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Abstract

Individual bacterial cells grow and divide stochastically. Yet they maintain their characteristic sizes
across generationswithin a tightly controlled range. What rules ensure intergenerational stochastic home-
ostasis of individual cell sizes? Valuable clues have emerged from high-precision longterm tracking of
individual statistically-identical Caulobacter crescentus cells as reported in [�]: Intergenerational cell size
homeostasis is an inherently stochastic phenomenon, follows Markovian or memory-free dynamics, and
cells obey an intergenerational scaling law, which governs the stochastic map characterizing generational
sequences of characteristic cell sizes. These observed emergent simplicities serve as essential building
blocks of the �rst-principles-based theoretical framework we develop here. Our exact analytic �tting-
parameter-free results for the predicted intergenerational stochastic map governing the precision kine-
matics of cell size homeostasis are remarkably well borne out by experimental data, including extant pub-
lished data on other microorganisms, Escherichia coli and Bacillus subtilis. Furthermore, our framework
naturally yields the general exact and analytic condition, necessary and su�cient, which ensures that
stochastic homeostasis can be achieved and maintained. Signi�cantly, this condition is more stringent
than the known heuristic result for the popular quasi-deterministic adder-sizer-timer frameworks. In turn
the fully stochastic treatment we present here extends and updates extant frameworks, and challenges the
notion that themythical “average cell” can serve as a reasonable proxy for the inherently stochastic behav-
iors of actual individual cells.

Introduction
The processes of cellular growth and division are fundamental to the survival and propagation of life. An
outstanding open question is how the characteristic generational size of an individual cell remains “con-
stant” across generations, even as that cell repeatedly grows and divides, given the signi�cant stochasticity
in both growth and division processes. Homeostasis is the process of maintaining “constancy” to within a
speci�ed tolerance of amacroscopic characteristic or state variable, despite the complex internal processes
that prevail in even the simplest of organisms [�, �]. The question of how cells maintain size homeostasis
is, in turn, connected to the broader goal of understanding the quantitative principles and mechanisms by
which complex processes are controlled and regulated to ensure proper organismal functioning in the face
of inescapable stochastic �uctuations in both internal and external environments [�, �].

Bacterial cells serve as uniquely convenient systems to characterize the dynamics of cell size home-
ostasis, since the entire organism consists of a single cell. Recently developed approaches for multigen-
erational single-cell imaging of microorganisms provide the means to observe growth and division tracks
of individual bacterial cell sizes, division upon successive division [�, �–��]. Popular single-cell technolo-
gies typically use the concept of the Mother Machine, which takes advantage of designed con�nement and
one-dimensional crowding of cells in narrow channels and alleviates the problem of exponential crowd-
ing of the imaging region of interest. The “mother” cell con�ned to the bottom of the narrow channel
can be tracked for extended durations since it cannot easily escape and �ow away. Thus, these approaches
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Figure �: Heuristic understanding of homeostasis motivated by quasi-deterministic frameworks vis-a-
vis experimentally obtained individual-cell data The le� panels show idealized deterministic initial cell
size (an) trajectories corresponding to the sizer-timer-adder framework. Within this perspective, through
evolution over successive generations (n), cells starting with larger (yellow) and smaller (blue) than average
sizes in the n = 0 generation converge exponentially to the population mean (dashed green line) as shown
for the two di�erent species featured in [��]. In this deterministic picture, the deviation from the mean
decreases in each subsequent generation in proportion to the slope of the linear dependence of next gen-
eration’s initial size to current generation’s (see Fig. � B). Each of the panels on the right show the actual
trajectories of �ve random cells each, starting from the initial values used in the panels on the le�, and for
each of the experimental conditions. Evidently, the actual trajectories look dramatically di�erent from the
corresponding deterministic picture provided by the sizer-timer-adder heuristic, thus motivating the need
for a �rst-principles-based stochastic framework to realistically capture the observed phenomenology. (A-
B) E. coli in MOPS glucose rich media, (C-D) B. subtilis in LB media. Data source: [��].

yield long-term intergenerational trajectories of individual cell growth and division; the size of the relevant
dataset is set by the number of such mother cells that can be imaged in a micro�uidic device at reasonably
frequent intervals of time with su�cient spatial resolution to record the size at birth and at division.

