1 Inconsistent estimates of hybridization frequency in newts revealed by SNPs and

2 microsatellites

- 3 Aurélien Miralles^{1,2}, Jean Secondi^{3,4}, Maciej Pabijan⁵, Wiesław Babik⁶, Christophe Lemaire⁷,
- 4 Pierre-André Crochet⁸

5

- ¹Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4,
- 7 Braunschweig, 38106, Germany
- ⁸ ²Institut de Systématique, Evolution, Biodiversité, (UMR 7205 Muséum National d'Histoire
- 9 Naturelle, CNRS UPMC EPHE, Sorbonne Universités), CP30, 25 Rue Cuvier, 75005, Paris,

10 France

- ³Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-
- 12 69622, Villeurbanne, France
- ⁴Faculté des Sciences, Université d'Angers, 2 Bd de Lavoisier, 49000 Angers, France
- ⁵Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University,
- 15 Gronostajowa 9, 30-387 Kraków, Poland
- ⁶Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University,
- 17 Gronostajowa 7, 30-387 Kraków, Poland
- ⁷Université d'Angers, Institut Agronomique Rennes-Angers, INRAE, IRHS, SFR, QUASAV,
- 19 49000 Angers, France.
- 20 ⁸CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France

21

- 22
- 23
- 24

25 Key words. Broad sympatry, introgression, *Lissotriton vulgaris*, *Lissotriton helveticus*,

26 SEQUENOME

27

28 Abstract

29	Hybridization between the European smooth and palmate newts has recurrently been
30	mentioned in the literature. The only two studies that attempted to quantify the frequency of
31	hybridization and gene admixture between these two species came to strikingly opposite
32	conclusions. According to Arntzen et al (1998, 42 allozymes), hybrids are rare in nature and
33	introgression negligible, while according to Johanet et al (2011, 6 microsatellites),
34	introgressive hybridization is significant and widespread across the shared distribution range.
35	To clarify this question, we implemented high-throughput SNP genotyping with diagnostic
36	biallelic SNPs on 965 specimens sampled across Europe. Our results are in line with Arntzen
37	et al, since only two F1 hybrids were identified in two distinct French localities, and no
38	further hybrid generations or backcrosses. Moreover, reanalysis of 78 of the samples
39	previously studied by Johanet et al. (2011) using our SNPs panel could not reproduce their
40	results, suggesting that microsatellite-based inference overestimated the hybridization
41	frequency between these two species. Since we did not detect methodological issues with the
42	analyses of Johanet et al., our results suggest that SNP approaches outperform microsatellite-
43	based assessments of hybridization frequency, and that conclusions previously published on
44	this topic with a small number of microsatellite loci should be taken with caution, and ideally
45	be repeated with an increased genomic coverage.

47 Introduction

48	Introgressive hybridization is a process of major interest for evolutionary biology. By blurring
49	the lines between species, interspecific gene flow reveals the gradual nature of reproductive
50	isolation and its possible reversibility, complicates species delimitation, and more generally
51	calls into question the centuries-old categorical conception we may have of species (Taylor et
52	al. 2006, Harrison & Larson 2014, Barraclough & Humphreys 2015, Moran et al. 2021, Kim
53	et al. 2022). The transfer, via hybridization and backcrossing, of novel alleles from one
54	species into the gene pool of another species also constitutes a non-negligible source of
55	genetic diversity, which may positively or negatively impact the adaptive capacities of species
56	(Barton 2001, Pfenning et al. 2016, Seabra et al. 2019, Steensels et al. 2021, Wacker et al.
57	2021). Importantly, anthropogenic hybridization is increasingly common and its impact on
58	conservation issues has been the topic of much debate (Chan et al. 2019, Mc Farelane &
59	Pembertone 2019, Hirashiki et al. 2021).
60	Hybridization in animals has for a long time been considered as an anecdotal phenomenon,
61	but in recent years, a growing body of evidence has demonstrated that a broad range of animal
62	species experience it during their history (Mayr 1963, Mallet 2005, Taylor & Larson 2019,
63	Adavoudi & Pilot 2022). In amphibians, introgressive hybridization has been documented in
64	numerous anurans (e.g. Dufresnes et al. 2021), possibly as a result of their frequently external
65	fertilization reducing the efficiency of pre-zygotic reproductive barriers. In Eurasian Urodela
66	(with internal fertilization), several well documented examples have been reported in the

67 genera *Triturus* (Jehle et al. 2001, 2009, 2021, Cogălniceanu et al. 2020) and *Lissotriton*,

68 where *L. vulgaris* and *L. montandoni* exhibit some dramatic genomic consequences of past

69 introgression (Babik et al. 2003, 2005, Babik & Rafiński 2004, Gherghel et al. 2012, Zieliński

70 et al 2013, 2014, 2016, Pabijan et al. 2017, Niedzicka et al 2017, 2020, Dudek et al. 2019).

71 Prior to these works, several sources (Griffiths 1987, Arntzen et al 1998, Beebee et al. 1999,

72	Schlüpmann et 1999) have also mentioned hybridization between the smooth and palmate
73	newts, Lissotriton vulgaris and L. helveticus, two distantly related and non-sister species
74	within the genus that diverged from each other relatively early (the divergence is imprecisely
75	estimated between ~15 Mya and 24 Mya (Rage & Bailon 2005, Steinfartz et al. 2007, Böhme
76	2010, Arntzen et al 2015)). The first work aiming at quantifying the extent of hybridization
77	between these two species was based on multivariate analyses of 16 morphological traits and
78	electrophoretic analyses of 42 protein loci (Arntzen et al. 1998). Although this work
79	irrefutably demonstrated natural hybridization between L. vulgaris and L. helveticus, it
80	concluded that this phenomenon was rare (only one F1 hybrid identified from a large sample
81	(>5,000) of larvae, recently metamorphosed newts and adults) and no introgression was
82	detected between the species (cf. Fig. 3 of Arntzen et al.). More recently, and in striking
83	contrast to this first work, Johanet et al. (2011) used mitochondrial and microsatellite markers
84	on ~1,300 individuals from 37 sites across Europe and concluded that introgression was
85	instead relatively widespread in the area of sympatry, with a frequency of hybridization of
86	1.7% and significant levels of introgression detected at most sites (73%) shared by both
87	species. To determine the extent of hybridization and introgression between L. vulgaris and L.
88	helveticus and to elucidate the causes of the discrepancy between the former studies, we
89	reinvestigated the frequency of hybridization between the two species, using extended
90	geographical sampling and, for the first time, high-throughput SNP genotyping.

91

92 Material and methods

Sampling . - Currently, *Lissotriton vulgaris* has a broad Eurasian distribution, whereas *L*.
 helveticus is restricted to the western part of Europe (Wielstra et al. 2018; Sillero et al., 2014).

