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Abstract 30 

Neuroblastoma is characterised by extensive inter- and intra-tumour genetic heterogeneity 31 

and varying clinical outcomes. One possible driver for this heterogeneity are 32 

extrachromosomal DNAs (ecDNA), which segregate independently to the daughter cells 33 

during cell division and can lead to rapid amplification of oncogenes. While ecDNA-mediated 34 

oncogene amplification has been shown to be associated with poor prognosis in many 35 

cancer entities, the effects of ecDNA copy number heterogeneity on intermediate 36 

phenotypes are still poorly understood. 37 

 38 

Here, we leverage DNA and RNA sequencing data from the same single cells in cell lines 39 

and neuroblastoma patients to investigate these effects. We utilise ecDNA amplicon 40 

structures to determine precise ecDNA copy numbers and reveal extensive intercellular 41 

ecDNA copy number heterogeneity. We further provide direct evidence for the effects of this 42 

heterogeneity on gene expression of cargo genes, including MYCN and its downstream 43 

targets, and the overall transcriptional state of neuroblastoma cells. 44 

 45 

These results highlight the potential for rapid adaptability of cellular states within a tumour 46 

cell population mediated by ecDNA copy number, emphasising the need for ecDNA-specific 47 

treatment strategies to tackle tumour formation and adaptation. 48 

 49 

Keywords: extrachromosomal DNA, tumour heterogeneity, cell state diversity, copy 50 

number, neuroblastoma, single-cell RNA sequencing 51 

Introduction 52 

Paediatric neuroblastoma is a genetically heterogeneous tumour demonstrating a spectrum 53 

of different clinical outcomes (1,2). It is characterised by relatively few somatic nucleotide 54 

variants (SNVs) and known driver events, but considerable chromosomal instability and 55 
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somatic copy number alterations (SCNAs) (3,4). One key genetic alteration is frequent 56 

amplification of the MYCN oncogene, associated with unfavourable outcome and aggressive 57 

disease, which often occurs in the form of a high number of copies of one or multiple 58 

extrachromosomal DNA (ecDNA) amplicons (5,6).  59 

 60 

EcDNAs form as the result of DNA damage, in particular double-strand breaks (7), which 61 

may occur on their own or as part of larger catastrophic events including chromothripsis (8). 62 

Despite lacking centromeres, ecDNAs can be maintained in circularised form in the nucleus, 63 

where they replicate proportionally with the chromosomes during S-phase and subsequently 64 

segregate independently and randomly to daughter cells upon cell division. When paired 65 

with a distinctive selective advantage, as in the case of MYCN, these random segregation 66 

patterns can lead to a rapid increase in the number of oncogene copies in the tumour cell 67 

population.  68 

 69 

While ecDNA in cancer was first described over 50 years ago (9), its high prevalence 70 

amongst tumour types and the crucial role it plays in oncogene amplification and tumour 71 

evolution was only recently revisited (6,10–19). Importantly, ecDNA not only serves as a 72 

substrate for oncogene amplification and copy number heterogeneity, but also drives high 73 

oncogene expression by increasing copy number dosage, enhancing chromatin accessibility 74 

and by optimising enhancer topology (15,18,19).  75 

 76 

These transcriptional effects possibly contribute to providing the tumour with increased 77 

plastic potential to evade therapeutic selection pressures and rapidly adapt to changing 78 

environmental conditions. Recent studies have leveraged fluorescence in-situ hybridisation 79 

(FISH) to visualise this increased genetic plasticity within individual tumours, where the 80 

number of ecDNA copies varies substantially between cell populations and clones (20). 81 

However, it is unclear if and to what extent these varying copy numbers affect cell states and 82 

influence cellular phenotypes within individual patients.  83 
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 84 

We here use a combination of previously published single-cell transcriptome data of 85 

neuroblastoma patients and newly derived single-cell genome-and-transcriptome (G&T) (21) 86 

and ecDNA-and-transcriptome (scEC&T) (22) sequencing of neuroblastoma cell lines and 87 

patients to address this issue. We demonstrate substantial transcriptional heterogeneity 88 

within individual neuroblastoma patients and provide evidence that ecDNA copy number 89 

variability is causally linked to these transcriptional changes. We believe that understanding 90 

the precise role that ecDNA plays in generating intra-tumour heterogeneity will not only 91 

enhance our understanding of cancer evolution as a whole, but will further inform our 92 

treatment strategies. 93 

Results 94 

Intra-patient MYCN expression heterogeneity is linked to distinct transcriptional states in 95 

MYCN-amplified primary neuroblastomas 96 

To assess the extent of transcriptional heterogeneity between individual cells in 97 

neuroblastoma, we first analysed gene expression data of twelve MYCN-amplified primary 98 

neuroblastoma samples using 10x single-nuclei RNA sequencing [Figure 1a]. To this end we 99 

combined samples collected locally at the Charité university hospital Berlin (N=4) with two 100 

published cohorts from the University Hospital of Cologne ((23) , N=4) and St. Jude’s 101 

Hospital Memphis ((https://scpca.alexslemonade.org/), N=4) [Table S1, Additional File 2]. 102 