Signi�cant e�ort hasbeenexpended in characterizinghow the size at division (“�nal size”) is dependent—
on average—on the size at birth (“initial size”) for a given cell in a given generation. Typically, data from
di�erent cells and generations are pooled together on a scatter plot of size at division versus size at birth,
and the relationship between these quantities used to infer the underlying phenomenology. In this quasi-
deterministic picture, homeostasis is characterized by a target “set point” of cell size alongside the sensitiv-
ity of �nal size to initial size in a given generation. This sensitivity is typically categorized into one of three
schemes, referred to as sizer (wherein the size at division is independent of the size at birth), timer (wherein
the size at division is a multiple of the size at birth), and adder (wherein the size at division is a constant
added to the size at birth) [��, ��–��]. For cellular homeostasis, this scheme is used to motivate a heuristic
argument for a deterministic exponential approach to the target cell size over successive generations (see
Fig. �) [��–��]. The sensitivity value is reproducible in experimental replicates; however, it varies across
species, as well as across growth conditions for the same species. That said, the preponderance of current
interest rests on the “adder” scheme [��–��]. In contrast, as we have shown in [�], the emergence of cell
size homeostasis is the result of an inherently stochastic and intergenerational process for each individual
cell. Thus, a deterministic exponential relaxation picture, motivated by population averages characterizing
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the mythical “average cell”, does not faithfully capture observed intergenerational phenomenology. This
divergence points to important lacunae in our quantitative understanding of stochastic intergenerational
homeostasis.

In this work we take advantage of recently reported “emergent simplicities” in the stochastic intergen-
erational size homeostasis of individual cells of Caulobacter crescentus [�]. These datasets were obtained
using the SChemostat technology, in which the original “mother” cell is retained a�er each division, and
the newborn “daughter” cell leaves the experimental arena; this facilitates high-precision characteriza-
tion of all cells being imaged [�, ��]. These datasets focus on the same ensemble of statistically identical
non-interacting cells over the course of tens of generations, imaged in precisely controlled time invariant
growth conditions. In [�], we reported direct evidence of stochastic cell size homeostasis using these data,
demonstrating that the intergenerational dynamics are Markovian and that stochastic homeostasis follows
an intergenerational scaling law for cell size (see Fig. �). In the present work, we build on these experi-
mental observations in C. crescentus to develop a �rst-principles-based theoretical framework, and derive
the exact analytic intergenerational stochastic map governing cell size dynamics. We then reanalyze pub-
lishedmultigenerational datasets for Escherichia coli andBacilus subtilis obtained using theMotherMachine
technology [��]. Our exact, analytic results for the predicted intergenerational stochastic map governing
the precision kinematics of cell size homeostasis, developed for C. crescentus data without �tting param-
eters [�], are remarkably well borne out by these experimental data on other microorganisms [��]. (See
Figs. � and �.) Furthermore, our framework naturally yields the general exact, analytic condition, which
is both necessary and su�cient to ensure that stochastic homeostasis can be achieved and maintained
(Eq. (��) and Fig. �). Signi�cantly, this condition is more stringent than the well-known heuristic result for
the popular quasi-deterministic sizer–timer–adder frameworks. The fully stochastic treatment we present
here extends and updates previous frameworks, and challenges the notion that the mythical “average cell”
can serve as a reasonable proxy for the inherently stochastic behaviors of actual individual cells.

Emergent simplicities in the stochastic intergenerational homeostasis
of individual cells
We now develop a theoretical framework for the generation-to-generation evolution (“kinematics”) of an
individual cell’s size (see Fig. �). We use the random variable, an, to denote the cell size in the nth genera-
tion. Since cell size grows fromdivision to division, we need to choose a representative size fromwithin the
cell cycle: we choose an to be the cell size-at-birth (see Fig. �). We treat n = 0 as the “initial” generation. In
addition to the usual convention that P(X |Y ) denotes the conditional probability distribution of the random
variable X given a speci�c realization of the random variable Y , we reserve the speci�c notation Pn(a|a0)
to denote the conditional probability distribution of an at an = a, given the initial size of the initial gener-
ation, a0. This general setup permits various possibilities for attaining or violating cell size homeostasis,
depending on general properties of the multivariate functions Pn(a|a0), which in principle can depend on
history.