- 95 Both species occur sympatrically across a wide area including Great Britain, the north of

96	France, Switzerland, the Benelux countries and the west of Germany (Fig 1). Designed to take
97	into account their respective distribution, our sampling includes a total of 965 individuals
98	from 59 localities (=ponds): 29 samples from 11 allopatric localities for <i>L. helveticus</i> (in
99	Spain and southern part France), 23 samples from 8 allopatric localities for L. vulgaris (in
100	Norway, Sweden, Poland, Romania and Hungary), and 913 samples of both species from 40
101	sympatric localities (in Great Britain and northern France), of which 829 are from 32
102	localities where both species co-occur in syntopy (see Fig. 1 and Table 1). All these samples
103	were collected during the reproductive phase (aquatic phase) and therefore correspond to
104	viable adult individuals. Notably, our survey also includes a selection of 78 syntopic
105	individuals that were previously analyzed using microsatellites by Johanet et al. (2011),
106	including those that showed the most substantial rates of introgression.
107	Single-nucleotide polymorphism (SNP). – DNA extractions were done on 96 well plates with
108	the DNeasy blood and tissues kit (QUIAGEN). DNA extracts were diluted to obtain a target
109	concentration of 10-15ng/ μ L. To identify a set of candidate diagnostic SNPs, we used a total
110	of 1380 nuclear ORF contigs/alignments from transcriptomic data for L. vulgaris and L.
111	montandoni (Stuglik & Babik 2016). Each of these 1380 alignments encompassed the same
112	13 individuals: six L. vulgaris from Romania and Poland), six L. montandoni from Romania
113	and Poland) and one L. helveticus from France (cf. Supplementary Table 1).
114	For population-level genotyping, we selected the MassARRAYrray System approach
115	(Sequenom). The MassArray assay consists of an initial locus-specific PCR reaction,
116	followed by single base extension using mass-modified dideoxynucleotide terminators of an
117	oligonucleotide primer which anneals immediately upstream of the polymorphic site of
118	interest. Using MALDI-TOF mass spectrometry, the distinct mass of the extended primer
119	identifies the SNP allele. This technology can genotype a SNP only if it presents biallelic
120	variability and conserved upstream and downstream sequences of about 100 bp each (cf.

121	Gabriel & Ziaugra (2004) and Gabriel et al. (2009) for more details about the Sequenom
122	MassARRAY technology). Among the 1380 alignments examined, only 127 presented
123	sequences meeting the above mentioned specifications and were used to develop 127
124	multiplexable candidate probes that were preliminarily tested on 20 L. vulgaris and 20 L.
125	helveticus from different allopatric localities, in Poland (Krakow), Hungary (Pilisz mount and
126	Budapest), Romania (Apuseni), Norway and Sweden for L. vulgaris, and Spain (Escobedo,
127	Fresnedo and Poza de la Sal) and the southern part of France (Dordogne, Cazevielle,
128	Ferrières-les-Verries, Notre-Dame-de-Londres and Aumelas) for L. helveticus. This screening
129	phase enabled the extraction of 39 SNPs presenting a low amount of missing data and
130	unambiguously distinguishing L. vulgaris from L. helveticus (cf. Supplementary Table 2 for
131	the sequences of these probes). The selected alignments were used to design a 39-plex array
132	to genotype the 1035 samples. The genotyping was subcontracted to the Genome
133	Transcriptome facility at the Center for Functional Genomics in Bordeaux (CGFB), France.
134	

135	Population structure Sample allocation and admixture level based on the 39 SNPs dataset
136	were assessed with STRUCTURE v2.2 (Pritchard et al. 2000, Falush et al 2003) under models
137	assuming two populations (K=2). STRUCTURE has been shown to be less sensitive to the
138	proportion of hybrids included in the sample, while NEWHYBRIDS (another widely used
139	population genetic programs to address questions related to genetic structure, admixture, and
140	hybridization, Anderson & Thompson 2002) seems to perform slightly better when
141	individuals from both backcross and F_1 hybrid classes are present in the sample (Vähä &
142	Primmer, 2006). STRUCTURE assigns individuals probabilistically to clusters based on their
143	multilocus genotype. We estimated posterior distributions based on 3 million MCMC
144	generations of which 50% were discarded as burnin. We used a model that considers the
145	possibility of mixed population ancestry and of correlated allele frequencies among

populations due to migration or shared ancestry (Falush et al 2003), with an alpha value of 1/k
(0.5) (Wang 2017). For comparison, the same analyses were repeated on the microsatellite
dataset generated by Johanet et al. (2011, six loci: Tv3ca9, Th09, Tv3Ca19, Th14, Th27,
Thca14), to compare membership coefficients of the 78 specimens for which both SNP and
microsatellite data were generated. We used the same options for the microsatellite dataset as
with the SNPs.

152

153 **Results.**

154 Samples with three or more missing SNP loci (70 samples) were discarded from the dataset, 155 leading to a final biallelic SNP data-set for 965 usable individual newts, with only 5.3% of 156 missing data (4,256 undetermined SNP genotypes out of a total of 80,730). From the 39 157 selected SNPs, two showed shared alleles at significant frequencies: SNP 10797 and SNP 158 10913. For both loci, the "vulgaris" allele was found in *Lissotriton helveticus* in low 159 frequencies that were similar between syntopic (3.3% for SNP 10797 and 13.2% for SNP 160 10913) and allopatric populations (4.0% and 20.0%, respectively); these two loci are thus not 161 fully diagnostic. In spite of this, the SNPs allowed specific discrimination of every sample, 162 including newly collected as well as previously studied by Johanet et al (2011), and no 163 significant sign of introgression between species was detected, i.e., species-specific alleles of 164 one species were not found in the other. Only two samples collected in two syntopic localities 165 in France revealed an F1-hybrid genotype: one (sample T9-12-LH8f-2, from Roissy-en-Brie) 166 is heterozygous (vh) for 37 SNP loci (homozygous for the two remaining SNP loci, one of vv167 type and one *hh* type) and a second sample (T36-14-24-1, from Ecordal) is heterozygous for 168 all the 38 SNP loci available (genotype at one locus missing). No other signs of hybridization 169 or introgression were detected (Fig. 2A and Table 1).