 103 

We annotated cell types by combining principal component analysis (PCA) with canonical 104 

marker gene expression (Methods) obtained from (23) and quantified endothelial cells, 105 

immune cells, mesenchymal cells and tumour cells for all patients. Samples across the 106 

cohort showed an overall high tumour cell content (average 86%, +/- 21), in line with 107 

previous findings (23,24). Most samples consisted of a substantial proportion of immune 108 

cells (average 5%, +/- 9), and varying degrees of endothelial (average 4%, +/- 3) and 109 
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mesenchymal cells (average 4%, +/- 4) [Table S2, Additional File 2]. Transcriptional profiles 110 

were visually inspected using UMAP per patient, which confirmed separation of cell types 111 

into distinct clusters [Figure S1a, Additional File 1], and all non-tumour cells were excluded 112 

for downstream analyses. 113 

 114 

To obtain an in-depth characterisation of the transcriptional landscape of MYCN-amplified 115 

neuroblastomas and to investigate its heterogeneity, we next identified transcriptional 116 

programs (modules) for each patient using non-negative matrix factorisation (cNMF (25), 117 

Methods). We chose an optimal number of modules per patient based on a trade-off 118 

between module stability and reconstruction error (Methods) and identified 106 119 

transcriptional programs across the cohort (mean 9 [6 - 12]). To investigate commonalities 120 

between patients, we performed pairwise Pearson correlation analysis of all modules 121 

followed by hierarchical clustering [Figure 1c] and identified 3 meta modules which were 122 

further split into 10 sub modules (Methods, [Figure S1b, Additional File 1]). Thirty-one 123 

modules without significant correlation to at least 50% of other modules were considered 124 

uncommon and removed from downstream analyses. Average gene activity scores for each 125 

meta and submodule followed by gene set enrichment analysis (GSEA) revealed high 126 

activity of genes involved in cell cycle progression and cell division for Meta Module 1 (e.g., 127 

KIF18B, ASPM, KIF14), in line with recent findings in other cancer entities (26). In particular, 128 

submodules of this cell cycle meta module showed enrichment of replication (S1) and cell 129 

division (S8). Meta module 2 was strongly enriched for genes involved in ribosome 130 

biogenesis and the third meta module contained genes associated with cell-cell interactions 131 

(e.g., CNTN5, TENM2, CTNNA2). The submodules of the ribosome meta module showed 132 

enrichment of genes involved in translation (S2), post-transcriptional regulation (S6) and 133 

cellular response to stress (S10). The cell-cell interaction meta module was divided into 134 

submodules associated with neuronal differentiation (S3), sensory perception (S4), 135 

regulation of cell size (S5), axonogenesis (S7) and synaptic signalling (S9) [Figure 1d; Table 136 

S3, Additional File 2]. 137 
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 138 

Recent large-scale efforts into transcriptional cell states pan-cancer have identified cell-cycle 139 

related modules, but not any associated with ribosome biogenesis or cell-cell interactions 140 

(26). We thus hypothesised that the latter modules might be specific to neuroblastoma 141 

biology and indicative of MYCN-mediated upregulation of ribosome biogenesis (27,28) and 142 

downregulation of neurogenesis (29). To assess this, we correlated MYCN expression levels 143 

with module activity for all patients and observed higher average correlation scores with 144 

modules grouped into the ribosomal biogenesis meta module 2, as opposed to cell cycle or 145 

cell-cell interaction [Figure 1f]. The direct association between MYCN expression and 146 

ribosomal biogenesis activity was further confirmed by visual inspection of UMAPs with meta 147 

module activity and MYCN expression overlaid respectively [Figure 1b, e]. 148 

 149 

Interestingly, within the cell cycle meta module we found the sub module associated with 150 

replication pathways and the G1/S transition pathway (S1) to be positively correlated with 151 

MYCN expression, while the sub module associated with cell division (S8) was negatively 152 

correlated with MYCN [Figure S1c, Additional File 1]. Investigating  canonically expressed 153 

cell cycle marker genes for each cell (30), we found cells with high activity of the cell cycle 154 

meta module 1 to be predominantly in G2M and S phase [Figure S1d, Additional File 1] in 155 

line with the role of MYCN in cellular proliferation (31). MYCN expression was further 156 

significantly associated with cell cycle phase in 7 out of 12 samples. In the remaining 5 157 

samples the number of detected features and reads was significantly lower on average to 158 

those samples with association, suggesting technical rather than biological effects as a 159 

potential cause for this lack of association [Figure S1e, Additional File 1].  160 

 161 

Taken together, we observe substantial transcriptional heterogeneity and distinct 162 

transcriptional states of cells within individual patients directly associated with and potentially 163 

causally linked to heterogeneous MYCN expression levels. 164 
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Intra-patient MYCN expression heterogeneity is biologically functional and consistent 165 

between patients 166 

To confirm that the observed MYCN expression heterogeneity is biologically functional, we 167 

next grouped cancer cells into discrete groups with high (MYCN-high), intermediate (MYCN-168 

med) and low (MYCN-low) MYCN expression levels based on the top and bottom 30% 169 

expression quantiles per patient. Differential gene expression analysis between MYCN-high 170 

and MYCN-low cells [Figure 2a, b] showed an average MYCN log2 fold change of 1.613 171 

(1.138 - 2.132). Next, we ranked all genes according to their fold change and tested whether 172 

known MYCN target genes (32) were enriched in this ordered list using GSEA, which was 173 

the case in 11 out of 12 patients. This consistent differential activity of MYCN target genes 174 

indicates that observed MYCN expression differences may affect expression of downstream 175 