Signi�cant reduction in the complexity of the general problem results from the experimental observa-
tions, and corresponding emergent simplicities, for C. crescentus cells reported in [�]. The �rst emergent
simplicity is that in each growth condition, the conditional distribution of next generation’s initial size,
conditioned on the current and previous generations’ initial sizes, in fact only depends on the current gen-
eration’s initial size. In other words, it is independent of previous generations. Equivalently, the intergen-
erational dynamics of cell sizes are Markovian under constant growth conditions; thus, the initial size of
a given cell in the current generation is the sole determinant of the statistics of future sizes-at-birth of the
same cell. It follows that stochastic intergenerational cell size dynamics can be characterized completely
by properties of the single-generational stochastic map P1. In other words, the function Pn can be written
down only in terms of P1:

Pn(an|a0) =
"Z 1

0

#n�1 26666664P1(an|an�1)
n�1Y

j=1

{P1(aj |aj�1)daj }
3
7777775 . (�)

�
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Figure �: Schematic representation of typical intergenerational single-cell growth tracks and the inter-
generational scaling lawobserved. (A)A typical intergenerational size (growth) trajectory of an individual
cell. The sizes at birth, or “initial sizes”, are labeled an, where n is the generation number since the start-
ing, or zeroth, generation. (B) Schematic conditional distributions, P1, of the next generation’s initial size,
conditioned on the current generation’s initial size. This characterization uses the experimental observa-
tion that the intergenerational cell size dynamics in balanced growth conditions are Markovian (see [�]).
(C) The invariant distribution, ⇧, obtained by rescaling the distributions in (B) by their respective mean
values. As reported in [�], the distributions in (B) have the property that when rescaled by their mean val-
ues, they result in universal distribution (a0 independent but growth condition speci�c). Inset: The mean
values of next generation’s initial size given current generation’s (ha1|a0i = µ(a0)), are found to vary linearly
with the current generation’s initial size (a0) in experimental observations (see [�] and Fig. � B ). Using this
calibration curve (inset), one can recover the non-universal distributions in (B) for any a0 starting with the
universal distribution in (C).

Within this perspective, attainment of cell size homeostasis corresponds to:

lim
n!1

Pn(a|a0) = P1(a), 8a0, (�)

where P1 is the asymptotic homeostatic distribution, independent of the initial size. Furthermore, we re-
quire that the homeostatic distribution have well-de�ned moments. Thus, for a cell that starts with initial
size a0, considering all possible futures a�er a large number of generations, the size probability distribution
converges to a well-behaved homeostatic distribution which is independent of the precise value of a0. In
this work, we seek to de�ne under what conditions the kinematics of intergenerational cell sizes speci�ed
by the experimentally observed emergent simplicities lead to the homeostatic distribution, P1.

In [�] we report a second emergent simplicity for C. crescentus cells: the mean-rescaled distribution of
cell sizes-at-birth (initial sizes) in a given generation, conditioned on the initial size of the previous genera-
tion, is independent of the previous generation’s initial size. We refer to this result as the “intergenerational
scaling law” (see Fig. �). Mathematically,

P1(an|an�1) =
1

µ(an�1)
⇧

 
an

µ(an�1)

!
, (�)

where⇧ is the universal mean-rescaled distribution that is independent of a cell’s history of size dynamics.

�
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⇧ has mean m1 = 1, and µ(an�1) is the mean of an when conditioned on the previous generation’s initial
size, an�1. We note that the shape of⇧ may vary depending on growth condition.

Experimentally, µ(a) is found to be well-described by a linear function over the physiologically relevant
range of cell sizes observed (see Fig. � B and [�]):

µ(a) = ↵a+ �. (�)

The di�erent values of the slope, ↵ (observed in di�erent growth conditions for di�erent organisms),
have been scrutinized in great detail, leading to vigorous debates regarding their mechanistic implications
for growth control [��, ��–��]. The speci�c values to which meanings are attached are ↵ = 0 (sizer), ↵ = 1
(timer), and↵ = r (adder, with r < 1being the division ratio). As indicated previously, these approaches view
cell size homeostasis as a quasi-deterministic process in which the size in a given generation, if di�erent
from the homeostatic setpoint, exponentially relaxes to the setpoint size over successive generations with
rate ln(1/ |↵|) (see Fig. � A and [��]). Since this rate must be positive for homeostasis to be achieved, this
heuristic treatment requires that the condition |↵| < 1 be obeyed to permit the possibility of homeostasis.
Thus, the value of ↵ needs to be less than the slope of the timer (↵ = 1) for homeostasis to be attainable in
this quasi-deterministic picture.

