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Abstract  

Crosslinking mass spectrometry (XL-MS) is a valuable technique for the generation of point-to-

point distance measurements in protein space. Applications involving in situ chemical 

crosslinking have created the possibility of mapping whole protein interactomes with high spatial 

resolution. However, an XL-MS experiment carried out directly on cells requires highly efficient 

software that can detect crosslinked peptides with sensitivity and controlled error rates. Many 

algorithmic approaches invoke a filtering strategy designed to reduce the size of the database 

prior to mounting a search for crosslinks, but concern has been expressed over the possibility of 

reduced sensitivity with such strategies. Here we present a full upgrade to CRIMP, the 

crosslinking app in the Mass Spec Studio, which implements a new strategy for the detection of 

both component peptides in the MS2 spectrum. Using several published datasets, we demonstrate 

that this pre-searching method is sensitive and fast, permitting whole proteome searches on a 

conventional desktop computer for both cleavable and noncleavable crosslinkers. We introduce a 

new strategy for scoring crosslinks, adapted from computer vision algorithms, that properly 

resolves conflicting XL hits from other crosslinking reaction products, and we present a method 

for enhancing the detection of protein-protein interactions that relies upon compositional data.  
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Introduction 

Discovering molecular interactions in cells is an essential activity in proteomics and it has been 

the domain of affinity-based techniques for many years1,2. However, data returned from such 

techniques only indirectly identify binding partners. Direct interactions are in fact very difficult 

to detect, particularly in large-scale applications. For example, popular reporter-based optical 

methods like BRET (bioluminescence resonance energy transfer) can confirm pairwise 

interactions in live cells but require genetically tagging two proteins with sensors3.  Useful real-

time data can be returned on interaction behavior, but such pairwise methods are cumbersome 

tools for discovery.  

Crosslinking mass spectrometry (XL-MS) is one technique that can provide a direct 

distance measurement between two points in proteome space. The basic approach involves 

chemically installing a bifunctional reagent between two reactive amino acid residues and 

detecting the linkage points using methods derived from bottom-up proteomics4,5.  XL-MS can 

be used to model protein structure6–8, validate local interactome organization when paired with 

affinity isolation9–11, and even the map entire cellular networks12–14. Although the major elements 

of the technique have a long history, its application to whole cells for structural analysis is 

relatively recent, enabled primarily by higher sensitivity mass spectrometers and computational 

methods that can locate these direct linkage sites in highly complex digests.   

The various applications of XL-MS present distinct methodological and computational 

challenges. For example, structure determination requires extensive crosslinking to produce 

enough constraints for accurate model building. Such an exercise has a moderate tolerance for 

false positives, provided that the crosslinks sample the structure in an unbiased manner15,16. On 
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the other hand, defining an in situ protein network could be achieved with as little as one 

crosslink per interaction. In this case there is a very low tolerance for false positives17. A 

growing number of computational tools have been developed to meet the challenges of crosslink 

identification for these applications18–20, but we need new approaches as tool comparisons reveal 

performance gaps18,19,21,22.  

Specifically, a major unmet need involves the efficient detection of crosslinks in LC-

MS/MS data obtained from ultra-complex mixtures, particularly whole proteomes23,24. There are 

solutions, but they remain difficult to scale and are focused on a narrow selection of crosslinking 

reagent types. Some of the earliest computational methods were developed to support searches of 

limited complexity, rarely involving more than a few 10’s of proteins25,26. The fundamental 

challenge to scaling these early approaches involved the combinatorial nature of the search 

space. Methods that evaluate all possible peptide couplings, restricted only by the precursor mass 

of the crosslinked peptides, struggle with whole proteome searching. Even very strict peak 

matching criteria and efficient data structures24 remain inefficient because the search scales as n2 

(where n is the number of peptides in a search library). One elegant solution to this problem is an 

experimental one. Gas-phase cleavable crosslinkers such as PIR, DSSO and DSBU generate 

linear peptides in MS2. These can be selected for peptide fragmentation in MS3 to facilitate a 

more straightforward proteomics search27,28. Unfortunately, MS3-based detection methods 

present sensitivity and duty cycle issues29. An MS2-based alternative using stepped HCD 

fragmentation is an effective work-around29,30 but much computational efficiency is lost in 

defaulting to MS2 analyses. The challenge of cleavable reagents appears to dominate software 

development for whole proteome searching. However, there are many noncleavable reagents that 

can tune crosslink yield and distance measurements, plus they can provide cross-peptide 
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fragment ions that are very useful in validating IDs. Thus, while we require more tools for XL-

MS data analysis in general, the need for noncleavable reagents is particularly great. 

