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Abstract 

At 4.44 billion bushels worth an estimated $57.7 billion dollars, soybeans are one of the most produced 

crops in the United States and are appraised using a standard grading system set by the USDA(NASS, 

2022). The grading and inspection process is based on twenty factors, including six that are visual based 

(USDA, 2020). The aim of this research is to apply texture-based image analysis to assess visual 

indicators of damage in soybeans and demonstrate potential use in increasing efficiency and consistency 

in soybean grading. Surface texture is one of the characteristics that is examined by inspectors as part of 

assessing soybean damage, while "image texture” is a calculated set of parameters that are used in 

image processing and analysis to quantify the apparent actual texture captured in an image.  In this 

study, texture analysis using Haralick textural features is performed on sets of soybean images to assess 

damage types (as defined by the USDA inspection handbook and visual reference images) and improve 

soybean classification. 

Introduction 

The United States produced 4.44 billion bushels of soybeans in 2021 worth an estimated $57.5 billion, 

an all-time production high and a five percent increase from the year before (NASS, 2022). In 2021 

Louisiana produced 55.1 million bushels worth $694.5 million (NASS, 2021). Soybeans are currently 

inspected and appraised using a standard grading system set forth by the USDA. The resulting grade 

influences the price at which a quantity of soybeans can be sold. This grading system considers several 

factors such as heating, odor, damage, and insect infestation among others when giving a grade to 

soybeans being sold (USDA, 2020). USDA certified inspectors take samples for grading directly from the 

transport truck and grade them at the point of sale. Inspectors use either a hand or mechanical probe to 

take a sample of at least 125g. The sample is first inspected for foul odors and insect infestation. A 

portion of the original sample is then separated, and the moisture content is determined. The sample is 

subsequently tested for dockage where the amount of damaged soybeans and materials other than 

grains (MOGs) is recorded(USDA, 2020). In order to determine dockages during the grading process the 

USDA uses a set of Visual Reference Images (VRIs) that provide the inspectors with an image of the 

different types of damages that can occur in soybeans (USDA, 2016). The soybean samples are 

compared to the VRIs to determine type and amount of damage. This visual determination of dockages 

in conjunction with amount of MOGs, odor, heating, moisture, and other factors are the basis of the 

inspector’s grade determination.  

There exists a need for increased accuracy and automation in the grading process, with opportunity 

arising in improved visual evaluation of soybeans.  Methods of image processing and analysis (Gonzalez 

R. C., 2008), which apply mathematical operations and algorithms to extract data from digital images are 

a natural fit for improving visual analysis. Image processing and analysis techniques have been used 
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previously to detect damage found in soybeans, for example in an automatic method of counting and 

separating damaged soybeans using size, shape, and color (Wattana, Siriluk, & Khotwit, 2018), along 

with efforts to identify soybeans with mildewed, insect damaged, skin-damaged, broken, and partly 

defective kernels using color, shape, and texture analysis (Liu et al., 2015). Color features in the RGB 

color space have been used to classify soybean seeds into sound, heat damaged, green frost damaged, 

and stink bug damaged categories with increased accuracy (Shatadal & Tan, 2003). Mold damage of 

soybeans was identified based on the variance in light reflectance between the mold damaged and non-

mold damaged areas on the surface (Gunasekaran, Cooper, & Berlage, 1988). The hue, saturation and 

intensity (HSI) color space has been used in conjunction with morphological operators to detect and 

segment MOGs, split soybeans, and contaminated soybeans(Momin, Yamamoto, Miyamoto, Kondo, & 

Grift, 2017).Near-infrared hyperspectral imaging has been used to nondestructively determine soybean 

viability(Baek et al., 2019). Image processing and analysis techniques have also been used to detect 

fungal disease symptoms in the leaves, stems, and fruit of various groups such as fruits, vegetables, 

commercial crops, and cereals(Pujari, Yakkundimath, & Byadgi, 2015). 

Texture analysis is the characterization of regions in an image by quantifying qualities described by 

terms such as coarse or smooth as a function of the spatial variation in pixel intensities. Multiple 

methods have been developed to achieve this, such as grey-level co-occurrence matrixes (GLCM), 

Laplace filters, and granulometric analysis (Kupidura, 2019). Haralick features, the method used in this 

study, are based on the grey-level co-occurrence matrix (GLCM), a statistical method of characterizing 

the spatial relationship of pixels in a greyscale image(Haralick, Shanmugam, & Dinstein, 1973). The 

GLCM is constructed by recording how often two grey-level pixels appear next to each other in an 

image. While some of the features identified by Haralick “relate to specific textural characteristics of the 

image such as homogeneity, contrast, and presence of organized structure”, other features only 

“characterize the complexity and nature of the grey tone transitions (Haralick et al., 1973).”The Haralick 

features were originally and still are used to classify aerial and satellite images into various land use 

categories. In recent years Haralick features have been applied to medical imaging to discriminate lung 

abnormalities (Zayed & Elnemr, 2015). 