MYCN targets [Figure 2c inset] and strongly suggests that the observed MYCN variability is 176 

biologically functional. Additionally, the normalised enrichment score (NES) of MYCN target 177 

genes was significantly correlated with the difference in gene expression between MYCN-178 

high and MYCN-low cells (Pearson correlation, p = 0.0043), indicating a direct connection 179 

between the degree of MYCN expression variability and the observed differences in 180 

downstream MYCN target activity [Figure 2c]. 181 

 182 

To identify additional differences between MYCN-high and MYCN-low cells, we performed 183 

GSEA on gene ontology (GO) biological processes and identified a set of 38 pathways that 184 

were recurrently enriched in every single patient and positively associated with MYCN 185 

expression. These 38 pathways include ribosome biogenesis, RNA catabolic processes, 186 

protein targeting, peptide biosynthetic and viral processes [Figure 2d,e; Table S4, Additional 187 

File 2; Table S5, Additional File 3]. To investigate how these 38 recurrent pathways relate to 188 

the transcriptional cell states identified above, we performed a meta pathway enrichment 189 

analysis (Methods) [Figure 2f]. Briefly, all GO terms were ranked according to their averaged 190 

NES in each meta module and this ranked list was tested for enrichment for each of the 38 191 
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original pathways. The ribosome meta module 2 and its sub modules showed a strong 192 

positive association with all 38 pathways similar to MYCN-high cells [Figure 2e,f], whereas 193 

the cell-cell interaction module 3 and cell-cycle module 1 showed a strong negative 194 

association.  195 

 196 

We further investigated whether MYCN-high and -low cells expressed signatures of 197 

mesenchymal and adrenergic differentiation states (33,34). Overall, all samples in the 3 198 

cohorts primarily expressed the adrenergic signature. We found cells with high MYCN 199 

expression to show lower expression of adrenergic features but also lower expression of 200 

mesenchymal features than cells with low MYCN expression [Figure S1f, Additional File 1]. 201 

In conclusion, we do not find any evidence for adrenergic to mesenchymal state transition 202 

driven by MYCN expression within individual patients. 203 

 204 

The enriched pathways demonstrate biological functionality of the observed MYCN 205 

expression heterogeneity on the single-cell level and its consistency across a cohort of 206 

MYCN-amplified primary neuroblastomas. We describe its association with changes in 207 

ribosomal activity and cell-cell interaction and to a weaker degree with cell cycle transition, 208 

potentially indirectly through co-activation of other cancer pathways (26). 209 

MYCN-amplified neuroblastoma cells show high inter-cellular ecDNA copy number 210 

heterogeneity  211 

One potential cause of the observed MYCN gene expression heterogeneity are variations in 212 

copy number, possibly driven by ecDNA (6,20,35). Unequal mitotic segregation of ecDNA 213 

can lead to high inter-cellular copy number heterogeneity, but the extent of this 214 

heterogeneity within patients remains unclear. 215 

 216 

We therefore performed genome and transcriptome (G&T) sequencing of one primary 217 

neuroblastoma (N=96 cells) and two neuroblastoma cell lines CHP212 (N=96 cells) and 218 
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TR14 (N=192 cells)), which are known to harbour ecDNA-linked MYCN amplifications. 219 

Additionally, we performed single-cell scEC&T-seq (22) on the same patient sample (N=96 220 

cells) and cell lines (CHP212 (N=170 cells) and TR14 (N=42 cells)), to confirm the presence 221 

of ecDNA and to determine ecDNA-amplified regions in the genome [Figure 3a]. We 222 

hypothesised that ecDNA-amplified regions show patient- or cell-line specific amplification 223 

and expression patterns and that ecDNA copy number variation is the main contributor to 224 

MYCN expression heterogeneity. 225 

 226 

Previous investigations into the ecDNA amplicon structures in CHP212 and TR14 (18) and 227 

patient 8 (22) revealed that the CHP212 cell line contains one single circular amplicon of 228 

size 1.7Mb containing genes LPIN1, TRIB2, DDX1 and MYCN. In contrast, TR14 contains 229 

three different circular amplicons 710, 475 and 1,000 kbp in size respectively, harbouring 230 

together over 29 genes of which we only consider those containing the known 231 

neuroblastoma oncogenes MYCN, CDK4 and MDM2 [Figure 3b]. The ecDNA amplicon 232 

structure in patient 8 is 500 kbp long and only contains MYCN [Figure S2b, Additional File 1]. 233 

The varying amplicon structures were also clearly visible from overall read coverage in DNA 234 

sequencing [Figure 3a, track “DNA”]. 235 

 236 

We next determined global copy number profiles for each single cell from G&T sequencing 237 

using Ginkgo (36), and then refined those copy number profiles by leveraging previously 238 

reconstructed precise ecDNA breakpoints (Methods) (18,22). Genomic regions that 239 

contained these oncogenes on ecDNA showed extensive copy number heterogeneity across 240 

cells within a single cell line and patient, whereas regions that were not on ecDNA did not 241 

[Figure 4a]. The MYCN locus in CHP212 showed on average a copy number of 50 (range 3 - 242 

353), for the MYCN locus in TR14 the average copy number was estimated at 105 (range 6 - 243 

852). The copy number of the MYCN amplicon locus in patient 8 was on average 191 (range 244 

5 - 916) [Figure S2c, Additional File 1]. For a full overview of the copy number states and 245 

expression levels for all genes considered, please refer to [Table S6,S7, Additional File 2]. 246 
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To confirm the presence of ecDNA and to validate the copy number estimates, we 247 

performed FISH by staining centromeres and genomic regions containing MYCN, CDK4 and 248 