In stark contrast to the sizer–timer–adder quasi-deterministic perspective, our main focus here is on
the intergenerational scaling law, Eq. (�)—we view the value of the slope ↵, in Eq. (�) as simply a calibration
parameter, and do not imbue it with any special mechanistic meaning. We now proceed to develop the
precise kinematics governing stochastic intergenerational cell size dynamics. We use the intergenerational
scaling law Eq. (�) and the calibration curve Eq. (�) as the essential building blocks of our theory.

Results and discussions

(i) The intergenerational scaling law universally determines the precision kinematics
of stochastic intergenerational homeostasis.
We now proceed to develop the following universal framework for intergenerational evolution of an indi-
vidual cell’s size. Eq. (�) and the Markov property imply that the sizes-at-birth of a given cell follow the
stochastic map:

an+1 = sn+1µ(an). (�)

In the preceding equation, the rescaled random variables, {sn}, are uncorrelated. They are drawn indepen-
dently from the mean-rescaled probability distribution, ⇧, introduced in Eq. (�), which has mean m1 = 1.
(We denote the kth moment of the probability distribution ⇧ by mk .) The random variable an denotes the
initial cell size in the nth generation (see Fig. �). Using Eq. (�) recursively, the size-at-birth in the nth gener-
ation can be related to the size-at-birth in the 0th generation:

an = snµ(an�1) = snµ(sn�1µ(an�2)) = . . .

= snµ(sn�1µ(sn�2µ(. . .µ(s1µ(a0)) . . .))). (�)

Homeostasis is attained when the probability distribution for an, and hence all moments of an, reach �nite
asymptotic limits that are independent of a0 as n!1.

For experimentally relevant scenarios µ(a) is typically a linear function, µ(a) = ↵a+ �, as written down
in Eq. (�). Thus Eq. (�) becomes:

an = sn(� +↵an�1) = �sn +↵snsn�1(� +↵an�2)

= a0↵
nsnsn�1 . . . s1 + �(sn +↵snsn�1 +↵2snsn�1sn�2 + . . .+↵n�1snsn�1sn�2 . . . s1)

= a0↵
n

nY

i=1

si + �
nX

j=1

↵n�j
nY

k=j

sk . (�)

�
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Figure �: Our theoretical framework accurately predicts, with no �tting parameters, the stochastic in-
tergenerational cell size dynamics leading to homeostasis, for E. coli cells. Sequence of panels shows
the intergenerational evolution of distributions of initial cell sizes, an (n is the generation number), start-
ing from three di�erent initial sizes in the zeroth generation (a0, marked by di�erent colors). Panels (A-D)
correspond to generations 1 � 4 respectively. The �lled circles correspond to experimental data. Curves
correspond to �tting-free predictions from our theoretical intergenerational framework. The homeostatic
distribution, obtained by pooling together the data for initial sizes, is overlaid in all panels (diamondmark-
ers) for ready comparison. Our theoretical framework accurately predicts the stochastic dynamics govern-
ing the precise convergence of conditional initial size distributions to the homeostatic distribution over
successive generations. Data are taken from [��]; these correspond to E. coli cells grown in glucose rich
media. Cell length was used as a measure of cell size in these datasets. See Fig. � for similar application to
B. subtilis cells.

This equation shows the explicit connection between: the starting size, a0; the stochastic variable denoting
the size in the nth generation, an; and the sequence of intermediate independent stochastic scaling factors
{s1, s2, . . . , sn}.

Using thismap, we use our theoretical framework to predict the distributions of initial sizes over succes-
sive generations, for cells starting from any given initial size, using only the mean-rescaled distribution⇧
and the calibration curve µ. Our �tting parameter-free predictions (Eqs. (�), (�) and (�)) match excellently
when applied to published E. coli (Fig. �) and B. subtilis (Fig. �) data, taken from [��]. Moreover, compelling
data-theory matches were also obtained for the C. crescentus data as detailed in [�]. Thus we have compre-
hensively validated the framework we propose here.