170	In contrast with the SNP-based results, the sample allocation and admixture level presently
171	inferred from the microsatellite dataset previously generated by Johannet et al (2011) suggest
172	a substantial admixture of genes from the other species (i.e., ≥ 0.1) for 11 of the 78 samples
173	presently reanalyzed with SNPs, in accordance with the results of the original publication
174	(See Figure 2B and Supplementary Table 3 for a comparison, for the same 78 samples, of the
175	admixture levels inferred from microsatellites and SNP, respectively).
176	
177	Discussion.
178	These results confirm the conclusions of Arntzen et al (1998): Lissotriton helveticus and L.
179	vulgaris can hybridize in nature but this phenomenon remains rare, as we found only two F1
180	individuals out of a total of 829 adults from syntopic populations. Such hybrids are likely
181	sterile as we detected no signs of introgression between both species. In addition, SNP
182	analyses of 78 of the samples previously analysed by Johanet et al. (2011), including samples
183	identified as admixed individuals by microsatellite genotypes, detected no sign of
184	hybridization either, suggesting that detection of hybridization and introgression with
185	microsatellites produced biased results that overestimated the frequency of hybridization
186	between these two species (Fig. 2B). The lack of introgression is consistent with the
187	maintenance of a broad sympatric zone and supports the hypothesis that convergence of
188	certain color traits (dorsum, tail) observed in sympatry would primarily be the result of plastic
189	or adaptive responses to environmental variables and not introgression (de Solan et al. 2022).
190	This result also echoes the findings of Drillon et al. (2019) who found hardly any
191	hybridization and no introgression between Hyla tree frog species that diverged around 20
192	Mya. Yet, the possibility of introgressive hybridization can persist for a very long time in
193	newts, as exemplified by Triturus cristatus and T. marmoratus that hybridize frequently and
194	can still exchange genes in spite of their divergence estimated at around 24 Mya (Wielstra et

al. 2011, Arntzen et al. 2021, comparable with the timing of divergence between *L. vulgaris*and *L. helveticus* presented in introduction).

197 An alternative explanation would be that the SNP genotyping underestimated hybridization 198 and introgression, whereas the microsatellites returned the correct pattern of admixture. Our 199 SNP loci have been selected to be (near) perfectly diagnostic (fixed alternative alleles in both 200 species) and might therefore over-represent genomic regions highly differentiated between 201 species, and thus, indirectly, genes involved in barriers to gene flow (which, by counter-202 selection, would be less likely to introgress in the long term in other species). On the contrary, 203 microsatellites have been designed and selected independently of their level of divergence between species and should thus not overrepresent genomic regions that resist introgression. 204 205 This hypothesis could be valid if the microsatellite results were able to detect long-term 206 (historical) interspecific gene flow, as this would indeed be reduced in genomic regions 207 involving barrier loci. However it does not apply to the detection of recent admixture (F1 208 hybrids and backcrosses), in which case the SNP results are expected to be more robust than 209 the microsatellite results due to a larger number of loci (and unambiguous allelic assignment) 210 in the former. Thus, this hypothesis does not seem able to explain the low frequency of F1s 211 and the total absence of F2 or backcrosses in the SNP dataset, in contradiction with the 212 previous study based on microsatellites. 213

It thus seems more likely that the microsatellite analyses by Johanet et al. (2011) led to an
overestimation of introgression. In general, SNPs have recurrently been shown to outperform
microsatellites (e.g. Camacho-Sanchez et al. 2020, Bradbury et al. 2015, Hoffman et al. 2014,
Lemopoulos et al. 2019, Sunde et al. 2020, Zimmerman et al. 2020, Szatmári et al. 2021),
although it should be emphasized that these works most often involved a far greater number
of SNP loci than in the present study (i.e. hundreds or thousands of SNPs *versus* 39 SNPs).
More specifically, several recent studies comparing relative performance of SNPs and

220	microsatellites for hybridization detection effectiveness have shown that many hybrids
221	indicated by microsatellites are not validated by SNPs (Daïnou et al. 2017, Szatmári et al,
222	2020). Assessment of hybridization usually rests, as in the present case, on statistical
223	estimation of the likelihood to observe a given multilocus genotype in a population
224	(assignment methods such as STRUCTURE or NEWHYBRIDS) or comparisons of
225	multivariate axes scores (Johannet at al. 2011, present study). These assignment methods can
226	produce unreliable results when a small number of microsatellites are used or when there is
227	too much missing data (Grünwald et al 2017, Hodel et al. 2017, Yi & Latch 2022). Analyses
228	of datasets simulated under scenarios with different levels of genetic divergence and varying
229	number of loci have for instance shown that two popular model-based Bayesian methods for
230	detecting hybridization (i.e. STRUCTURE and NEWHYBRIDS) require a significantly
231	higher number of loci than commonly applied in microsatellite-based studies (Vähä &
232	Primmer 2006). According to this study, efficient detection of F ₁ hybrid individuals would
233	require for instance the use of 12 or 24 loci (for pairwise F_{ST} between hybridizing parental
234	populations of 0.21 or 0.12, respectively), and separating backcrosses from pure individuals
235	would require an even more significant genotyping effort (\geq 48 loci, even when divergence
236	between parental populations are high). In addition to the frequently low number of loci
237	usually involved in microsatellites studies ($n = 6$ in Johannet et al. 2011), it should be noted
238	that these markers are also notoriously difficult to use to assess hybridization because they are
239	highly polymorphic (from 12 to 35 alleles per locus, with an average of 25 alleles in both
240	species in Johanet et al. 2011) which, coupled with homoplasy, often result in a lack of
241	diagnostic loci (Putman & Carbone 2014, Daïnou et al. 2017, Šarhanová, et al. 2018).
242	Additionally, the study by Johanet et al. (2011) was affected by a significant amount of
243	microsatellite missing data (22.2% for the original dataset). Within the 1924 samples
244	involved, 41.8% were missing at least one third of the data (i.e., 2 or 3 loci out of a total of

245 six) and 11.4% were missing half of the data (i.e., 3 out of 6). When focusing on those 246 samples reanalyzed with SNPs, for which microsatellites suggested substantial admixture of 247 genes from the other species (i.e., ≥ 0.1 , n=11), examination of the raw data revealed that all 248 of them had at least one missing locus, with an overall mean amount of missing data reaching 249 34.8%. 250 Taken together, these considerations prompt us to conclude that the most parsimonious 251 explanation for the discrepancy between Johanet et al. (2011) on the one hand, and Arntzen et 252 al. (1998) and the present study on the other hand, is the poor performance of 253 NEWHYBRIDS (microsatellite analysis by Johanet et al. 2011) and STRUCTURE 254 (reanalysis of the same dataset in the present study) to reliably assess ancestry on the basis of 255 an inadequate dataset, characterized both by a small number of hypervariable microsatellite 256 loci and a substantial amount of missing data. 257 Over the past decades, microsatellite genotyping has been the approach favored by the

research community to look for hybridization between non-model species. The present study

suggests that many of these works may have suffered from biases like those encountered by

Johanet et al (2011), and may have overestimated the frequency of this phenomenon, as was

the case here. The conclusions from these studies, and the subsequent works based on them,

should therefore be carefully reconsidered in the light of their respective datasets coverage.

By providing a broad coverage of loci, including diagnostic loci, genomic approaches (such

as the SNP approach of the present study) would certainly represent preferable alternatives to

265 microsatellite approaches to investigate introgressive hybridization, and should contribute to

refining our understanding about the extent of this phenomenon in nature.