MDM2 [Figure S2a, Additional File 1] (Methods). FISH in metaphase spreads confirmed the 249 

presence of ecDNA in all cases, and copy number estimates from FISH in interphase cells 250 

showed distributions similar to those obtained from sequencing [Figure 4a].  251 

 252 

In TR14, the MYCN locus is present in two different ecDNA amplicons, which raises the 253 

question whether one amplicon contributes more copies to the total MYCN copy number 254 

than the other. We thus estimated the fraction of copies contributed per amplicon by 255 

leveraging additional non-overlapping loci on the amplicon and distributing the MYCN copy 256 

number accordingly (Methods). The amplicon containing only MYCN was substantially larger 257 

and contributed more copies than the amplicon containing both MYCN and CDK4. However, 258 

when comparing the number of MYCN-only amplicons to the largest amplicon in this cell line 259 

carrying MDM2, we found two thirds of the cells to harbour more ecDNA containing MYCN 260 

than MDM2, suggesting that amplicon size alone does not equate to ecDNA copy number. 261 

 262 

We next investigated whether the observed copy number heterogeneity is reflected on the 263 

transcriptional level by leveraging RNA expression readouts from the same single-cells. Due 264 

to the cell lines' unique amplicon structures, different genes can be amplified on ecDNA. As 265 

expected, we observed increased gene expression levels in genes present on the ecDNA 266 

including MYCN, DDX1, TRIB2 and LPIN1 in CHP212 and MYCN, CDK4 and MDM2 in 267 

TR14. In contrast, genes not present on their respective amplicons showed only low overall 268 

levels of expression. For an example, consider MDM2, CDK4 in the CHP212 cell line in 269 

[Figure 3b, track “RNA”]. Thus, significant inter-cellular ecDNA copy number heterogeneity 270 

occurs in neuroblastoma cells. 271 
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Inter-cellular ecDNA copy number heterogeneity drives transcriptional states in 272 

neuroblastoma cells 273 

Pan-cancer analyses have recently confirmed that copy number is a main driver of aberrant 274 

gene expression across human cancers (37). Since ecDNA presence can lead to 275 

exceptionally high copy number levels (10,16), we leveraged the combined genome and 276 

transcriptome data from G&T and scEC&T sequencing to investigate whether the observed 277 

inter-cellular ecDNA copy number heterogeneity is reflected in the transcriptome.  278 

 279 

Overall we found strong positive correlations between ecDNA copy number and mRNA 280 

expression across all genes contained on the ecDNA amplicons [Figure 4b; Figure S3a,b, 281 

Additional File 1]. Gene expression measured in TPM increased linearly with ecDNA copy 282 

number, explaining gene expression variability on average by 42% (median: 47, range 2.5 - 283 

76) in CHP212 and by 25% (median: 22, range 0.2 - 66) in TR14. Interestingly, effect sizes 284 

differed significantly between genes on amplicons, but also between cell lines for the same 285 

gene [Table S8, Additional File 2]. This sample- and gene-specific dosage effect of ecDNA 286 

copy number suggests other regulatory mechanisms to be involved in gene expression 287 

heterogeneity such as chromatin conformation, enhancer hijacking and ecDNA hub 288 

formation (15,18,38). 289 

 290 

To ascertain that this dosage effect is truly driven by ecDNA, we exploited the linear 291 

relationship of ecDNA copy number and gene expression to build a gene-wise sample-292 

specific linear model from the G&T-seq data [Table S8, Additional File 2]. We then predicted 293 

copy number from gene expression in cells sequenced with scEC&T-seq, for which absolute 294 

copy number measurements are not readily available, and observed a strong correlation of 295 

the predicted copy number with the number of ecDNA reads in a region covering that gene 296 

[Figure S3c, Additional File 1]. This strongly suggests that the observed gene dosage is 297 
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indeed caused by ecDNA copy number which ultimately drives the increase in gene 298 

expression in the analysed samples. 299 

 300 

To confirm that the observed expression differences found in the high-throughput 10X 301 

patient cohort might be plausibly linked to ecDNA, we repeated the above analysis on the 302 

cell lines by considering the transcriptomes from both G&T and scEC&T data. We once 303 

again stratified cells into MYCN high and low expressing cells (30% quantile) and tested for 304 

differential gene expression between both groups. In CHP212, MYCN, LPIN1, DDX1 and 305 

TRIB2 were consistently identified, in line with CHP212 containing a single ecDNA 306 

containing those genes [Figure 3b]. Interestingly, in TR14 only MYCN itself and one 307 

additional, non-amplified gene (E2F1), were identified, likely due to the relative 308 

overabundance of the ecDNA amplicon containing only MYCN compared to the two 309 

alternative circle structures present in the cell line [Figure 3b; Table S9,S10, Additional File 310 

2]. 311 

 312 

As previously, we ranked the genes based on their expression difference and then 313 

performed GSEA for GO biological processes. Consistent with our observations in the high-314 

throughput patient data we observed elevated MYCN target gene expression in MYCN-high 315 

cells [Figure 4c; Figure S3d, Additional File 1] which supports our previous result of 316 

functional MYCN heterogeneity in patients. Among the 38 identified pathways enriched in 317 

MYCN-high cells in patients, 5 and 17 pathways were also significantly positively enriched in 318 

