevalent differences appeared at low frequencies (theta and alpha) 
using the AEC (Figure 5, third row, blue and red dots in brain sketches have BF10 > 30). The 
strongest effects with regard to global measures are a reduction of global efficiency and 
smallworldness of the older group in the beta band for the dwPLI, and the alpha band for the 
AEC (Figure 5, third row, raincloud plots with inset BF10 indicating strong evidence). Together, 
these results show a reduction of local connectivity at theta and alpha frequencies and an 
increase of network integration at alpha and beta frequencies in older participants. 

Overall, the current findings are in line with previous EEG literature, which has reported a 
slowing of APF and a general decrease of functional connectivity and network integrity53,54. 
These EEG features confirmed using DISCOVER-EEG are thus promising candidates for 
predictive or risk biomarkers of healthy ageing. Naturally, their use as clinical biomarkers 
requires thorough validation beyond the scope of this manuscript. 
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Figure 5. Age-related differences in resting state EEG between old and young participants of 
the LEMON dataset. Alpha Peak Frequency differences between the old and the young 
group are visualized using raincloud plots56. Connectivity differences between the old and 
young group. Blue values indicate lower connectivity in the old group. All connections not 
showing strong evidence for or against a connectivity difference (1/30 < BF10 < 30) are faded 
out. Brain network differences between the old and young group. With regard to local graph 
measures, only locations with strong evidence for (BF10 > 30) or against (BF10 < 1/30) a 
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difference in the graph measures are depicted. Only results in favor of a difference between 
groups were found (blue dots indicate lower local graph measures in the old group, red dots 
indicate higher local graph measures in the old group). With regard to global graph measures, 
only BF10 showing substantial evidence for (BF10 > 3) or against (BF10 < 1/3) the alternative 
hypothesis were included as insets to facilitate the reading. AEC = Amplitude Envelope 
Correlation; BF = Bayes Factor; Cont = Control; DorsAttn = Dorsal Attention; dwPLI = 
debiased weighted Phase Lag Index; SalVentAttn = Salience-Ventral Attention; SomMot = 
Somato-Motor; Vis = Visual 
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DISCUSSION 
Here, we present DISCOVER-EEG, an open and fully automated pipeline that enables fast 
and easy aggregation, preprocessing, analysis and visualization of resting state EEG data. 
The current pipeline builds upon state-of-the-art automated preprocessing elements and 
extends them by including the computation and visualization of physiologically relevant EEG 
features. These EEG features are based on recent COBIDAS guidelines for MEEG research, 
are implemented in widely-used EEG toolboxes and have been repeatedly associated with 
cognitive and behavioral measures in healthy as well in neuropsychiatric populations. 
Therefore, they could represent promising biomarker candidates, which can now easily be 
extracted using the pipeline.  

Importantly, this pipeline presents one out of many ways of preprocessing and analyzing 
resting state data and is not intended to be the ultimate solution for EEG analysis. Instead, it 
aims to represent a reasonable and pragmatic realization for accelerating the acquisition, 
preprocessing and analysis of large-scale datasets with the potential to discover clinically 
useful biomarkers. For that reason, we adopted a previously published, simple and robust 
preprocessing strategy and selected a reduced and well-defined set of EEG features that could 
be useful for biomarker discovery. It is therefore foreseeable that this pipeline might not suit 
certain populations, settings or research paradigms, such as children, real-life ecological EEG 
assessments or paradigms assessing event related potentials. However, it is compatible with 
different types of EEG set-ups, including mobile headsets with dry-electrodes, and its focus on 
resting state data makes it suitable for patient and healthy populations. The adaptation, 
extension or modification to the specific needs of the user it is relatively simple due to the 
modular configuration of the code. By substituting, removing or adding a specific function of 
the preprocessing or feature extraction the corresponding step would be modified, omitted or 
included, respectively.  

By default, the pipeline uses a realistically shaped volume conduction model based on the 
template of the Montreal Neurological Institute (MNI) for source localization. For an optimal 
accuracy of source reconstruction, individual MRIs or at least individual electrode positions 
could be recorded along the EEG data. However, this would substantially increase the effort 
and time needed to acquire data and would hinder the fast generation of large new datasets. 
For that reason, the pipeline uses a generic template for source localization. However, it might 
be desirable to have different templates that better reflect the variability of head shapes in the 
future. 

On a broader scope, it should always be considered whether datasets used for biomarker 
discovery are representative of the complete population of interest or whether they are biased 
towards young, Caucasian, highly educated populations, as it is often the case57. The 
participants of the studies used here to test the pipeline were recruited based on convenience 
sampling and, therefore, might not cover the entire population. We firmly believe that the 
creation and adoption of data standards such as BIDS will help to mitigate this fact by 
promoting collaboration and data sharing around the world. 

Our intention with this pipeline was to push the field of EEG biomarker discovery forward to 
the acquisition and analysis of large datasets, as needed in neuroimaging and artificial 
intelligence. Moreover, we believe that the example analyses that we provide serve as a 
starting point for less specialized researches who want to use complex measures of brain 
function. Thus, the proposed visualizations are intended as a simple and intuitively accessible 
representation of these complex brain features. 

In conclusion, we hope that our fully automated DISCOVER-EEG pipeline can advance the 
discovery of EEG-based biomarkers in neuropsychiatric disorders. Beyond, we hope that 
DISCOVER-EEG will promote and facilitate open and reproducible assessments of brain 
function in EEG communities and beyond. 
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DATA AVAILABILITY 
The LEMON dataset used to exemplify the use of the pipeline is published at 
doi:10.18112/openneuro.ds000221.v1.0.0 and described in the publication20. The dataset used 
to demonstrate the application of the pipeline to data recorded with a mobile and dry-electrode 
EEG system is available at https://osf.io/m45j2/ with DOI 10.17605/OSF.IO/M45J2. 

CODE AVAILABILITY 
The EEG pipeline code is available at https://github.com/crisglav/discover-eeg under the CC-
BY-NC-SA 4.0 license. 

The pipeline was created and tested in Matlab 2020b (The Mathworks, Inc.) on Ubuntu 18.04.5 
LTS with the Signal Processing and Statistical and Machine Learning Toolboxes installed. 
EEGLab (v2022.0)58 with the plugins bids-matlab-tools (v6.1), bva-io (v1.7), firfilt, (v2.4), 
cleanLine (v2.0), ICLabel (v1.3), clean_rawdata (v2.6) and dipfilt (v4.3) were installed and used 
for preprocessing. FieldTrip (revision ee916f5e5)22 was used for source reconstruction and 
EEG feature extraction and the Brain Connectivity Toolbox (version 03 2019)41 was used for 
network analysis. 
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