267

268 Acknowledgments.

269	We are grateful to En	wan Guichoux (CGF	B) and Patricia Sorouille	(CEFE) for their technical
-----	-----------------------	-------------------	---------------------------	----------------------------

- 270 support.
- 271

272 Author contribution statement:

- 273 P.A.C. and J.S. designed the research concept and realized most of the field work, A.M.
- 274 performed data extraction and analyses. A.M. and P.A.C wrote the manuscript with
- contributions to all authors. All authors have read and validated the final version of the
- 276 manuscript.
- 277
- 278 **Conflict of Interests:** The authors have no competing financial interests to declare.
- 279
- 280 **Data archiving :** The SNP raw dataset (newly generated) and the microsatellites raw dataset
- (by Johanet et al. 2011) that support the findings of this study are available in [repository]
- 282 name, DOI(s)] [Cf. XLS files in attachment. To be deposited upon manuscript acceptance].
- 283

284 Supplementary Information:

- Supplementary Table 1. List of samples used to identify a set of candidate diagnostic SNPs.
- Supplementary Table 2. List and sequences of the 39 DNA probes used for SNP genotyping.
- 287 Supplementary Table 3. Assignment coefficients obtained by STRUCTURE for the 78
- specimens of *Lissotriton helveticus* (*Lh*) and *L. vulgaris* (*Lv*) living in sympatry and for which
- both microsatellites and SNP analyses could be performed.
- 290

292 Bibliography

- 293 Adavoudi R, Pilot M (2022) Consequences of Hybridization in Mammals: A Systematic
- 294 Review. Genes 13:50. <u>https://doi.org/10.3390/genes13010050</u>
- Anderson E, Thompson E (2002) A model-based method for identifying species hybrids using
- 296 multilocus genetic data. Genetics 160:1217–1229.
- 297 https://doi.org/10.1093/genetics/160.3.1217.
- Arntzen JW, Beukema W, Galis F, Ivanović A (2015) Vertebral number is highly evolvable
- in salamanders and newts (family Salamandridae) and variably associated with climatic
- 300 parameters. Contrib Zool 84:85–113. <u>https://doi.org/10.1163/18759866-08402001</u>
- 301 Arntzen JW, de Wijer P, Jehle R, Smit E, Smit J (1998) Rare hybridization and introgression
- 302 in smooth and palmate newts (Salamandridae: Triturus vulgaris and T. helveticus). J Zoolog
- 303 Syst Evol 36:111–122. <u>https://doi.org/10.1111/j.1439-0469.1998.tb00830.x</u>
- 304 Arntzen JW, Jehle R, Bardakci F, Burke T, Wallis GP (2009) Asymmetric viability of
- 305 reciprocal cross hybrids between crested and marbled newts (*Triturus cristatus* and *T*.
- 306 *marmoratus*). Evolution 63:1191–1202. <u>https://doi.org/10.1111/j.1558-5646.2009.00611.x</u>
- 307 Arntzen JW, Jehle R, Wielstra B (2021) Genetic and morphological data demonstrate
- 308 hybridization and backcrossing in a pair of salamanders at the far end of the speciation
- 309 continuum. Evol Appl 14:2784–2793. <u>https://doi.org/10.1111/eva.13312</u>
- 310 Babik W, Rafiński J (2004) Relationship between morphometric and genetic variation in pure
- and hybrid populations of the smooth and Montandon's newt (*Triturus vulgaris* and *T*.
- 312 montandoni). J Zool 262:135–143. https://doi.org/10.1017/S0952836903004369
- 313 Babik W, Szymura JM, Rafiński J (2003) Nuclear markers, mitochondrial DNA and male
- secondary sexual traits variation in a newt hybrid zone (*Triturus vulgaris* \times *T. montandoni*).
- 315 Mol Ecol 12:1913–1930. <u>https://doi.org/10.1046/j.1365-294x.2003.01880.x.</u>

- 316 Babik W, Branicki W, Crnobrnja-Isailović J, Cogălniceanu D, Sas I, Olgun K, Poyarkov NA,
- 317 Garcia-París M, Arntzen JW (2005) Phylogeography of two European newt species
- discordance between mtDNA and morphology. Mol Ecol 14:2475–2491.
- 319 <u>https://doi.org/10.1111/j.1365-294X.2005.02605.x.</u>
- 320 Barraclough TG, Humphreys AM (2015) The evolutionary reality of species and higher taxa
- 321 in plants: a survey of post-modern opinion and evidence. New Phytol 207:291–296.
- 322 <u>https://doi.org/10.1111/nph.13232</u>
- 323 Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568.
- 324 <u>https://doi.org/10.1046/j.1365-294x.2001.01216.x</u>
- 325 Beebee TJC, Rowe G, Arntzen JW (1999) Identification of newts (Triturus sp.) and their
- 326 hybrids using molecular methods. J Zool 249:43–47. doi: 10.1111/j.1469327 7998.1999.tb01058.x
- 328 Böhme M (2010) Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura,
- 329 Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their
- implications for environment reconstruction and palaeoclimate. *Palaontol Z* 84:3–41.
- 331 https://doi.org/10.1007/s12542-010-0050-4
- 332 Bradbury IR, Hamilton LC, Dempson B, Robertson MJ, Bourret V, Bernatchez L, Verspoor E
- 333 (2015) Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a
- 334 single nucleotide polymorphism array and restriction-site associated DNA sequencing for the
- resolution of complex spatial structure. Mol Ecol 24:5130–5144.
- 336 <u>https://doi.org/10.1111/mec.13395</u>
- 337 Camacho-Sanchez M, Velo-Antón G, Hanson JO, Veríssimo A, Martínez-Solano Í, Marques
- A, Moritz C, Carvalho SB (2020) Comparative assessment of range-wide patterns of genetic
- diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians.
- 340 Ecol Evol 10:10353–10363. <u>https://doi.org/10.1002/ece3.6670</u>

- 341 Chan WY, Hoffmann AA, van Oppen MJH (2019) Hybridization as a conservation
- 342 management tool. Conserv Lett 12:e12652. <u>https://doi.org/10.1111/conl.12652</u>
- 343 Cogălniceanu D, Stănescu F, Arntzen JW (2020) Testing the hybrid superiority hypothesis in
- crested and marbled newts. J Zool Syst Evol Res 58:275–283.
- 345 <u>https://doi.org/10.1111/jzs.12322</u>
- 346 Daïnou K., Flot JF, Degen B, Blanc-Jolivet C, Doucet JL, Lassois L, Hardy OJ (2017) DNA
- 347 taxonomy in the timber genus *Milicia*: evidence of unidirectional introgression in the West
- 348 African contact zone. Tree Genet Genomes 13: 90. <u>https://doi.org/10.1007/s11295-017-1174-</u>
- 349 <u>4</u>
- de Solan T, Théry M, Picard D, Crochet P-A, David P, Secondi J (2022) A lot of
- 351 convergence, a bit of divergence: Environment and interspecific interactions shape body
- colour patterns in *Lissotriton* newts. J Evol Biol 35:575–588.
- 353 <u>https://doi.org/10.1111/jeb.13985</u>
- 354 Drillon O, Dufresnes G, Perrin N, Crochet P-A, Dufresnes C. (2019) Reaching the edge of the
- speciation continuum: hybridization between three sympatric species of *Hyla* tree frogs, Biol
- 356 J Linn Soc 126:743–750. <u>https://doi.org/10.1093/biolinnean/bly198</u>
- 357 Dufresnes C, Brelsford A, Jeffries D, Mazepa G, Suchan T, Canestrelli D, Nicieza A,
- 358 Fumagalli L, Dubey S, Martínez-Solano I, Litvinchuk S, Vences M, Perrin N, Crochet P-A.
- 359 (2021) Mass of genes rather than master genes underlie the genomic architecture of
- amphibian speciation. PNAS 118:e2103963118. <u>https://doi.org/10.1073/pnas.2103963118</u>
- 361 Dudek K, Gaczorek TS, Zieliński P, Babik W (2019) Massive introgression of major
- 362 histocompatibility complex genes in newt hybrid zones. Mol Ecol 28:4798- 4810.
- 363 https://doi.org/10.1111/mec.15254
- 364 Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus
- 365 genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587.