(ii) The deterministic limit of stochastic intergenerational homeostasis.
In what follows, we take a0 to have a �xed value. All averages h· · ·i are taken with respect to the random
variables {sm}. When a0 is explicitly taken to be random, i.e., the initial generation size is drawn from an
arbitrary distribution, we denote further averaging over initial sizes by double angular brackets, hh· · ·ii.
To evaluate the moments characterizing the probability distribution of an in terms of ↵, � and the raw
moments, {mk}, of the generation-independent scaling factor distribution ⇧, we raise Eq. (�) to di�erent
powers and take averages. Directly averaging Eq. (�), we �nd the mean initial size in the nth generation:
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Figure �: Our theoretical framework accurately predicts, with no �tting parameters, the stochastic in-
tergenerational cell size dynamics leading to homeostasis, forB. subtilis cells. Sequence of panels shows
the intergenerational evolution of distributions of initial cell sizes, an (n is the generation number), start-
ing from three di�erent initial sizes in the zeroth generation (a0, marked by di�erent colors). Panels (A-D)
correspond to generations 1 � 4 respectively. The �lled circles correspond to experimental data. Curves
correspond to �tting-free predictions from our theoretical intergenerational framework. The homeostatic
distribution, obtained by pooling together the data for initial sizes, is overlaid in all panels (diamondmark-
ers) for ready comparison. Our theoretical framework accurately predicts the stochastic dynamics govern-
ing the precise convergence of conditional initial size distributions to the homeostatic distribution over
successive generations. Data are taken from [��]; these correspond to B. subtilis cells grown in LB media.
Cell length was used as a measure of cell size in these datasets. See Fig. � for similar application to E. coli
cells.

hani =
*
a0↵

n
nY

i=1

si + �
nX

j=1

↵n�j
nY

k=j

sk

+
=

�
1�↵ +↵n

✓
a0 �

�
1�↵

◆
. (�)

A�er a large number of generations have elapsed (when n!1), the second term diverges unless |↵| < 1.
Thus |↵| < 1 is a necessary condition for homeostasis. When |↵| < 1:

hai1
def= lim

n!1
hani =

�
1�↵ . (�)

Thus, the asymptotic mean, hai1, also becomes independent of a0 as n!1when |↵| < 1, showing that the
condition |↵| < 1 is also su�cient for homeostasis at the level of the mean.

The deviation of the populationmean from its asymptotic (homeostatic setpoint) value decreases expo-
nentially over successive generations, with the exponential rate given by ln(1/↵). To see this, we use Eq. (�)
in Eq. (�) and average over the probability distribution of a0:

hhanii � hai1
hha0ii � hai1

= ↵n = e�n ln(1/↵). (��)

The preceding result from the fully stochastic picture presented here is reminiscent of the deterministic
heuristic picture sketched tomotivate howhomeostasis is attained in the sizer–timer–adder framework (for
an example, see Fig. � in [��] and the panels in the le� column of Fig. �).
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(iii) Beyond the mean: �uctuations impose additional requirements for attainment of
stochastic homeostasis.
To include the e�ects of �uctuations, we �nd the variance of size in the nth generation by subtracting Eq. (�)
from Eq. (�), and squaring and averaging the result:

Var(an) = �2

0
BBBBBB@�

 
1�↵n

1�↵
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⇣
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This result implies an additional condition that must be met for homeostasis of the variance, beyond
the condition |↵| < 1 required for homeostasis of the mean. That additional condition is |↵2m2| < 1, i.e.,
|↵| < 1/

p
m2, needed for achieving both a0-independence and a �nite limit for Var(an) at large n:

lim
n!1

Var(an) = �2
(m2 � 1)

(1�↵)2 (1�↵2m2)
, i� |↵|,↵2m2 < 1. (��)

Comparing Eqs. (��) and (��), we note that the variance’s approach to its asymptotic value is through a super-
position of exponentials with rates given by ln(↵), 2ln(↵) and ln

⇣
↵2m2

⌘
. Thus, it is not a simple exponential

as in the case of the mean (Eq. (��)).
Since m2 � (m1)2 = 1, the new condition |↵| < 1/

p
m2  1 is more restrictive than |↵| < 1. Therefore we

have obtained a new condition on cell size homeostasis, which directly results from including the precise
intergenerational stochastic behavior of cell growth and division.

(iv)Generalnecessaryandsu�cient conditions for stochastic intergenerationalhome-
ostasis:
For the subsequent analyses, we use ↵ � 0. Our analysis of the asymptotic behavior of all raw moments
yields the following general constraints for achieving size homeostasis:

For the kth moment of the initial cell size todisplayhomeostasis (i.e., it has a�nite a0-independent
limit a�er a large number of generations), all quantities {|↵rmr |}, for 1  r  k, need to be less
than 1. In particular, sincem1 = 1, the�rst of these conditions is simply |↵| < 1, as can be derived
in the deterministic picture. For size homeostasis to hold, however, all moments of the cell size
need to display �nite a0-independent asymptotic behavior as the number of generations grows,
thus requiring |↵kmk | < 1 for all k � 1.