 Any computational solution that addresses the O(n2) time complexity problem should not 

trade sensitivity and accuracy for computational efficiency. There is little to be gained from 

developing a fast solution that either misses large numbers of crosslinked peptides or has an 

unacceptably high false positive rate. Several approaches to the problem have been considered. 

Strategies include accelerated implementations of the brute-force method described above, but 

more commonly, software packages use a two-pass search in which a method is first applied to 

restrict the search space, followed by a more refined scoring strategy that acts on the reduced 

database21,31,32. There are many ways to implement a two-pass method. For gas-phase cleavable 

crosslinkers, the MS2-liberated peptides provide peptide masses that can help narrow the search 

space33. More typically for all crosslink types, database reduction uses an open-modification 

search that was inspired by routines for detecting unknown post-translational modifications34. 

The exercise is defined as a search for a peptide with a modification of unknown mass, that is, 

the linked second peptide. Each peptide receives a preliminary score. Candidate peptides with 

scores above some threshold are selected and ranked, then used to restrict the search for the 

second peptide21,31. The resulting combinations are rescored in a full search against the MS2 

spectrum. Variations of the two-pass approach exist, usually differing in how the precursor mass 

is used to filter candidates. However it has been suggested that a presearch strategy may not 

advance sufficiently high numbers of peptides to be sensitive enough in proteome-scale 

applications24. This would be unfortunate as brute-force methods may never be practical for 

proteome-wide searches with modest computational effort, especially if post-translational 

modifications need to be considered.   
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We updated our CRIMP crosslink detection software35 with a new library reduction 

strategy to determine if whole proteome searches can be sensitive, fast and independent of the 

style of crosslinker used. The first version of CRIMP used a prescoring approach that required 

sparse evidence for the existence of both linear peptides in the MS2 spectrum, in the form of 

fragment fingerprints. The approach was surprisingly sensitive, given that only the free forms of 

the peptides were searched in the first pass, but design limitations prevented extending the 

concept to whole proteomes. CRIMP 2.0 incorporates an improved library reduction engine and 

a new scoring algorithm that resolves spectral conflicts across all categories of hits (e.g., free 

peptides, monolinks and crosslinks). Our revised approach to error estimation accounts for cross-

category spectral conflicts, mostly ignored in other search tools, and supports a new method of  

detecting of protein-protein interactions. We demonstrate that a library reduction strategy can 

indeed deliver high sensitivity and support whole proteome analysis of noncleavable and 

cleavable experiment types, with modest computational resources.  
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Experimental Section 

Synthetic peptide benchmark dataset 1, with variant 

Data from a synthetic crosslinked peptide library was accessed from PRIDE (PXD014337), 

which contains a set of crosslinked and monolinked peptides engineered from amino acid 

sequences of 95 tryptic peptides derived from S. pyogenes Cas936. These peptides range in length 

from 5-20 residues and contain only one linkable lysine. They were prepared in distinct 

groupings to aid in false positive identifications and contained a maximum of 426 crosslinked 

peptides. Data from the DSS crosslink library were used and searched in several ways. First, the 

data were searched against a database consisting of Cas9 and various other databases for 

entrapment, including 116 proteins from the cRAPome37, the E.coli proteome (UP000000625, 

4448 entries), the S. cerevisiae proteome (UP000002311, 6060 entries), the D. melanogaster 

proteome (UP000000803, 22072 entries), and the H. sapiens proteome (UP000005640, 79759 

entries). Second, to simulate interprotein crosslinks the same databases were searched, but Cas9 

was first segmented into four distinct subunits in such a manner that subunits A, B, C, and D 

could form both intra and inter-protein crosslinks. Here, inter-protein crosslinks are the most 

abundant: 248 potential inter-links and 178 potential intra-links (which here includes homotypic 

crosslinks). This segmentation, and the parameters in the CRIMP search, can be found in 

Supporting Information. In the first strategy, crosslinks were considered correct if crosslinked 

peptides were assigned to the right peptide group, simulating an intraprotein crosslink search.  In 

the second strategy, crosslinks were considered correct if they were assigned to the right peptide 

group and the right inter-subunit interaction, simulating an inter-protein crosslink search.    