- 366 Gabriel S, Ziaugra L (2004) SNP genotyping using Sequenom MassARRAY 7K platform.
- 367 Curr Protoc Hum Genet 2:2.12. <u>https://doi.org/10.1002/0471142905.hg0212s42.</u>
- 368 Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY
- 369 iPLEX platform. Curr Protoc Hum Genet.2:2.12.
 370 https://doi.org/10.1002/0471142905.hg0212s60.
- 371 Gherghel I, Strugariu A, Ambrosă I-M, Zamfirescu 🗆 (2012) Updated distribution of hybrids
- 372 between Lissotriton vulgaris and Lissotriton montandoni (Amphibia: Caudata:
- 373 Salamandridae) in Romania. Acta Herpeto 7: 49–55. https://doi.org/10.13128/Acta_Herpetol-
- 374 <u>10224</u>
- 375 Griffiths RA (1987) Microhabitat and seasonal niche dynamics of smooth and palmate newts,
- 376 Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J Anim Ecol 56:441–451.
- 377 <u>https://doi.org/10.2307/5059</u>
- 378 Grünwald NJ, Everhart SE, Knaus BJ, Kamvar ZN (2017) Best Practices for Population
- 379 Genetic Analyses. Phytopathology 107:1000–1010. https://doi.org/10.1094/PHYTO-12-16-
- 380 <u>0425-RVW</u>
- 381 Harrison RG, Larson EL (2014) Hybridization, Introgression, and the Nature of Species
- 382 Boundaries. J Hered 105:795–809, <u>https://doi.org/10.1093/jhered/esu033</u>
- 383 Hirashiki C, Kareiva P, Marvier M (2021) Concern over hybridization risks should not
- 384 preclude conservation interventions. Conserv Sci Pract 3:e424.
- 385 <u>https://doi.org/10.1111/csp2.424</u>
- Hodel RGJ, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE (2017) Adding loci
- 387 improves phylogeographic resolution in red mangroves despite increased missing data:
- comparing microsatellites and RAD-Seq and investigating loci filtering. Sci Rep 7:17598.
- 389 <u>https://doi.org/10.1038/s41598-017-16810-7</u>

- 390 Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MAS, Lacy RC, Dasmahapatra
- 391 KK (2014) High-throughput sequencing reveals inbreeding depression in a natural population.
- 392 PNAS 111:3775. https://doi.org/10.1073/pnas.1318945111
- 393 Jehle R, Arntzen JW, Burke T, Krupa AP, Hödl W (2001). The annual number of breeding
- adults and the effective population size of syntopic newts (*Triturus cristatus*, *T. marmoratus*).
- 395 Mol Ecol 10:839–850. <u>https://doi.org/10.1046/j.1365-294X.2001.01237.x</u>
- 396 Johanet A, Secondi J, Lemaire C (2011) Widespread introgression does not leak into allotopy
- 397 in a broad sympatric zone. Heredity 106:962–972. <u>https://doi.org/10.1038/hdy.2010.144</u>
- 398 Kim D, Bauer BH, Near TJ (2022) Introgression and Species Delimitation in the Longear
- 399 Sunfish Lepomis megalotis (Teleostei: Percomorpha: Centrarchidae). Syst Biol 71:273–285,
- 400 https://doi.org/10.1093/sysbio/syab029
- 401 Lemopoulos A, Prokkola JM, Uusi-Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P,
- 402 Koljonen M-L, Koskiniemi J, Vainikka A (2019) Comparing RADseq and microsatellites for
- 403 estimating genetic diversity and relatedness Implications for brown trout conservation.
- 404 Ecol Evol 9:2106–2120. https://doi.org/10.1002/ece3.4905
- 405 Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecology Evol 20:229–
- 406 237. <u>https://doi.org/10.1016/j.tree.2005.02.010.</u>
- 407 Mayr E (1963) Animal Species and Evolution. Belknap; Cambridge, MA, USA: 1963.
- 408 McFarlane SE, Pemberton JM (2019) Detecting the True Extent of Introgression during
- 409 Anthropogenic Hybridization. Trends Ecol Evol 34:315–326.
- 410 <u>https//.doi.org/10.1016/j.tree.2018.12.013.</u>
- 411 Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M (2021) The genomic
- 412 consequences of hybridization. eLife 10:e69016. https://doi.org/10.7554/eLife.69016
- 413 Niedzicka ME, Głowacki BM, Zieliński P, Babik W (2020). Morphology is a poor predictor
- 414 of interspecific admixture the case of two naturally hybridizing newts Lissotriton

- 415 *montandoni* and *Lissotriton vulgaris* (Caudata: Salamandridae). Amphib Reptil 41:489–500.
- 416 <u>https://doi.org/10.1163/15685381-bja10019</u>
- 417 Niedzicka M, Dudek K, Fijarczyk A, Zieliński P, Babik W (2017). Linkage Map of
- 418 Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3:
- 419 Genes Genomes Genet 7:2115–2124. <u>https://doi.org/10.1534/g3.117.041178.</u>
- 420 Pabijan M, Zieliński P, Dudek K, Stuglik M, Babik W (2017). Isolation and gene flow in a
- 421 speciation continuum in newts. Mol Phylogenet Evol 116:1–12.
- 422 <u>https://doi.org/10.1016/j.ympev.2017.08.003</u>
- 423 Pfennig KS, Kelly AL, Pierce AA (2016) Hybridization as a facilitator of species range
- 424 expansion. Proc R Soc B 283:20161329-9. https://doi.org/10.1098/rspb.2016.1329
- 425 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using
- 426 multilocus genotype data. Genetics 155:945–959. https://doi: 10.1093/genetics/155.2.945
- 427 Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data
- 428 for population genetic studies. Ecol Evol 22:4399–4428. <u>https://doi:10.1002/ece3.1305</u>.
- 429 Rage JC & Bailon S (2005) Amphibians and squamate reptiles from the late early Miocene
- 430 (MN 4) of Béon 1 (Montréal-du-Gers, southwestern France). Geodiversitas 27:413–441.
- 431 Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR (2018) SSR-seq: Genotyping
- 432 of microsatellites using next-generation sequencing reveals higher level of polymorphism as
- 433 compared to traditional fragment size scoring. Ecol Evol 8:10817–10833.
- 434 <u>https://doi.org/10.1002/ece3.4533</u>
- 435 Schlüpmann M, Weber G, Lipscher E, Veith M (1999) Nachweis eines freinlandbastardes von
- 436 Teichmolch (Triturus vulgaris) und Fadenmolch (Triturus helveticus). Z Feldherpetol 6:203–
- 437 217.
- 438 Seabra, SG, Silva, SE, Nunes, VL, Sousa VC, Martins J, Marabuto E, Rodrigues ASB, Pina-
- 439 Martins F, Laurentino TG, Rebelo MT, Figueiredo E, Paulo OS (2019) Genomic signatures of