CHP212 and TR14 respectively [Figure 4d; Table S11, Additional File 2] including the 319 

ribosome biogenesis pathway.  320 

 321 

In summary, we observed similar transcriptional patterns in the patient cohort as compared 322 

to the cell lines for which we have established a clear link to ecDNA presence.  323 
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Conclusions/Discussion 324 

The role of ecDNA in the development of malignant phenotypes has been explored in recent 325 

studies which uncovered ecDNA-associated poorer survival and treatment resistance 326 

(13,15,39). We here use genomic and transcriptomic information from the same single cells 327 

to link MYCN-amplifications on ecDNA to downstream transcriptional effects and cell states. 328 

We show that ecDNA-mediated intercellular heterogeneity of MYCN expression within 329 

patients creates various co-existing cellular subpopulations with differing transcriptional 330 

states. We demonstrate changes in key pathways including ribosome biogenesis and cell-331 

cell interaction, a potential substrate for rapid adaptation to environmental changes including 332 

treatment [Figure 4e]. 333 

 334 

Our characterization of transcriptional programs in MYCN-amplified neuroblastoma revealed 335 

3 recurring meta pathways across 12 patients, which are associated with cell cycle, 336 

ribosome biogenesis and cell-cell interaction. While the cell cycle module was also found in 337 

recent investigations pan-cancer (26), the lack of ribosome biogenesis in this study might 338 

indicate that it is neuroblastoma specific. We demonstrated functional intra-patient MYCN 339 

expression heterogeneity across the cohort leading to upregulation of ribosome biogenesis 340 

and deregulation of neurogenesis genes within individual patients, effects that were 341 

previously only described in bulk between patients or cell lines with varying MYCN 342 

expression (32), (27,28)(29). Future work will need to elaborate to what extent this 343 

heterogeneity can be found in non-MYCN-amplified neuroblastoma or in tumours harbouring 344 

other forms of amplification, such as homogeneously staining regions.  345 

 346 

Surprisingly, not all individuals showed significant associations between MYCN expression 347 

levels and cell cycle phase, although it has been shown that MYCN amplification is 348 

associated with the cells ability to escape G1 phase (40,41). This might be explained by the 349 
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varying degrees of MYCN expression heterogeneity in our cohort, where in some patients 350 

phenotypic effects might be weaker and remain undetected.  351 

 352 

To investigate the role of ecDNA in the observed transcriptional heterogeneity, we inferred 353 

ecDNA amplicon-specific copy number from single-cell DNAseq data. While FISH followed 354 

by semi-automated counting of fluorescent markers remains the gold standard for ecDNA 355 

detection, the technique is limited by the 2D nature of the images and can underestimate 356 

ecDNA copy number due to stacking of cells. We show that single-cell DNA sequencing is 357 

sufficiently accurate to recapitulate amplicon boundaries and that, depending on the 358 

amplicon architecture, accurate ecDNA copy numbers can be derived from read counts by 359 

combining general copy number calling methods (36) with a custom inference algorithm. 360 

However, naturally, such efforts are dependent on the quality of the output of the copy 361 

number calling algorithm. 362 

 363 

Another possible source of noise is the integration of different sequencing technologies in 364 

our cohort, in particular single-nuclei sequencing in patients with single-cell sequencing in 365 

cell lines. While both approaches were found to be comparable with similar sensitivity (42–366 

44), single-nuclei sequencing can be prone to a higher gene dropout rate, which might affect 367 

the size of the discovered gene sets. However, we also found a generally good agreement 368 

between approaches and sequencing technologies in this study. 369 

 370 

In conclusion, we were able to associate cell state heterogeneity in MYCN-amplified 371 

neuroblastomas with ecDNA copy number heterogeneity, implying that the rapid evolutionary 372 

dynamics associated with ecDNA (20) have the potential to also enable rapid phenotypic 373 

adaptation potentially within a single cell division cycle. One important question is thereby 374 

whether the relationship between the number of ecDNA copies and the transcriptional 375 

effects and its function are linear, and if and where there is an upper limit to the fitness 376 

advantage accrued through ecDNA accumulation. Arguably, the replicative and metabolic 377 
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burden inferred by excessive ecDNA copy numbers will likely lead to diminishing returns in 378 

terms of clonal fitness beyond a certain level. However, in our study we observed largely 379 

linear relationships between ecDNA copy number and transcriptomic output within the 380 

observed copy number range. Additionally, we could show that increases in MYCN target 381 

gene expression activity are linearly correlated with MYCN expression fold change increase, 382 

suggesting that additional ecDNA copies continue to linearly affect oncogene function within 383 

the range of copy numbers observed in real tumours and cell lines. Additional experiments 384 

will need to investigate whether this linear increase directly translates to an increase in 385 

biological function, for example by increasing cell growth and proliferation through 386 

upregulation of ribosome biogenesis. 387 

 388 

Treatment strategies targeting downstream effects of ecDNA-mediated pathways have been 389 

shown to lead to therapy resistance or recurrence after the treatment ended (14), likely 390 

because of rapid re-emergence of cells with high ecDNA copy number. Investigating the 391 

ecDNA evolution and associated cellular states during and after treatment could potentially 392 

uncover new treatment strategies. 393 

Figures 394 

Figure 1: Cellular state heterogeneity in MYCN-amplified neuroblastomas 395 

A: Schematic of available data and sample preparation of 12 MYCN-amplified 396 

neuroblastoma patients with single-nuclei RNA-seq (10X genomics) and workflow; B: UMAP 397 

of 4,641 single-nuclei of patient 1, tumour cells coloured by MYCN expression level; C: 398 