Synthetic peptide benchmark dataset 2 
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Data from a second synthetic crosslinked peptide library was accessed from PRIDE 

(PDX029252), which contains a set of crosslinked and monolinked peptides engineered from 

amino acid sequences of 141 peptides from 38 proteins of the E.coli ribosomal complex that 

more intentionally allows for testing of inter- and intra-FDR30. Data from the DSSO crosslinked 

libraries were used, with varying degrees of added peptide noise and database entrapment as per 

the published study. The sets contain a maximum of 1018 crosslinked peptides. The parameters 

in the CRIMP search can also be found in Supporting Information.  

Proteome-scale E.coli dataset 

Data from a large crosslinking experiment was accessed from the ProteomeXchange Consortium 

partner repository jPOSTrepo under the accession codes JPST000834 and PXD01912038. In this 

study, E. coli K12 strain was produced and lysed, followed by separation of the soluble high 

molecular weight proteome by size exclusion chromatography.  Proteomics experiments on each 

SEC fraction identified the proteins that comprise potential interactions within a given fraction. 

Each fraction was then crosslinked two ways: with bis(sulfosuccinimidyl suberate) (BS3) and 

with disuccinimidyl sulfoxide (DSSO). For each crosslinker, fractions were then pooled and 

digested with LysC/trypsin followed by a two-dimensional separation of the resulting peptides.  

Briefly, each digested fraction was separated using a PolySulfoethyl A SCX column, with each 

fraction of this separation then separated by hSAX. Each crosslinking experiment generated 90 

fractions and two replicates (nominally 180 LC-MS/MS runs). Database searches incorporated 

the approximately half of the E. coli proteome, as per Rappsilber et al.38 The parameters used in 

the CRIMP searches for each crosslinker can be found in Supporting Information. Crosslinks 

were considered correct if crosslinked peptides involved proteins detectable above a specified 

intensity threshold for a given SEC fraction38.  A resulting master list of 544,274 plausible PPI’s 
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was mined for error estimation, along with 8,914,801 interactions that were deemed non-

crosslinkable. FDR-based error estimates were adjusted for the size of the false and plausible 

search spaces.   

Software design and availability 

CRIMP2.0 was built within the Mass Spec Studio design framework, a repository of data 

analysis routines available within the Studio for structural mass spectrometry applications such 

as HDX-MS, covalent labeling, and integrative structure modeling. Software was written in C# 

and it leverages an extensive repository of reusable content.  All the processed results can be 

regenerated using the datasets listed above, using CRIMP2.0 from www.msstudio.ca (version 

2.4.0.3544.  
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Results and Discussion 

Strategies for library reduction 

All current concepts for crosslink detection use one of two methods to reduce the search space 

(Figure 1). The brute-force enumeration of all peptide pairs constrains the search through the 

precursor mass, by determining the set of all possible  and  peptide masses that sum to the 

precursor mass, after accounting for the addition of the linker itself. All relevant combinations 

are then scored directly against the MS2 spectrum of the crosslink peptide in a 1-pass 

determination. Precursor mass is a relatively weak constraint, particularly when the mass 

tolerance is relaxed, and is the primary source of the search’s high time burden. Large numbers 

of combinations result when scoring the whole proteome. In return for this weak constraint, the 

overall search has the potential to be very sensitive as in theory no combinations will be missed.   

Figure 1. Schematic outlining the typical approaches to searching MS2 datasets for evidence of peptide 

crosslinking. The 1-pass approach begins with the precursor mass of the putative crosslinked peptide and 

constrains a database search through a simple three-term sum involving the  peptide mass, the  peptide 
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mass and the linker mass. Combinations are then searched against the MS2 spectrum. The 2-pass method 

begins and ends with the MS2 spectrum. First, candidate  and  peptides are found in the MS2 data, and 

only then is precursor mass used to constrain combinations for a more exhaustive search of the MS2 data.  

 

The other concept invokes a 2-pass approach, in that the MS2 spectrum of the crosslink 

peptide is mined twice. The first pass attempts to identify options for the dominant  peptide 

through a linearized fragment set, a subset of the total fragments in the spectrum. That is, a 

database search looks for fragments arising from the free peptide plus its mass-modified form. 