We derive these constraints, and also an exact expression for the general raw moment of an, in the Ap-
pendix.

Further, when the conditions stated above are met, we �nd that the asymptotic values of raw moments
of the initial cell size are constrained by the following bounds:

Ak 
D
ak

E
1  k!Ak, for |↵rmr | < 1,8r : 1  r  k,

Ak =
�kmk

(1�↵m1)(1�↵2m2) . . . (1�↵kmk)

������
m1=1

. (��)

In the preceding equation,
D
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E
1
def= lim

n!1

D
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k
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Figure �: Input functions for predicting initial size distributions over successive generations, and de-
piction of the necessary and su�cient condition for homeostasis. (A) Experimentally obtained mean
rescaled conditional distribution of next generation’s initial size, conditioned on current generation’s ini-
tial size, plotted for two di�erent species (distinguished by color). For each distribution, the value of 1/↵
for the corresponding species is marked by an arrow. Both arrow placements agree with our theoretically
derived necessary and su�cient condition for homeostasis: the upper limit of the support of the mean
rescaled distribution should be less than or equal to the corresponding 1/↵. Here, ↵ is the slope of the
line in (B). (B) Binned means of next generation’s initial sizes (a1), conditioned on the current generation’s
initial sizes (a0), are plotted as functions of a0 along with the corresponding linear �ts for the two species
in (A). These calibration curves, along with the distributions in (A), are used as inputs by our theoretical
framework that can then predict the distributions of successive generation’s initial sizes for cells starting
from any given initial size (see Fig. � and �). The data used are E. coli in glucose rich media (brown), and B.
subtilis in LB media (blue), obtained from [��].

generalizes the notation introduced in Eq. (�). The general inequality, Eq. (��), is consistent with our fore-
going exact derivations for themean and variance, which correspond to the cases k = 1 and 2. FromEq. (�),
recalling thatm1 = 1,

lim
n!1

hani =
�

1�↵ = A1, |↵| < 1. (��)

The condition speci�ed inEq. (��) clearlyholds in this case, since the inequalities reduce to anexact equality
for k = 1. Next, for k = 2, from Eqs. (�) and (��),

lim
n!1

D
(an)

2
E
=

(1+↵)�2m2

(1�↵) (1�↵2m2)
= (1 +↵)A2. (��)

Again, the condition speci�ed in Eq. (��) is validated here—the requirement 1  (1 +↵)  2! is satis�ed be-
cause 0  ↵ < 1.

For visual con�rmation, in Fig. � we show the generational evolution of the �rst two moments of the
cell size distribution, as the value of ↵ is varied through successive homeostasis thresholds.

(v) Restrictions on themean rescaled distribution⇧(s) and the slope of the calibration
curve ↵.
We recapitulate the general necessary and su�cient homeostasis condition previously derived:

|↵kmk | < 1 for all k � 1. (��)

This relation places strong constraints on the mean-rescaled distribution⇧(s) and its relationship with
↵. We �rst show that ⇧(s) must have �nite support. In other words, the mean-rescaled intial size of the

�
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current generation given the initial size of the previous generationmust have amaximumallowed value. To
show this, we proceed as follows. Consider what happens when⇧(s) has in�nite support. For any nonzero
value ↵ = ↵0,

mk =
Z 1

0
sk⇧(s)ds >

 
2
|↵0|

!k Z 1

2/ |↵0 |
⇧(s)ds. (��)

Denoting the integral on the right hand side of the inequality sign byI,

|↵0|kmk > 2kI> 1 for k > log2
✓ 1
I

◆
. (��)

Since the preceding condition on k can always be satis�ed because the in�nite support for⇧ impliesI> 0,
we conclude that all homeostasis conditions, Eq. (��), cannot be satis�ed for any arbitrary non-zero value of
↵, however small. Hence we conclude that⇧(s) needs to have �nite support if cell size homeostasis is to be achieved
and sustained. In turn, the implication is that the support of⇧(s) extends to a maximum value, smax.