Heatmap of Pearson correlation coefficients of TPM Z-scores of patient derived modules 399 

from non-negative matrix factorization, rows coloured by meta and sub modules, columns 400 

coloured by patient of origin; D: Heatmap of average TPM Z-score across sub modules of 401 

meta module defining genes; E: UMAPs of patient 1 coloured according to corresponding 402 

meta module activity; F: Correlation of MYCN expression and patient derived modules, 403 

grouped by meta modules 404 
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 405 

Figure 2: Functional MYCN expression heterogeneity in MYCN-amplified 406 

neuroblastoma 407 

A: MYCN expression distribution of patient 1 coloured by MYCN groups; B: Workflow 408 

schematic of DEG and GSEA C: Correlation of MYCN expression difference between 409 

MYCN-high and MYCN-low cells and normalised enrichment score of MYCN target genes 410 

per patient, colours represent the negative logarithmic adjusted p-value of the enrichment, 411 

Pearson correlation coefficient and p-value are given as inset, inset: GSEA of MYCN target 412 

genes, genes decreasingly ordered by logarithmic fold change derived from differential gene 413 

expression analysis between MYCN-high and MYCN-low cells in patient 1; D: Barplot of the 414 

number of pathways recurrently positive (red) or negative (green) enriched in the respective 415 

number of patients; E: Network of 38 recurring pathways enriched in cells with high MYCN 416 

expression across all 12 patients, edges refer to similarity of underlying gene set over a 417 

threshold, line type corresponds to kappa score referring to the number of overlapping genes 418 

in the gene set, colours highlight manual set summary term, some labels omitted for better 419 

readability, full list can be accessed in [Table S5, Additional File 3]; F: Meta pathway 420 

enrichment of 38 GO-Terms in ranked average NES list of meta modules and sub modules 421 

 422 

Figure 3: EcDNA amplicon structures in neuroblastoma cell lines 423 

A: Two MYCN-amplified neuroblastoma cell lines, TR14 and CHP212, with G&T-seq and 424 

scEC&T-seq; B: Mean scDNA-seq read coverage of selected regions on chromosomes 2 425 

and 12; amplicon boundaries from scEC-seq (red); schematic of ecDNA amplicons in 426 

CHP212 and TR14; distribution of gene expression (TPM) for CHP212 and TR14 cells of 427 

LPIN1, TRIB2, DDX1, MYCN, CDK4 and MDM2. 428 

 429 

Figure 4:  EcDNA copy number heterogeneity in neuroblastoma cell lines 430 

A: Distribution of ecDNA amplicon copy number adapted from Ginkgo copy number profiles 431 

(500kb bin size) from single-cell whole genome sequencing (dark) and distribution of foci 432 
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counts from FISH (light) for MYCN in CHP212 and MYCN, CDK4 and MDM2 in TR14); B: 433 

Correlation of gene expression and copy number of MYCN in CHP212, Pearson correlation 434 

coefficient and p-value are given as inset; C: GSEA of MYCN target genes, genes 435 

decreasingly ordered by logarithmic fold change derived from differential gene expression 436 

analysis between MYCN-high and MYCN-low cells in CHP212; D: NES of significantly 437 

enriched recurring pathways in patients per cell line; E: Schematic of summarising results 438 

Methods 439 

Cell culture 440 

Human cancer cell line CHP212 was obtained from the American Type Culture Collection 441 

(ATCC; Manassas, VA, USA) and cancer cell line TR14 was kindly provided by J. J. 442 

Molenaar (Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands). Cells 443 

were tested for Mycoplasma sp. contamination with a Lonza MycoAlert system (Lonza) and 444 

absence of contamination was confirmed biweekly. STR genotyping (Genetica DNA 445 

Laboratories and IDEXX BioResearch) was performed to confirm the identity of both cell 446 

lines. For cell culture, we used RPMI-1640 medium (Thermo Fisher Scientific) supplemented 447 

with 1% penicillin, streptomycin, and 10% FCS. Cell viability was assessed with 0.02% 448 

trypan blue (Thermo Fisher Scientific) mixed in a 1:1 ratio, and counted with a BioRad TC20 449 

cell counter.  450 

Patient samples and clinical data access 451 

This study comprised the analyses of tumour and blood samples of patients diagnosed with 452 

neuroblastoma between 1991 and 2016. Specimens and clinical data were archived and 453 

made available by Charité-Universitätsmedizin Berlin or the National Neuroblastoma 454 

Biobank and Neuroblastoma Trial Registry (University Children’s Hospital Cologne) of the 455 

GPOH. The MYCN gene copy number was determined as a routine diagnostic method using 456 
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FISH. DNA and total RNA were isolated from tumour samples with at least 60% tumour cell 457 

content as evaluated by a pathologist. 458 

Preparation of Metaphase spreads and FISH 459 

Cells were cultured in a 15 cm dish and grown to 80% confluency. Metaphase arrest was 460 

performed by adding KaryoMAX™ Colcemid™ (10 µL/mL, Gibco) and incubating for 1-2 461 

hours. Afterwards, we washed the cells with PBS, trypsinized and centrifuged at 200 g for 10 462 

min. We slowly added a total of 10 mL of 0.075 M KCl preheated at 37 °C, one mL at a time 463 

and vortexing at maximum speed in between. Cells were then incubated for 20 min at 37 °C. 464 