Detecting the mass-modified form requires an open modification algorithm that treats the second 

peptide (plus linker) as a modification whose mass can be calculated by subtracting the candidate 

 peptide mass from the precursor mass. In this fashion, the  peptide sequence can be read past 

the crosslink site. This open modification search is also dependent upon the precursor mass, but 

the selection of  peptide candidates is primarily driven by the quality of the MS2 hits. Most 

search tools restrict this presearch of the MS2 spectrum to the  peptide alone21,31, relying again 

on the precursor ion to define the candidate  peptides by subtraction of the  peptides. These 

tools avoid mounting a linearization of the  peptide, arguing that the MS2 spectral data for the  

peptide is comparatively sparse because of preferential fragmentation39. Nevertheless, linearizing 

both peptides has been successfully demonstrated in the Goodlett lab40. As well, the original 

Kojak search tool looks for both and then constructs the peptide combinations for rescoring41, 

but it underperforms those tools that restrict reduction to the  peptide, which seemingly 

validates the concerns expressed over the value of the  peptide sequence information.  

We wanted to explore the double peptide presearch concept further, as search 

performance can be affected by many elements of the workflow. This exploration was inspired 

by the demands of the in situ crosslinking application itself. In whole proteome searching, 
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particularly where the goal is to identify protein-protein interactions from as little as one 

crosslink match, we argue that both peptides must generate fragment series of sufficient quality 

to identify two proteins or protein groups. A search tool that finds poor-quality  peptides is of 

little value, especially if it reduces computational efficiency. To minimize the computational 

limitations associated with precursor mass constraints, the original version of CRIMP explored a 

pure linear peptide search for both  and  peptides in a 2-pass method. This returned a sensitive 

search, somewhat surprisingly given the incompleteness of these fragment subsets42. Including 

peptide linearization for both  and  peptides further increased crosslink detection sensitivity in 

preliminary testing (not shown), suggesting to us that this library reduction method may be 

superior to a strictly -based strategy for rapid whole proteome searching.  

Upgrading crosslink analysis in the Mass Spec Studio: CRIMP 2.0 

We incorporated this reduction strategy into a revised search routine that was designed to support 

crosslink identification for all applications – from structure modeling to whole proteome 

searching (Figure 2). Improvements were made to crosslink rescoring and error estimation, 

supported by improvements in signal processing. Several computational enhancements were 

implemented to accelerate search speed and improve the navigation and export of search results. 

These are described briefly below.  
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Figure 2. Key elements of the CRIMP 2.0 functionality. Database searches can be tailored to the XL-MS 

application with a minimum of parameterization. Search setup and results navigation are supported in a 

user-friendly package.  

 

Spectral annotation and fragment assignment 

Scoring is supported with several improvements to signal processing. These include an adaptable 

method of precursor ion detection that is sensitive to the S/N of the given feature. The goodness-

of-fit of an isotopic distribution for a candidate peptide can be relaxed when the S/N is poorer, 

allowing the natural advantages of tandem mass spectrometry to override poor MS ion statistics. 

Improvements in the identification of monoisotopic peaks were adopted for the MS2 domain as 

well, to support both centroid and profile-mode datasets. A new approach to fragment ion 

assignment was also adopted. Fragment types are numerous and complex in crosslinked peptide 

spectra, and certain fragment types will draw from a much larger distribution of possible values 

than others. For example, the number of possible internal fragment ions for crosslinked peptides 

(i.e., generated by two cleavage events) is much larger than simple single cleavage events, but it 

is inappropriate to allow for equal weighting of these internal fragments during fragment 
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assignment given that they are usually less abundant than other sequence ions. We developed 

and tuned a greedy assignment algorithm based on a hierarchy of fragment types, and the 

resulting identifications and weights are used in place of the number of detected peaks for 

crosslink scoring.  

Scoring and conflict resolution 

CRIMP uses a probabilistic scoring of  and  peptide candidates based on E values rather than 

a simple peak count to assemble a more informative ranked list of candidates. This is based on 

our OMSSA+ scoring method35, adapted for high-resolution and multiple charge state ions. The 

pre-search concept invokes a user-adjustable sensitivity setting for each peptide (the E-score). A 

scoring and ranking strategy was developed to ensure that high-probability candidate peptides 

are enriched within the top N groups of hits, where groups are defined as candidate peptides with 

similar scores. Top N is adjustable, but experimentation has shown that a value of 10 is sufficient 

in most every scenario, and the dependency on the scores for the  and  peptides is well-

behaved (Figure S1). Peptides are then paired and exhaustively scored against the MS2 data.  