- 440 introgression between commercial and native bumblebees, *Bombus terrestris*, in western
- 441 Iberian Peninsula—Implications for conservation and trade regulation. Evol Appl 12:679–
- 442 691. <u>https://doi.org/10.1111/eva.12732</u>
- 443 Secondi J, Johanet A, Pays O, Cazimajou F, Djalout Z, Lemaire C (2010) Olfactory and
- visual species recognition in newts and their role in hybridization. Behaviour 147:1693–1712.
- 445 Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet PA, Crnobrnja Isailović J,
- 446 Denoël M, Ficetola GF, Gonçalves J, Kuzmin S, Lymberakis P, de Pous P, Rodríguez A,
- 447 Sindaco R, Speybroeck J, Toxopeus B, Vieites DR, Vences M (2014) Updated distribution
- and biogeography of amphibians and reptiles of Europe. Amphib Reptil 35:1–31.
- 449 <u>https://doi.org/10.1163/15685381-00002935</u>
- 450 Sunde J, Yıldırım Y, Tibblin P, Forsman A (2020) Comparing the performance of
- 451 microsatellites and RADseq in population genetic studies: Analysis of data for pike (*Esox*
- 452 *lucius*) and a synthesis of previous studies. Front Genet 11:218.
- 453 <u>https://doi.org/10.3389/fgene.2020.00218</u>
- 454 Steensels J, Gallone B, Verstrepen KJ (2021) Interspecific hybridization as a driver of fungal
- 455 evolution and adaptation. Nat Rev Microbiol 19:485–500. <u>https://doi.org/10.1038/s41579-</u>
- 456 <u>021-00537-4</u>
- 457 Steinfartz S, Vicario S, Arntzen JW, Caccone A (2007) A Bayesian approach on molecules
- 458 and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with
- 459 emphasis on *Triturus* newts. J Exp Zool B Mol Dev Evol. 2308:139-62.
- 460 <u>https://doi.org/10.1002/jez.b.21119</u>.
- 461 Stuglik MT, Babik W (2016) Genomic heterogeneity of historical gene flow between two
- 462 species of newts inferred from transcriptome data. Ecol Evol 6:4513-4525,
- 463 <u>https://doi.org/10.1002/ece3.2152</u>

464	Szatmári L, Cserkész T, Laczkó L, Lanszki J, Pertoldi C, Abramov AV, Elmeros M, Ottlecz
465	B, Hegyeli Z, Sramkó G (2021) A comparison of microsatellites and genome-wide SNPs for
466	the detection of admixture brings the first molecular evidence for hybridization between
467	Mustela eversmanii and M. putorius (Mustelidae, Carnivora). Evol Appl 14:2286-2304.
468	https://doi.org/10.1111/eva.13291
469	Taylor SA, Larson E (2019) Insights from genomes into the evolutionary importance and
470	prevalence of hybridization in nature. Nat Ecol Evol 3:170-177. doi: 10.1038/s41559-018-
471	<u>0777-y</u> .
472	Taylor EB, Boughmann JW, Greonenboomm M, Sniatynksi D, Schluter D, Gow JL (2006)
473	Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined
474	stickleback Gasterosteus aculeatus) species pair. Mol Ecol 15:343-355.
475	Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting
476	hybrid individuals under different hybridization scenarios and with different numbers of loci.
477	Mol Ecol 15:63–72. <u>https://doi.org/10.1111/j.1365-294X.2005.02773.x</u>
478	Wacker S, Aronsen T, Karlsson S, Ugedal O, Diserud OH, Ulvan EM, Hindar K, Næsje TF
479	(2021) Selection against individuals from genetic introgression of escaped farmed salmon in a
480	natural population of Atlantic salmon. Evol Appl 14:1450-1460.
481	https://doi.org/10.1111/eva.13213
482	Wang J (2017) The computer program structure for assigning individuals to populations: easy
483	to use but easier to misuse. Mol Ecol Resour 17:981-990. https://doi.org/10.1111/1755-
484	0998.12650
485	Wielstra B, Arntzen JW (2011) Unraveling the rapid radiation of crested newts (Triturus
486	cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 11:162.
487	https://doi.org/10.1186/1471-2148-11-162

- 488 Wielstra B, Canestrelli D, Cvijanović M, Denoël M, Fijarczyk A, Jablonski D, Liana M,
- 489 Naumov B, Olgun K, Pabijan M, Pezzarossa A, Popgeorgiev G, Salvi D, Si Y, Sillero N,
- 490 Sotiropoulos K, Zieliński P, Babik W (2018) The distributions of the six species constituting
- 491 the smooth newt species complex (Lissotriton vulgaris sensu lato and L. montandoni)-an
- 492 addition to the New Atlas of Amphibians and Reptiles of Europe. Amphib Reptil 39:252–259.
- 493 Yi X, Latch EK (2022) Nonrandom missing data can bias Principal Component Analysis
- 494 inference of population genetic structure. Mol Ecol Resour 22:602–611.
- 495 <u>https://doi.org/10.1111/1755-0998.13498</u>
- 496 Zieliński P, Nadachowska-Brzyska K, Wielstra B, Szkotak R, Covaciu-Marcov SD,
- 497 Cogălniceanu D, Babik W (2013) No evidence for nuclear introgression despite complete
- 498 mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Mol Ecol 22:1884–
- 499 1903.
- 500 Zieliński P, Stuglik MT, Dudek K, Konczal M, Babik W (2014) Development, validation and
- 501 high-throughput analysis of sequence markers in nonmodel species. Mol.Ecol. Resour. 14,
- 502 352-360.
- 503 Zieliński P, Nadachowska-Brzyska K, Dudek K, Babik W (2016) Divergence history of the
- 504 Carpathian and smooth newts modelled in space and time. Mol. Ecol. 25, 3912–3928.
- 505 Zimmerman SJ, Aldridge CL, Oyler-McCance SJ (2020) An empirical comparison of
- 506 population genetic analyses using microsatellite and SNP data for a species of conservation
- 507 concern. BMC Genomics 21, 382. https://doi.org/10.1186/s12864-020-06783-9