We now proceed to determine the allowed values of ↵ that satisfy the homeostasis conditions Eq. (��),
when⇧(s) has �nite support. Since

|↵|kmk = |↵|k
Z smax

0
sk⇧(s)ds < (|↵|smax)

k , (��)

the homeostatis conditions |↵|kmk < 1 will always be satis�ed for |↵|  1/smax (provided ⇧ is not a Dirac
Delta function, in which case the necessary and su�cient condition for homeostasis simply reduces to
↵ < 1). In the complementary scenario when |↵| > 1/smax, consider any value b satisfying 1 < b < |↵|smax.
Then,

|↵|kmk > |↵|k
 
b
|↵|

!k Z smax

b/ |↵|
⇧(s)ds. (��)

Denoting byI the integral on the right hand side of the inequality,

|↵|kmk > bkI> 1 for k > logb
✓ 1
I

◆
. (��)

Since the condition on k can always be satis�ed by large enough values of k, all homeostasis conditions
cannot hold for |↵| > 1/smax. Combining the above proofs that the homeostasis conditions Eq. (��) can
always be satis�ed when |↵|  1/smax, and a subset of those conditions will always be violated when |↵| >
1/smax, we have derived a remarkable condition: cell size homeostasis is obtained for all ↵ satisfying |↵| 
1/smax, irrespective of any other details of the shape of the the universal mean-rescaled distribution,⇧(s).

To gain physical insight into this simple limit on ↵, we note that it can be rationalized by requiring
that the coe�cient of a0 in the expression for an, Eq. (�), decrease as n ! 1. Since increasing n by one
introduces one extra factor of the form ↵s, which can have a maximum value of ↵smax, the coe�cient
would be non-increasing as n increases, as long as ↵smax  1. But provided the distribution of s is not a
Dirac Delta, as n grows large, the probability of choosing the maximum value of s each draw decreases to
zero, ensuring the coe�cient of a0 decreases. The preceding heuristic argument is also rigorously borne
out by our exact probabilistic analysis. If⇧ is a Dirac Delta function, the only possible value of s is �, and the
condition for homeostasis is ↵ < 1, which again ensures that the coe�cient of a0 decreases over successive
generations.

Fig. � A shows a comparison between the experimentally measured values of 1/↵ and smax in E. coli and
B. subtilis. From this comparison it is clear that our predicted general condition for homeostasis, smax 
1/↵, is satis�ed by experimentally observed E. coli and B. subtilis growth and division dynamics, under the
growth conditions shown.

To explicate and visualize the breakdown of homeostasis as the theoretical condition |↵|  1/smax is vi-
olated, we take advantage of numerical simulations based on the theoretical framework proposed here.