Crosslinking reactions produce crosslinked peptides in relatively low abundance, and the 

reaction products contain comparatively high amounts of mono-linked, loop-linked and free 

peptides. Some of these can be present even after enrichment technologies are used. As a result, 

many annotated fragment peaks can be shared between these products, particularly when they 

share sequence. Resolving these conflicts is not always straightforward as these different 

products tend to generate unique scoring ranges and noise distributions. We developed a strategy 

that manages conflicts and normalizes scores across products to determine the best overall match 

to a spectrum. Briefly, a multi-term scoring vector inspired by computer vision algorithms was 
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created that contains several OMSSA+ scores calculated from subsets of fragments identified in 

the MS2 spectrum. These subsets are selected based on their ability to discriminate between 

different digestion products. Scoring vectors are determined for all possible matches and a given 

identification is penalized using the shared fragment assignments from possible conflicts. This 

penalized scoring vector is transformed using q-values and then a final CLAM (Competitive 

Label Assignment Method) score is determined from the inner product of the transformed 

scoring vector (see Supporting Information).   

False discovery rate (FDR) estimation and aggregation 

We use FDR calculations to assess the total error in search results, involving decoy database 

searches to estimate the error. Database searches and FDR calculations are usually performed in 

a category-based manner and are not able to address the impact of cross-category 

misidentifications on FDR (where category refers to the various products of a crosslinking 

reaction). Additionally, there can be a sparse numbers of decoy hits for any given category, 

which makes FDR estimation less precise as a result. All categories should be integrated in a 

joint FDR calculation, but it requires a method for normalizing score distributions across 

categories. There is considerable variation in database size for the different categories and thus in 

the underlying search noise. For example, the search space for inter-protein crosslinks is 

considerably greater than the search space for intra-protein crosslinks, necessitating different 

decoy databases. Thus, to integrate all categories of data we standardize CLAM scores according 

to the specific error distributions of each, and then all categories of scores are combined. A 

scaling step transforms these scores to a uniform range of 1-100 to permit direct score 

comparisons between categories (e.g., mono-links and crosslinks). Only then is the final FDR 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524983


16 
 

estimate determined, and it is calculated as a geometric average of the global and the local FDR 

estimates as a concession to the validity of both approaches (see Supporting Information).   

 Search results are then aggregated within runs, and between runs in the case of replicates. 

The first step of the aggregation workflow is to reduce crosslink spectrum matches (CSMs) to 

unique peptides and peptide pairs, by collapsing redundancies arising from charge state, retention 

times and variable modifications. Next, higher level aggregations to unique residue pairs (URPs), 

proteins, and protein-protein interactions (PPIs) are made, with each level supported by a 

separate error calculation. However, PPIs are not sensitively determined with these crosslink-

centric methods of detection and error estimation, likely because the “all by all” search space is 

an overestimation of the true PPI space and drives up the noise level of the search. We reasoned 

that PPIs should possess evidence for their component proteins in the form of free peptides, 

mono-links, loop-links and intra-protein links. To this end, we rescore PPIs before error 

estimation by calculating a transformed value that includes evidence of the presence of 

component proteins and the success of the labeling chemistry (see Supporting Information).  

Computational enhancements  

We also significantly improved the way searches are supported computationally, particularly in 

database reduction. A peptide fragment index approach is a useful way to streamline a search. It 

involves generating fragments for every peptide in a database, and then scoring the peptide 

against all MS2 spectra based on the fragments generated. The approach is used by MSFragger 

for whole proteome searching, and by pLink2 for  peptide searches21,43. We extended this 

fragment index concept to the whole protein level, so that every unique fragment from every 

protein is only scored once per spectrum during the library reduction step. The increase in 
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computational efficiency is considerable, and the approach even limits database expansion when 

incorporating variable modifications and missed cleavages.  

Many XL-MS applications require replicate runs, such as quantitative crosslinking or 

when rerunning samples to saturate identifications in data-dependent acquisition (DDA) 

experiments. To improve robustness in the generation of candidate  and  peptides, the reduced 

library is propagated between replicate searches in a manner that is reminiscent of “match 

between runs” in proteomics44. Here it means that we share the reduced library between 

replicates for any given precursor mass. Replicate DDA runs can generate some variation in 

crosslinker sampling, leading to unequal sets of candidate peptides during reduction. Propagation 

therefore combines the candidate lists of peptides across all replicates, followed by a precursor 

assignment pass using the complete set of peptides. 