Samp	ling site (population field number)	Lissotriton helveticus		Lissotriton vulgaris		F1		Coordinates
		N	F(h)	N $F(v)$		Ν	F(h)	
Hu. No. Po. Ro.	Allopatric localities (<i>L. vulgaris</i> only) Budapest hill (S27-13) Pilisz mount (S24-13) Trondheim (Tpon-Nor) Gartatowice.(S10-12) Krakow (S11-12) Coma, Apuseni mountains (S29-13)			3 3 4 2 3	1 0.996 0.991 1 1 1			47.5764°N 8.8686°E 47.7294°N 9.0068°E 63.9442°N 0.3552°E 50.5742°N 0.6239°E 50.0397°N 9.9176°E 46.2831°N 3.1215°E
Sw.	Strâmba, Bistrita district (S30-13) Sjöbo (TponSwe) total			3 2 23	1 1 0.998			47.2475°N 4.6533°E 55.6729°N 3.7927°E
Fr.	<u>Allopatric site (<i>L. helveticus</i> only)</u> Aumelas (T08-12). Causses du Quercy (PalQue)* Cazevieille (T01-12). Dordogne, Montouleix (S37-07*, PalGir) Ferrières-les-Verreries (T02-12) Ile d'Yeu (palYeu) ND-de-Londres (T04-12)	1 2 5 6 2 2	1 1 0.995 0.991 1 0.987					43.5743°N 3.6442°E 44.2539°N 1.9702°E 43.7597°N 3.7772°E 45.6450°N 0.5885°E 43.8654°N 3.7828°E 46.6955°N 2.3391°W 43.8339°N 3.7460°E
Sp.	Escobedo (S38-07) Fresnedo.(S36-07) Poza de la Sal (T31-13) <i>total</i>	2 3 4 2 29	0.996 0.993 0.987 0.994					43.3889°N 3.8853°W 43.3652°N 4.1589°W 42.6686°N 3.5288°W
Fr.	Sympatric site without evidence of syntopy Ambleteuse, #330 (PalAm)* Bois de l'Epinay, BlGohier (pal38)* Ile St Aubin, Angers (pon44)* Grande Synthe, Prédembourg (S3-12) Orée du bois, Ahuillé (palOr)* Ozoir -la-Ferrière (T10-12) Rocan, Briquenai (PalAr)* Zuydcoote (S2-12) total	4 4 0 4 16 1 0 29	1 1 1 0.998 1 0.999	0 0 4 22 0 0 0 29 55	 	0 0 0 0 0 0 0 0 0 0		50.8086°N 1.6473°E 47.4111°N 0.3977°W 47.5123°N 0.5356°W 51.0200°N 2.2811°E 48.7743°N 2.6588°E 48.7732°N 2.6561°E 49.3926°N 4.8432°E 51.0633°N 2.4867°E
Fr.	Sympatric site with evidence of syntopy Bazenville (palBaz)* Boire des Ecouilles, Liré (pal33)* Bois Boureau (S35-11, S56-14, pal41)* Notre Dame, Sucy-en-Brie (BDN3, 6) Briollay, Nord (S9-12) Briollay, Sud (S05-12) Ecordal I (T35-14) Ecordal II (T36-14) Faisseault (T39-14) Launois sur Vence (T38-14) Lorraine, Liverdun (P.Lor)* Poix Terron (T37-14) Puisaye I (T40-14) Puisaye II (T41-14) Puisaye III (T42-14) Puisaye IV (T43-14) Puisaye V (T44-14) Roissy-en-Brie (T9-12) Denée (S57-14)	3 5 51 3 7 0 29 10 27 5 4 23 24 30 29 30 30 23 30	1 0.990 0.990 1 0.994 0.997 0.999 1 1 1 1 1 0.996 0.994 0.995 0.996 0.997 0.994 0.993	$ \begin{array}{c} 1\\ 6\\ 10\\ 2\\ 31\\ 24\\ 0\\ 41\\ 3\\ 32\\ 1\\ 20\\ 0\\ 29\\ 0\\ 1\\ 25\\ 18\\ 10\\ \end{array} $	1 0.998 1 0.993 1 0.999 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.502	49.2835°N 0.5820°W 47.3601°N 1.1380°W 47.4142°N 0.5428°W 48.7591°N 2.6038°E 47.5707°N 0.5205°W 47.5636°N 0.5255°W 49.5291°N 4.6107°E 49.5257°N 4.5888°E 49.5988°N 4.4802°E 49.6854°N 4.5361°E 48.7462°N 6.0402°E 49.6460°N 4.6557°E 47.6271°N 3.1879°E 47.6379°N 3.1546°E 47.6382°N 3.2514°E 47.6560°N 3.1984°E 47.6560°N 3.1984°E 47.6720°N 3.1820°E 48.7923°N 2.6812°E 47.3957°N 0.6199°W

	Signy l'abbaye I (T32-14)	21	1	1	1	0	49.7103°N 4.3794°E
	Signy l'abbaye II (T33-14)	22	1	1	1	0 🗖	49.7214°N 4.3559°E
	Signy l'abbaye III (T34-14)	27	1	1	1	0 🗖	49.7343°N 4.3892°E
	St Germer de Fly I (S22-13)	13	0.993	4	1	0 🗖	49.4379°N 1.8087°E
	St Germer de Fly, II (S20-13)	3	0.996	8	1	0 🗖	49.4383°N 1.8069°E
	St Germer de Fly, III (S21-13)	8	0.988	1	1	0 🗖	49.4377°N 1.8181°E
	St Germer de Fly, IV (S19-13)	8	0.992	5	1	0 🗖	49.4375°N 1.8125°E
	St Germer de Fly, V (PalBa)*	23	0.994	0	1	0 🗖	49.4399°N 1.8195°E
	Varennes-sur-Loire I (pal43)*	4	0.997	3	1	0 🗖	47.2555°N 0.0110°E
	Varennes-sur-Loire II (pal42)*	3	0.987	4	1	0	47.2241°N 0.0732°E
UK	Offham Marshes (palOff)*	1	1	2	1	0	50.9167°N 0.0833°E
	total	52	0.996	30	1	2	
		2		5			