Previous studies using image analysis to evaluate the quality of soybeans share a commonality in that 

the researchers conducting these studies decide what criterion their systems will judge the damaged 

soybeans by(Liu et al., 2015; Wattana et al., 2018). A recent study uses comparisons between damaged 

soybeans and the average of values of normal soybeans to identify and remove damaged soybeans, but 

provides no definition of what makes a soybean normal (Liu et al., 2015). A different method considers a 

soybean as damaged if the number of white pixels in a binary image of a soybean is less than a set value 

(Wattana et al., 2018).  Using this method would result in small and irregular, but otherwise undamaged 

soybeans being considered damaged. Healthy and normal soybeans are a variety of shapes and sizes and 

drawback to existing approaches in classification of soybeans are the subjective definition of healthy or 

normal soybeans.  Two issues arise when using arbitrary definitions of healthy.   The first is that the 

quality of the soybean is compared to the averages of what are presumed to be good soybeans.  The 

second is that these systems tend to be binary systems. Meaning the soybean in question either 

matches the “good” soybean or it is considered damaged. In practicality many of the damages looked at 

by inspectors are measured on a scale of values. Soybeans with mold damage for example are only 

considered damaged if the “soybeans contain mildew on fifty percent or more of the seed coat in 

sufficient concentration to meet or exceed the minimum(USDA, 2020).”  
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A method for visually identifying and quantifying damage in soybeans would provide information for a 

more accurate quality assessment based on the actual damage found, and not a comparison to a 

“perfect” soybean. This study proposes a method to image and apply Haralick texture analysis to 

soybeans in order to evaluate their ability to distinguish damage types. The aim is not to determine if 

the soybean is “good” or “bad”, but to ascertain if certain damages are present and which Haralick 

textural features provide the best distinction between the categories. 

 

Materials and Methods 

Soybeans 

 The soybeans used in this study were comprised of grade 1-4 samples obtained from the 

Louisiana Farm Bureau. The soybeans harvested in June 2020 were graded by a certified USDA 

inspector. The samples were stored in plastic bags placed inside plastic bins at an average temperature 

and humidity of 70oF and 55 percent humidity respectively.  A total of one hundred and fifty soybeans 

were chosen for this study and imaged between August and October 2020. The damage status of each 

soybean was characterized manually through use of the USDA inspection process and VRIs. In order to 

ensure an unbiased categorization, the one hundred and fifty soybeans were arbitrarily numbered and 

characterized by in a blind process by five volunteers, categorizing the soybeans as either smooth, 

cracked, wrinkled, or other. Representative example images of each soybean damage type can be seen 

in Figure 1. 

 

Figure 1: Examples of the categories used. Smooth (A), Cracked (B), Wrinkled (C) 

Image Acquisition 

 A 24.5-megapixel Nikon z6 camera with a Nikkor Z 24-70 mm lens was used to obtain images of 

the soybeans used in this study. All images were acquired with constant settings: a F-stop of 20, a 

shutter speed of 1/125, and an ISO of 2500. The camera was attached to a stand with the lens 21.4 cm 
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above the imaging platform. The imaging platform consisted 

of a 36 cm by 30.5 cm plate of metal that was sanded smooth 

and painted matte black to reduce light reflection, shadows, 

and provide a high contrast to the soybeans. Three GVM-672 

LED lights were used in the image acquisition setup, two 

behind the imaging platform angled at 45o and the third in 

directly in front of the platform. The temperature of the light 

was set to 3500 Ko and the brightness was set to 50%. The 

actual measured temperature and brightness of the imaging 

platform was 3390 Ko and 2890 lux respectively. The soybeans 

were placed in three rows of three, approximately 1-2 cm 

apart, allowing for nine soybeans per image. This provided 

reasonable imaging time versus single soybean resolution.  

The layout of the image acquisition setup can be seen in 

Figure 2. 