For cell fixation, we added 5 mL of ice-cold 3:1 MeOH/acetic acid (kept at -20 °C), one mL at 465 

a time and resuspending the cells by flicking the tube. We centrifuged the sample at 200 g 466 

for 5 min. We repeated this step of addition of the fixate followed by centrifugation four times. 467 

Finally, two drops of cells within 200 µL of MeOH/acetic acid were added onto prewarmed 468 

slides from a height of 15cm and slides were incubated overnight. We fixed the slides in 469 

MeOH/acetic acid for 10 min at -20 °C and washed them in PBS for 5 min at room 470 

temperature (RT). We incubated the slides in pepsin solution (10 µL pepsin (1 g / 50 mL) in 471 

0.001N HCl) at 37 °C for 10 min and washed in 0.5x SSC buffer for 5 min. Dehydration of 472 

the slides was performed by 3-minutes washes in 70%, 90% and 100% cold ethanol (stored 473 

at -20 °C). After drying, we stained the slides with 10 µL of Vysis LSI N-MYC 474 

SpectrumGreen/CEP 2 SpectrumOrange Probes (Abbott), ZytoLight ® Spec CDK4/CEN12 475 

Dual Color Probe (ZytoVision) or ZytoLight ® SPEC MDM2/CEN 12 Dual Color Probe 476 

(Zytovision), covered with a coverslip and sealed with rubber cement. The probes were 477 

denatured by incubation at 72 °C for 5 min in a Thermobrite (Abbott) followed by overnight 478 

incubation at 37°C. We washed the slides for 5 min in 2× SSC/0.1% IGEPAL at RT followed 479 

by a 3-minutes wash at 60 °C in 0.4× SSC/0.3% IGEPAL (Sigma-Aldrich Inc.), and an 480 

additional 3-minutes wash in 2× SSC/0.1% IGEPAL at RT. After drying, we used 12 µL 481 

Hoechst 33342 (10 µM, Thermo Fisher Scientific) to stain the slides for 10 min, followed by a 482 
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wash with PBS for 5 min. Once the slides were completely dried, a coverslip was mounted 483 

and sealed with nail polish. Images were taken using a Leica SP5 Confocal microscope.  484 

Interphase FISH 485 

TR14 cells for interphase FISH were grown in 8-chamber slides (Thermo Scientific™ Nunc™ 486 

Lab-Tek™) to 80 % confluence. Wells were fixed in MeOH/acetic acid for 20 min at -20 °C 487 

followed by a wash of the slide in PBS for 5 min at room temperature (RT). The wells were 488 

removed and digestion of the slides was done in Pepsin solution (0.001 N HCl) with the 489 

addition of 10 µl pepsin (1 gr/50 mL) at 37 degrees for 10 min. Slides were washed in 0.5x 490 

SSC for 5 min and dehydrated by washing in 70 %, 90 % and 100 % cold ethanol stored at -491 

20 °C (3min each). Dried slides were stained with either a 5 µl of Vysis LSI N-MYC 492 

SpectrumGreen/CEP 2 SpectrumOrange Probes (Abbott), ZytoLight ® Spec CDK4/CEN12 493 

Dual Color Probe (ZytoVision) or ZytoLight ® SPEC MDM2/CEN 12 Dual Color Probe 494 

(Zytovision), covered with a coverslip and sealed with rubber cement. Denaturing occurred in 495 

a Thermobrite (Abbott) for 5min at 72 °C followed by 37 °C overnight.  The slides were 496 

washed for 5 min at RT within 2× SSC/0.1 % IGEPAL, followed by 3 min at 60 in 0.4× 497 

SSC/0.3 % IGEPAL (Sigma-Aldrich Inc.) and further 3 min in 2× SSC/0.1 % IGEPAL at RT. 498 

Dried slides were stained with 12 µl Hoechst 33342 (10 µM, Thermo Fisher) for 10 min and 499 

washed with PBS for 5 min. After drying, a coverslip was mounted on the slide and sealed 500 

with nail polish. Images were taken using a Leica SP5 Confocal microscope and analysed 501 

using the FIJI find maxima function.  502 

Nuclei isolation 503 

For nuclei isolation, tissue samples were added in 1mL of ice-cold EZ PREP buffer (Sigma) 504 

and homogenised using a pre-cooled glass dounce tissue homogenizer (Wheaton). We used 505 

ten strokes with the loose pestle followed by 5 strokes with the tight pestle for adequate 506 

tissue homogenization. The sample was kept on ice at all times during homogenization to 507 

avoid heat generation caused by friction. After homogenization, we filtered the sample using 508 
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a BD Falcon tube with a 35µm cell strainer cap (Becton Dickinson). To estimate the number 509 

of intact nuclei, we stained with 0.02% trypan Blue (Thermo Fisher Scientific) in a 1:1 ratio. 510 

Fluorescence-activated cell sorting (FACS)  511 

One to ten million neuroblastoma cells were stained with Propidium Iodide (PI, Thermo 512 

Fisher Scientific) in 1× PBS, and viable cells selected based on the forward and side 513 

scattering properties as well as PI staining. Nuclei suspensions were stained with DAPI 514 

(Thermo Fisher Scientific, final concentration 2 μM). For plate-based single-cell sequencing, 515 

viable cells were sorted using a FACSAria Fusion flow cytometer (Biosciences) into 2.5 μL of 516 