A set of changes was made to manage resources on more limited platforms like desktop 

and laptop computers. The user can adjust the degree of stringency on pre-searching  and  

peptides (as well as top N), creating the opportunity to conduct a search that approximates a 

brute-force strategy for samples of limited complexity, or one that applies strong reduction for 

whole proteomes. This gives the user the potential to balance concerns over sensitivity with 

computational performance, however we will demonstrate below that the tradeoff is not a 

problematic one, and optimal searches converge on a very narrow set of parameters. Additional 

improvements include the aggregation of similar spectra prior to search and the use of vectorized 

computations wherever possible. Crosslinking datasets are also sliced into subsets of spectra and 

processed serially, to manage memory usage. 
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Finally, numerous improvements were introduced to support the full range of 

crosslinking experiments and it anticipates new crosslinker designs. The new version preserves 

the validation-based routines and spectral navigation tools of version 1, which are particularly 

useful in structure modeling applications of XL-MS (Figure 3). We include visualization and 

export utilities for all downstream applications. Cleavable crosslinkers are accommodated 

through an MS2-based workflow, as opposed to the less efficient MS3-based routine. Tool tips 

are included throughout, aided by an extensive glossary of terms.  

 

Figure 3.   A screenshot of the post-search validation viewer in CRIMP 2.0, which provides rich 

functionality for navigating, validating, and exporting results.  

 

Evaluation of search sensitivity 

We applied CRIMP 2.0 to database searches of increasing complexity and scale. First, we 

reanalyzed the triplicate datasets from the synthetically generated crosslinked peptides provided 

by Beveridge et al.36 For the DSS noncleavable linker set, we detected 226±7 unique crosslinks 
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at a real FDR of 2.9% (for an expected FDR of 5%). The real FDR is calculated based on the 

known composition of the peptide set. Search sensitivity meets or exceeds several other tools 

that have operated on this dataset (Figure S2). We used an E peptide setting of 10% to reflect 

the higher quality of the dominant peptide and allowed the E setting to be 99%, strongly 

relaxing the requirement for a high-quality  peptide. These are the default values in CRIMP 2.0 

for all searches. 

To compare with a brute-force approach, CRIMP 2.0 identified 1341 CSMs with a real 

FDR of 2.0%, compared to 885 CSMs and a real FDR of 3.1% for OpenPepXL. In this example 

there is a slight positive effect of propagating the reduced libraries between runs, which 

disappears when the results are aggregated. The lower sensitivity of the brute force approach is 

likely related to the higher level of noise that accompanies a search of all possible pairwise 

combinations. We then searched the replicate noncleavable crosslinker data at two different FDR 

cutoffs (with database propagation) at various levels of database entrapment (Figure 4A,B). The 

sensitivity decreases, but approximately 35% of the detectable unique crosslinks are still found 

with almost 80,000 proteins as entrapment. To evaluate our approach for inter-protein detection, 

we altered the database from its original design by segmenting the Cas9 protein into four smaller 

“proteins” (see Experimental Section). This segmentation turns most intra-protein crosslinks into 

inter-protein crosslinks. The results show a diminishing sensitivity for inter-protein crosslinks at 

higher levels of entrapment, but the rate of reduction is only slightly greater than intra-protein 

crosslinks (Figure 4C,D). Error estimation begins to destabilize at higher entrapment, but this is 

due to the very low number of hits returned in the searches. These searches are computationally 

efficient even with significant levels of entrapment, highlighting the utility of a strong database 

reduction concept (Figure S3).  
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Figure 4.  Crosslink sensitivity determination using the replicate dataset from Beveridge et al.36 for the 

DSS crosslinker. The analysis for the Cas9 database at (A) 5% and (B) 1% calculated FDR. The results 

for the segmented Cas9 database at (C) 5% and (D) 1% FDR, presented as both intraprotein and an 

interprotein search results.  Effect of entrapment is shown using multiple added databases with the noted 

protein complexity.   