��
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In Fig. � we show the simulated distributions of initial sizes over successive generations for a range of ↵
values for hypothetical cells. These include cases for which the condition for homeostasis is not satis�ed.
Fig. � shows the generational evolution of the �rst two moments of cell size, as ↵ passes through di�erent
homeostasis thresholds. When |↵| < 1/smax, the cell size distribution converges to a well-de�ned distri-
bution with a short tail. When 1 > |↵| > 1/smax, the mean and some lower moments converge to values
independent of the starting generation size a0, but higher moments do not, serving as indicators of the
expected breakdown of homeostasis. This breakdown is re�ected in the distributions developing long tails
a�er su�cientlymany generations have elapsed. Finally, when↵ > 1, we predict that even themean cannot
attain an a0-independent value (Fig. � G); in con�rmation, the distributions become qualitatively di�erent
for distinct a0 values, showing a spectacular breakdown of homeostasis (see Fig. �).
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Figure �: In-silico evolution of conditional initial size distributions over successive generations, for dif-
ferent values of ↵, for cells starting out with a given initial size. These plots are made using the inter-
generational kinematic theory presented in Eqs. (�), (�) and (�). Each plot shows the conditional initial
size distributions over successive generations (di�erent colors) for cells starting from two di�erent initial
sizes, a0 = 1 (solid line) and 3 (dashed). 1/smax ' 0.67 for our hypothetical mean-rescaled distribution,
⇧(s) = 3(1 +� � s)(s � 1 +�)/(4�3) with � = 0.5 . The mean of next generation’s initial size given the cur-
rent generation’s is ha1|a0i = µ(a0) = ↵a0 + 2(1 � ↵), ensuring that the homeostatic mean setpoint is 2 and
allowing easy comparison between di�erent ↵’s. (A) ↵ = 0. Cells reach the homeostatic distribution within
a generation. This corresponds to “sizer model” in the deterministic picture. (B) ↵ = 0.5. Cells reach the
homeostatic distribution less rapidly than in (A). Since this value of ↵ also satis�es the condition for home-
ostasis (↵  1/smax), all moments are expected to converge to �nite values. This corresponds to “adder
model” in the deterministic picture. (C) ↵ = 0.75. The condition for homeostasis is no longer satis�ed.
The lower moments, including mean, still converge, thus the overall location and shape of the distribution
appears to converge. But the higher moments diverge, manifesting in the form of a long tail of the distribu-
tion. In the purely deterministic picture, this value of ↵ would successfully result in homeostasis, but not
in the exact stochastic framework we present here. (D) ↵ = 1. Here, even themean does not converge to an
a0-independent value. This corresponds to the “timer model”. Homeostasis is visibly absent.
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Concluding remarks
In summary, we have developed a stochastic �rst-principles-based theoretical framework to characterize
cell size homeostasis of bacterial cells in balanced growth conditions. Prior works typically describe home-
ostasis building on a quasi-deterministic scheme (the sizer–timer–adder framework), with noise “added on
top” in adhoc ways motivated by analytical or computational tractability [��, ��–��]. The deterministic
condition for homeostasis obtained from the sizer-timer-adder framework, ↵ < 1, applies literally only to
the mythical “average” cell. This heuristic falls short when the fully stochastic picture is considered. In
contrast, in this work we have shown that the necessary and su�cient condition for homeostasis, when
considering the data-informed [�] inherently stochastic formulation of the problem, is |↵|  1/smax, where
smax > 1 is the upper limit of the support of the mean-rescaled distribution ⇧, introduced in Eq. (�). By
reanalyzing published experimental data in E. coli and B. subtilis (Figs. � and � respectively), we have not
only shown compelling data-theory matches, but also that this new homeostatis condition, |↵|  1/smax, is
indeed satis�ed by these data (see downward pointing arrows in Fig. �). While the theoretical framework of
intergenerational size dynamics presented here is data-informed and accurately describes the kinematics
of cell size homeostasis, it is mechanistically agnostic. In complementary work [��] we will address pos-
sible architectural underpinnings of the observed intergenerational scaling law leading to these precision
kinematics.

Our theoretical framework is built on two experimentally-observed emergent simplicities [�]: �rst, the
inter-generational initial size dynamics areMarkovian, and second, the conditional distribution of the next
generation’s initial size, conditioned on the current generation’s initial size, when rescaled by its mean
value, results in a distribution (⇧) that is invariant of this generation’s initial size. Since the mean-rescaled
distribution changes from growth condition to growth condition, even for the same organism, as shown in
[�], how the results generalize to time-varying growth conditions remains to be seen.
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Figure �: Demonstrating the conditions for convergence of moments. These plots are made using the
expressions in Eqs. (�) and (��). Each plot shows the evolution of the mean (le� panels) or the second mo-
ment (right panels) of the conditional initial size distributions with generation n, for cells starting from two
di�erent initial sizes, a0 = 1 (orange) and 3 (brown). 1/smax ' 0.526 and 1/pm2 ' 0.928 for our hypothetical
mean rescaled distribution,⇧(s) = 3(1+�� s)(s �1+�)/(4�3) with � = 0.9 . The mean of next generation’s
initial size given the current generation’s is ha1|a0i = µ(a0) = ↵a0 + 2(1 � ↵), ensuring that the homeostatic
mean setpoint is 2 and allowing easy comparison between di�erent ↵’s. (A,B) ↵ = 0.5. ↵ satis�es the neces-
sary and su�cient condition for homeostasis (↵  1/smax), thus all moments converge to their homeostatic
limits. (B) inset is a zoomed in version of (B), showing rapid convergence. (C,D)↵ = 0.92. The general condi-
tion for homeostasis is not satis�ed and higher moments do not converge. However, since ↵ < 1/

p
m2 < 1,

the second moment and mean converge, showing partial attainment of homeostasis in their case. (E,F)
↵ = 0.93. The value of ↵ is greater than 1/

p
m2, thus variance does not converge. However, since ↵ < 1, the

mean still converges. (G,H) ↵ = 1. Even the condition for a0-independent convergence ofmean is no longer
satis�ed, resulting in complete breakdown of homeostasis. In summary, these plots demonstrate that as ↵
increases, the rates of convergence of moments slow down, and as it crosses 1/smax followed by the limits
(mk)�1/k , determined by the momentsmk of⇧ as derived in the main text, the corresponding moments no
longer converge and homeostasis is broken.
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