 

Image Processing 

  

 

Figure 2:Layout of three light image acquisition setup 

Figure 3:Flowchart of Image Processing Steps 
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 After the images were acquired, they went through multiple processing steps. First the 

algorithm imports the original image and splits it into red, green, and blue channels. Through 

experimentation it was found that using only the red channel provided the most contrast, allowing for 

better detection of the edges of the soybean. Using the red channel, the edges were found using the 

Canny edge method(Canny, 1986). Then using the Canny edges the contours of each soybean are 

identified using  the Suzuki method(Suzuki, 1985). A mask of the contours was placed over the original 

RGB image and a bounding box that encompasses each individual contour was applied. The bounding 

boxes were given a 140-pixel cushion and each box was segmented out of the original image. This 

created nine new images, each one containing a single soybean. This step was repeated for each of the 

original images. These color images are converted to 

greyscale using the weighted method. The weighted 

method weighs the red, green, and blue values of each 

pixel using the following equation: Grayscale = 0.299R 

+ 0.587G + 0.114B (Bovik, 2010). A binary threshold is 

applied for Canny edge detection (Canny, 1986). The 

binary image then undergoes five iterations of both 

dilation and erosion using a two pixel by two-pixel 

kernel(Gonzalez R. C., 2008). Dilation and erosion 

iterations are used to remove artifacts created by other 

particulates in the original image such as shadows, 

dust, and dirt. After dilation and erosion, the resulting 

contours in the image are detected, counted, and the 

internal area is measured using the Suzuki method 

(Suzuki, 1985). The list of contours is then sorted based 

on the measured internal area and the largest contour, 

which must be the soybean, is selected. Using the 

calculated moment and centroid of the contour, an 

ellipse was fit to the contour using the algebraic 

distance algorithm (Fitzgibbon & Fisher, 1996). An 

inscribed rectangle was created using the computed 

major radius of the ellipse that was fit to the soybean 

contour. The inscribed rectangle is created for each of the soybeans and is segmented out for texture 

analysis.  The step-by-step process is depicted in Figure 3. 

Texture Analysis 

Table 1: Haralick Features and their respective Equations 

Angular Second Moment 𝑓1 = ∑  ∑  {𝑝(𝑖, 𝑗)}2
𝑗=1𝑖=1   

Contrast 𝑓2 = ∑ ∑ (𝑖 − 𝑗)2𝑁
𝑗=1 𝑝(𝑖, 𝑗)𝑁

𝑖=1   

Correlation 𝑓3 =  
∑ ∑ (𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦𝑗=1𝑖=1

𝜎𝑥𝜎𝑦
  

Difference Variance 𝑓10 = ∑ {(𝑖 − 𝜇𝑥−𝑦)
2

𝑝𝑥−𝑦𝑖
𝑁𝑔−1

𝑖=0
  

Difference Entropy 𝑓11 = − ∑ 𝑝𝑥−𝑦(𝑖) log{𝑝𝑥−𝑦(𝑖)}
𝑁𝑔−1

𝑖=0
  

Entropy 𝑓9 = − ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))𝑗𝑖   

Figure 4: A- Original Image, B- Greyscale Image, C- Binary Threshold, 
D- Edge of the soybean, E- Contoured image, F- Contoured image 
with the calculated center, G- Soybean fit with an ellipse, H- Soybean 
with interior box, I- Segmented soybean 
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IMOC 1 𝑓12 =
𝐻𝑋𝑌−𝐻𝑋𝑌1

max{𝐻𝑋,𝐻𝑌}
  

IMOC 2 𝑓13 = (1 − exp[−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])1 2⁄   
Inverse Difference Moment 𝑓5 = ∑ ∑

1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑗𝑖   

Sum Average 𝑓6 = ∑ 𝑖𝑝𝑥+𝑦(𝑖)
2𝑁𝑔

𝑖=2
  

Sum Entropy 𝑓8 = − ∑ 𝑝𝑥+𝑦(𝑖) log{𝑝𝑥+𝑦(𝑖)}
2𝑁𝑔

𝑖=2
  

Sum of Squares Variance 𝑓4 = ∑ ∑ (𝑖 − µ)2𝑝(𝑖, 𝑗)𝑗𝑖   

Sum Variance 𝑓7 = ∑ (𝑖 − 𝑓6)22𝑁𝑔

𝑖=2
𝑝𝑥+𝑦(𝑖)  

 

The surface texture of the soybeans was examined using the 13 textural features detailed in Table 1 , 

originally proposed by Haralick et al., in 1973. Haralick features rely on the notion that the properties 

texture and tone are related to each other and are both always present in an image. Tone is the level of 

brightness of each pixel ranging from black to white. Little variation in the features of an image indicates 

that the prevailing property is tone while larger variation would indicate that texture is the main 

property. Tone is ingrained the varying levels of greyscale pixels in an image, and texture is related to 

with the spatial or statistical distribution of the greyscale pixels (Haralick et al., 1973). Haralick textural 

features are a statistical approach to texture analysis that represents texture using non-predictive 

properties that control the relationships between greyscale pixels in an image(Materka & Strzelecki, 