 

We then expanded the tool comparison using a new set of replicate data published by 

Matzinger et al.,30 involving a significantly expanded set of synthetic crosslinked peptides. We 

specifically focused on cleavable crosslinkers and used our default search conditions. Database 

propagation was deactivated to promote a fair comparison with the original study. Again, 

CRIMP 2.0 outperformed all tools at both the expected and real FDRs (Figure 5), detecting 673 

(66%) of all theoretically possible crosslinked peptides on average, and 760 (75%) when all 

replicates were aggregated after the search. Activating propagation had no effect on the results 

(not shown), likely due to the high abundance and quality of the crosslinked spectra. Propagation 

is anticipated to be impactful in lower abundance and/or under-sampled datasets. Repeating the 

searches at an expected FDR of 5% provides an indication of the value of propagating the 

reduced database, where 699 hits on average were identified without propagation and 730 with 
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propagation. Under more typical search conditions where free peptides are present CRIMP 2.0 

performed equally well, particularly at the high complexity searches with extensive entrapment 

(Figure S4). FDR estimation is reasonably accurate in these peptide-contaminated datasets (1-

3.4%), even with extensive entrapment. Much larger datasets are likely required to generate a 

more precise estimate. 

 

Figure 5. Average crosslinked peptide numbers using DSSO as the crosslinking reagent and a stepped 

HCD MS2 method for data acquisition. All results for the noted algorithms are derived from Matzinger et 

al.30 with the addition of CRIMP 2.0, at an expected FDR of 1% (left bar in pair), and corrected results 

using a post-score cutoff to reach an experimentally validated FDR of 1% (right bar in pair).  True 

positives in blue, false positives in orange. Real FDR posted as callouts. Error bars indicate standard 

deviation of the total hits, n=3.  

 

CRIMP 2.0 uses a new strategy for detecting PPIs. It has been the practice in the 

community to restrict a database search to only those proteins that are detected in the sample 

being crosslinked38. This detection is achieved with a separate proteomics analysis. The approach 

helps constrain the search space (and thus accelerate the search) and it also helps to limit the 

generation of false positive identifications. Other methods use some element of compositional 
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analysis to restrict the peptide search space45,46. CRIMP’s PPI scoring method incorporates all 

internal evidence for the existence of a given protein in the score but does not demand it 

(Supporting Information). That is, the detection of other crosslinks and all other possible reaction 

products for a given PPI are incorporated into the score. We and others have observed that bona 

fide PPIs often present multiple inter-peptide crosslinks, and thus should be granted a higher 

confidence identification, but single inter-protein crosslinks do occur and should not be 

penalized.  Our scoring method is applied during the aggregation of peptide identifications and is 

designed to boost PPI scores but not override these high-quality individual inter-protein 

crosslinks. To demonstrate, we allocated all the possible crosslinked peptides from the synthetic 

peptide library of Matzinger et al.30 to their ribosomal proteins of origin. PPIs generated from 

searching the resulting library will not be physically meaningful, but it will still generate a 

searchable PPI space. This exercise generated 331 PPIs after removing redundancies, 300 of 

which are heterotypic and 31 that are homotypic. At 1% FDR, we detect 313 (95%) of the 

possible PPIs in a database search restricted to 171 proteins, which diminishes to 151 (46%) with 

heavy entrapment (20,334 human proteins) (Figure 6). These results indicate a robust scoring 

method. We see strong FDR control when searching crosslinks heavily “contaminated” linear 

peptide data, which shows that compositional data (in the form of free peptides at least) does not 

overwhelm the requirement for quality crosslink identification.  Deactivating the compositional 
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boost for this dataset has a negligible effect on the FDR and indicates the benefit to PPI 

sensitivity in adding compositional data (Figure S5).  

Figure 6. Number of detected protein-protein interaction in synthetic peptide benchmark dataset 2, from 

Matzinger et al.30 Blue bars represent a search conducted at an estimated 5% FDR and orange bars a 

search conducted at an estimated 1% FDR. All three sets of data from the benchmark were searched, with 

the indicated numbers of proteins in the search database to explore the effect of entrapment. Real FDR 

values are indicated as callouts.  