⁵⁰⁹

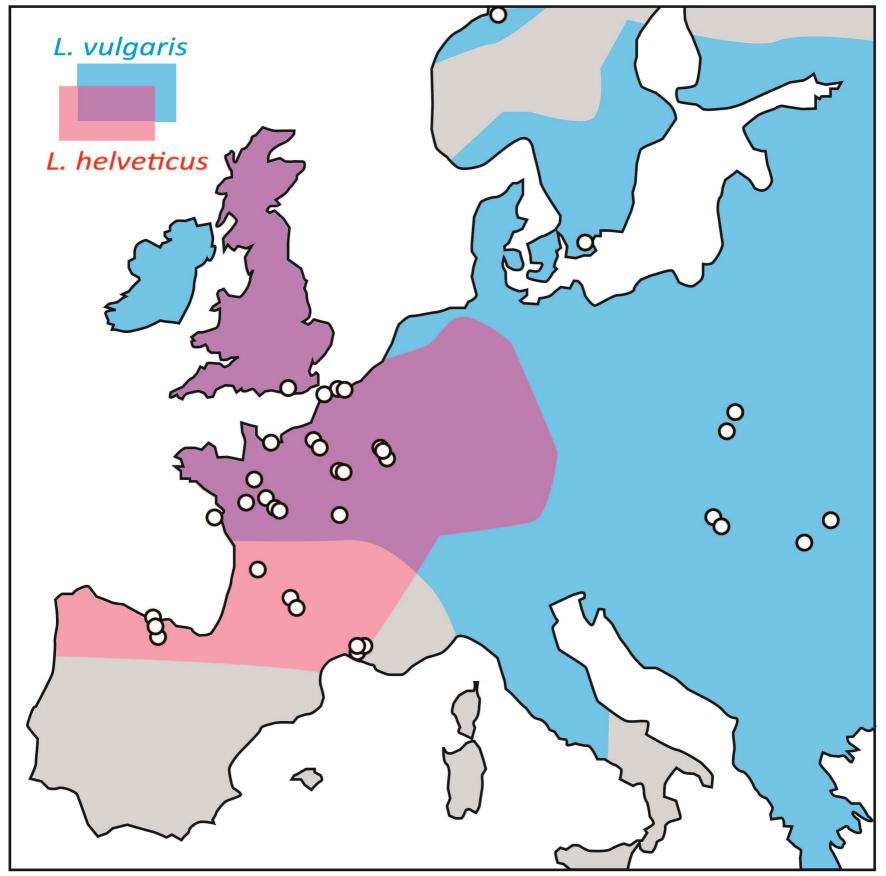
- 510 Table 1. Geographic sampling of *Lissotriton helveticus* and *L. vulgaris*. For each locality, the number of samples
- 511 (N, assignment to a given species based on the present results) and the overall frequencies of the diagnostic
- alleles for each species (F(h) and F(v), respectively) are indicated (only F(h) frequencies are indicated for the

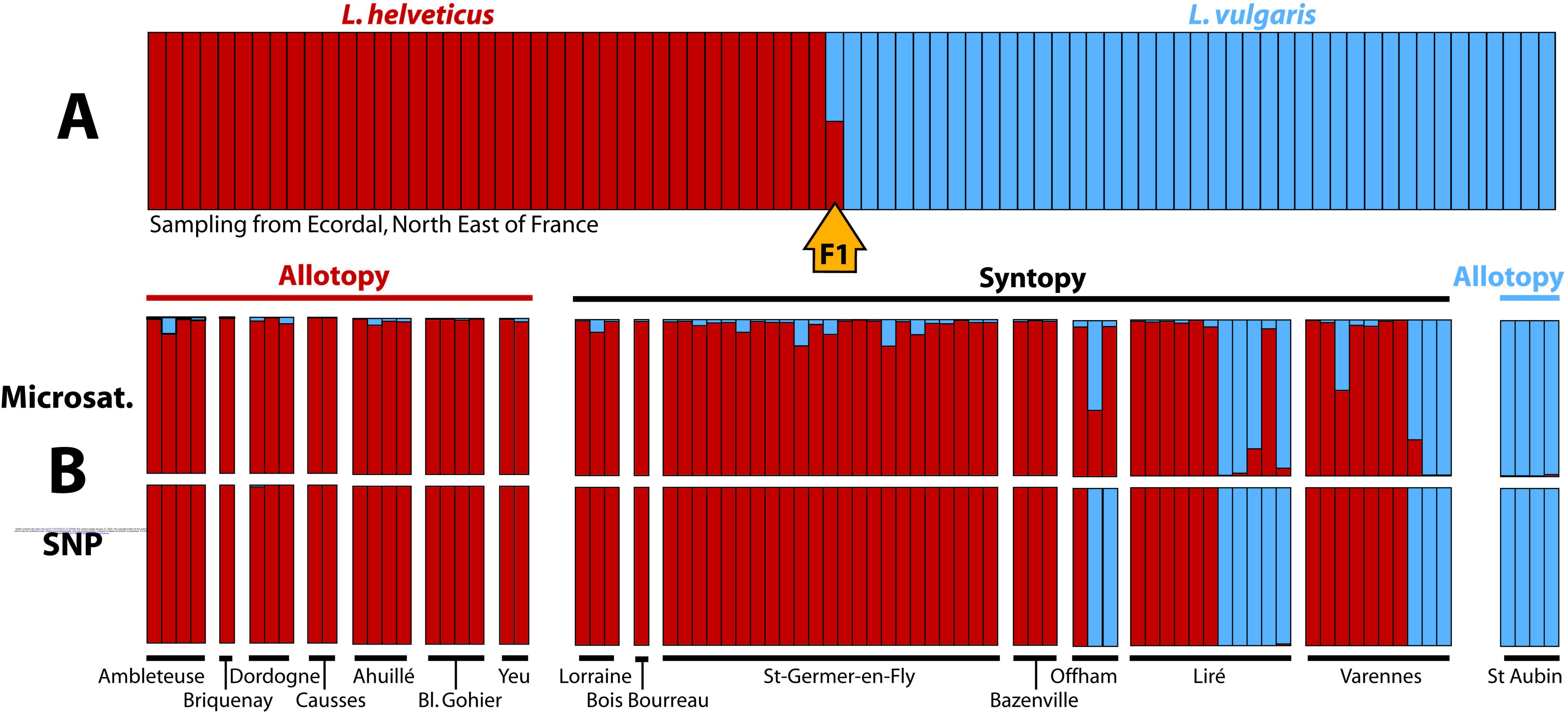
513 two hybrid specimens). Abbreviations : Hu. Hungary, No. Norway, Po. Poland, Ro, Romania, Sw. Sweden, Fr,

514 France, Sp. Spain, UK. United Kingdom ; F1 represents putative F1 hybrids. Localities including samples

already analysed by Johanet et al (2011) are indicated by an asterisk.

516


517 FIGURE CAPTION


Fig 1. Population sampling. The red and blue areas indicate the approximate distribution of *Lissotriton helveticus* and *L. vulgaris*, respectively (sympatric distribution range represented in purple). Each white dot
represents one or several sampled ponds from the same area (cf. Table 1 for details).

521

522 Fig. 2. Overview of the genetic structure using STRUCTURE (with K=2). (A) All the samples genotyped with 523 SNPs are unambiguously assigned to one species or another (probability ≥ 0.99), except for two putative F1 524 hybrid specimens assigned with a probability of 0.50 to both species. Only results from Ecordal (NE France) 525 where one of the two hybrids was detected, are illustrated (cf. Table 1 for overall results). (B) Two alternative 526 Bayesian clustering analyses based on the same set of samples from various localities illustrating the differences 527 between microsatellite and SNP genotyping: the structure inferred from the microsatellite dataset suggests 528 significant introgressive hybridization between both species (above, raw data from Johanet et al. 2011), whereas 529 on the contrary, the structure inferred from the newly generated SNP dataset does not show any signs of 530 admixture between species (below).

531

		_								