1998). The features are calculated by applying the equations for each feature, located in Table XX, to  

the grey-level co-occurrence matrix (GLCM). The GLCM is constructed by recording how often two grey-

level pixels appear next to each other in an image. Using the greyscale center of each soybean that was 

segmented out at the end of the processing algorithm, the 13 textural features are calculated. The initial 

output is four values for each feature, one for each of the nearest neighbor pixels at 0, 90, 180, and 270 

degrees. These four values are then averaged to get a single value for each Haralick feature. 

 

Results and Discussion 

 Haralick et al listed 14 features for the characterization of textures, but in the case of this study 

13 were evaluated, all of which were able to provide a significant difference between at least two of the 

categories. The three damage categories for each textural feature were then compared using statistical 

analysis using a consistent alpha level of .05 for all test used. A Shapiro-Wilks normality test and a 

Levene test for homogeneity of variances was conducted and each textural feature failed(Levene, 1960; 

Shapiro & Wilk, 1965). This ruled out an ANOVA test leading to a non-parametric Kruskal-Wallis test 

being performed to determine if there was difference between two or more of the three categories 

(Kruskal & Wallis, 1952). The Kruskal-Wallis test postulated that there was a difference for all 13 

features. A post hoc Dunn’s test using a Bonferroni-adjusted p-value was then preformed to identify 

which categories were significantly different from each other(Abdi, 2007; Dunn, 1964). The features 

entropy, inverse difference moment, and sum average provided the most distinctions between each of 

the three categories and can be found in Figure 5. These three features have shown a significant 

difference between the smooth and cracked, smooth and wrinkled, and the cracked and wrinkled 

category combinations. Angular second moment was only able to distinguish the wrinkled category from 

the other two. The remaining nine features used in this study were only able to differentiate smooth 
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from the cracked and wrinkled. All the features were able to differentiate the smooth category from the 

other two with the exception of angular second moment which was the only feature to exclusively 

differentiate the wrinkled from the other two categories.  A summary of the statistical analysis results 

for all 13 features used can be found in Table 2. 

 

Figure 5: Box plot results for Entropy, Inverse Difference Moment, and Sum Average. 

 

Table 2: Statical Analysis Results for 13 Haralick features 

 Significant Difference 
between 

Smooth and Cracked 

Significant Difference 
between 

Smooth and Wrinkled 

Significant Difference 
between 

Cracked and Wrinkled 

Angular Second Moment No Yes Yes 

Contrast Yes Yes No 

Correlation Yes Yes No 

Difference Variance Yes Yes No 

Difference Entropy Yes Yes No 

Entropy Yes Yes Yes 

IMOC 1 Yes Yes No 

IMOC 2 Yes Yes No 

Inverse Difference Moment Yes Yes Yes 

Sum Average Yes Yes Yes 

Sum Entropy Yes Yes No 

Sum of Squares Variance Yes Yes No 

Sum Variance Yes Yes No 
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Conclusion 

 This study has demonstrated the calculation of Haralick textural features from the surface of 

soybeans and their use in distinguishing and classifying three types of visual damage state in soybeans.  

While a majority of the Haralick features were not able to show a significant difference between all 

three categories, the features entropy, inverse difference moment, and sum average did show a 

significant difference between all three categories, while the remaining features only distinguished one 

category from the other two. The ability of these Haralick textural features to show a distinction 

between the categories may be of value to improving methods of detecting damage in grains similar to 

soybeans, and in further classifying them. Further research into the image analysis of other visual 

characteristics such as color and shape may provide more insight into further differentiating between 

the three categories. A combination of texture, color, and shape image analysis can improve the visual 

evaluation, categorization, and sorting of soybean and may show potential in adaptation to numerous 

other grains. 
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 Appendix 

Table 3: Image Acquisition Parameters 

Camera 24.5-megapixel Nikon z6 

Lens Nikkor Z 24-70 mm lens 

F-stop 20 

Shutter Speed 1/125 

ISO 2500 

Lens Height 21.4 

Imaging Platform 36 cm by 30.5 cm matte black plate of metal 

Lighting 3x GVM-672 LED lights 

Light Temperature 3500 Ko 

Brightness 50% 

Light Temperature (measured) 3390 Ko 

Brightness (measured) 2890 lux 
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