 

However, a test on a dataset of high quality and limited complexity is not a perfect mimic 

of a full in situ crosslinking experiment. Therefore, we next analyzed the E. coli BS3 and DSSO 

crosslinking experiments from the Rappsilber group, involving 314 samples total, each analyzed 

with a 90 min LC-MS/MS runs on a QExactive38. Because no enrichment was used for this 

analysis beyond restricting the charge states selected during the DDA experiments, the dataset 

presents the full range of reaction products, both in terms of the type of reaction product and 

their yields. Using a single high-abundance fraction from the dataset, we conducted a grid search 

to determine the optimal database search settings. Interestingly, we did not detect a need to 

expand N beyond 10 in the library reduction phase, where we note that the setting reflects the 

number of unique scoring groups and not individual peptides (i.e., there can be multiple equal-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524983


24 
 

scoring peptides per group). True peptides were almost always found at the highest ranks of the 

list, indicating that our scoring method is effective for pre-searching linearized peptides in high-

complexity states. Similarly, we found that an E of 10% and an E of 99% provides optimal 

sensitivity, the same values used in the smaller datasets. Using these settings, all runs were 

searched as a single set for each crosslinker on a desktop, against the slightly restricted search 

space used in the original study (approximately half of the proteome)38. The search generated 

identifications for all product types, where not surprisingly the inter-protein links were detected 

at the lowest abundance (Table 1). 

 

Table 1.  Identification of reaction products from the combined search of LC-MS/MS runs from an 

extensively fractionated in situ crosslinking experiment applied to E. coli cells, for both BS3 and DSSO, 

at a 1% FDR.   

 

#indicates a crosslink to two identical or overlapping sequences 

 

 

The CRIMP run completed in 43 hrs for BS3 (168 raw datafiles) and 39 hours for DSSO (146 

raw datafiles) using modest hardware (10-core Inter i9-10850K 3.60GHz CPU with 32 GB of 

RAM), which is a reasonable time commitment given that each dataset required over 30 days to 

collect. We have found it useful to conduct an ultrafast search with E and E set to 0.01% and 

25% respectively, to gauge the success of the crosslinking reaction, as such values will find high 

quality crosslinks. When preliminary results look promising, the samples can then be processed 

with greater sensitivity using the default settings.   

Finally, the searches reveal a higher number of protein-protein interactions than first 

reported38. At 5% FDR, we calculate a total of 1820 PPIs for a nominal 5% FDR (compared with 

  Inter-links Homotypic links# Intra-links loop links Mono-links  free peptides 

BS3 12,415 3048 61,032 13,436 53,723 416,465 

DSSO 20,104 5149 78,153 10,270 61,412 331,577 
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756 in the original study) and 1254 PPIs at a nominal 1% FDR (compared with 590 in the 

original study). The calculated FDR provides a reasonable estimate of the real error rate, given 

the approximate nature of the true PPI space (Figure 7). We note that the sensitivity arises from 

the compositional boost, as it increases the number of hits over two-fold compared with the 

composition-naïve scoring method we first employed in the software. It supports the notion that 

the PPI search space is likely being overestimated in constructing an “all with all” interaction 

database. That is, adding an additional layer of information raise the scores of true interactors 

above a noise distribution that is likely wider than it should be. Interestingly, the overlap 

between the two reagents is only 20% at 5% FDR, increasing only slightly to 25% at 1% FDR, 

highlighting how differences in reagent design can affect sampling of the interactome.  

 
 

Figure 7.  PPI search results for the in-situ crosslinking of the E. coli proteome using two crosslinking 

reagents. (A) searches conducted at a targeted 5% FDR and (B) searches conducted with a targeted 1% 

FDR.  Results are based on the approximate PPI database established in Lenz et al.38, using the 

composition-informed PPI scoring method. Percentages at the bottom of the figure show calculated FDR 

values based on the composition of the library.  

 

 

Conclusions  
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Our results demonstrate, through the analysis of previously collected datasets, that a 2-pass 

database reduction method can return sensitive measurements of crosslinking composition in 

complex sample types. Controlling the degree of database restriction allows the user to tune the 

search speed to meet the needs of the experiment, without causing great concern over lost 

sensitivity as the dependency on the E and E scores is modest and predictable. Indeed, it is 

possible that brute force methods may prove to be less sensitive for highly complex systems than 

2-pass methods. An unnecessary expansion of the database may generate a noisy search, much 

like proteomics searches do when they are parameterized with excessive numbers of variable 

modifications. CRIMP allows for a robust search of both cleavable and noncleavable 

crosslinkers alike. Noncleavable reagents should get more attention for in situ applications. 

These reagents are easier to synthesize and are clearly complementary at this scale. Additionally, 

these reagents generate cross-peptide fragment ions that may be essential in validating hits, 

particularly when exploring highly complex states where interactions are defined by post-

translational modifications. CRIMP 2.0 offers the sensitivity and search speed required for such 

activities.   
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