RLT Plus buffer (Qiagen) in low binding 96-well plates (4titude) sealed with foil (4titude) and 517 

stored at −80 °C until processing. For droplet-based single-nuclei RNA-seq, DAPI-positive 518 

nuclei were sorted using a FACSAria Fusion flow cytometer (Biosciences) into 20 μL of 4% 519 

(w/vol) Bovine Serum Albumin (BSA; Sigma) in 1× PBS, supplemented with 2 μL of RNAse-520 

In (40 U/μL; Life Technologies) and 2 μL of SUPERase-In (20 U/μL; Life Technologies). 521 

Droplet-Based snRNA-seq  522 

Droplet-based single-nuclei RNA-seq was performed using the 10x Genomics Chromium 523 

Single Cell 3’ Kit (v.3.1) following the manufacturer’s protocol (45). For single nuclei gel 524 

bead-in-emulsions (GEMs) generation, we aimed for a target output of 10,000 nuclei for 525 

each sample. The amplified cDNA and final libraries were evaluated on a 4200 Tapestation 526 

(Agilent Technologies) using the HS-D5000 and HS-D1000 High Sensitivity DNA kits 527 

(Agilent Technologies), respectively. snRNA-seq libraries were sequenced on an Illumina 528 

NovaSeq 6000.  529 
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G&T-seq and scEC&T-seq 530 

For plate-based single-cell sequencing, physical separation of genomic DNA and mRNA, 531 

and cDNA generation was performed as described in the G&T-seq protocol by Macaulay et 532 

al. (21). For G&T-seq, single-cell’s gDNA was purified using 0.8× AMPure XP beads 533 

(Beckman Coulter) and genomic DNA amplification was carried out using the PicoPLEX 534 

Single Cell WGA kit v3 (Takara) and following the manufacturer’s instructions. For scEC&T-535 

seq, the purified gDNA was subjected to exonuclease digestion and rolling-circle 536 

amplification as previously described (22). All single-cell libraries were prepared using the 537 

NEBNext Ultra II FS kit (New England Biolabs) following the manufacturer’s instructions but 538 

using one-fourth volumes. Unique dual index primer pairs (New England Biolabs) were used 539 

to barcode single-cell libraries. Pooled libraries were sequenced on a HiSeq 4000 instrument 540 

(Illumina) or a NovaSeq 6000 instrument with 2× 150bp paired-end reads for genomic DNA 541 

and circular DNA libraries and 2× 75 bp paired-end reads for cDNA libraries. 542 

Single-nuclei RNA-seq processing 543 

10x Genomics Cell Ranger v.5.0.1 was used to quantify the sequencing reads against the 544 

human genome build 38 (hg38), distinguish cells from the background and generate count 545 

tables of unique molecular identifiers (UMIs) for each gene per cell. Intronic counts were 546 

included. 547 

 548 

Single-cell DNA-seq and RNA-seq processing 549 

Reads sequenced from the genomic DNA libraries were trimmed using Trim Galore (version 550 

0.6.4) (46) and mapped to the human genome build 19 (hg19). Alignment was performed 551 

with bwa mem (version 0.7.17) (47). 552 

Hisat2 (version 2.2.1) (48) was used to align the RNAseq data obtained from Smart-Seq2 553 

(49) against a transcriptome reference created from hg19 and ENCODE annotation v19 (50). 554 

Afterwards genes and isoforms were quantified using rsem (version 1.3.1) (51) with a single 555 

cell prior. 556 
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Single-cell/nuclei RNA-seq analysis 557 

The following data analyses on count matrices from single-cell/nuclei RNA-seq were 558 

performed using the R package Seurat v4.1.0 (52). 559 

Quality control 560 

For data generated using the 10X single-nuclei technology, nuclei with fewer than 1000 561 

counts, 300 distinct features or more than 2.5% of reads mapping to mitochondrial genes 562 

were omitted. Sequencing libraries generated with Smart-seq2 (21,22,49) from patients were 563 

filtered by omitting nuclei with fewer than 2500 distinct features or more than 1.5% of reads 564 

mapping to mitochondrial genes. Sequencing libraries generated with Smart-seq2 from cell 565 

lines were filtered by excluding cells with fewer than 5000 distinct features or more than 15% 566 

of reads mapping to mitochondrial genes. 567 

The R package DoubletFinder v2.0.3 (53) was used to detect and filter doublets in 10X 568 

single-nuclei samples. Default settings were used and 7.5% doublet rate was estimated 569 

based on the number of recovered cells. 570 

Genes present in fewer than five cells were excluded and analysis was restricted to protein-571 

coding genes. 572 

Normalisation of RNA 573 

10X single-nuclei data was normalised using the Seurat function ‘NormalizeData’ accounting 574 

for sequencing depth, scaling counts to 10,000 and adding a pseudocount of one before 575 

natural-log transformation. Genes were scaled using the Seurat function ‘ScaleData’ with 576 

mean of 0 and standard deviation of 1 (default). 577 

 578 

Smart-seq2 data was normalised using transcripts per million (TPM), accounting for gene 579 

length and total read count in each cell. For downstream analyses a pseudocount of one 580 

was added and then natural-log transformed. 581 
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Feature selection and dimension reduction 582 

The Seurat function ‘FindVariableGenes’ was used to find the top 2000 most variable genes 583 

in each patient and cell line individually. Principal component analysis was performed on 584 

most variable genes and the first 20 components were used to generate the clustering 585 

(‘FindClusters’) and the uniform manifold approximation and projection (UMAP) embeddings 586 

(resolution of 0.5). 587 

Module Scores 588 

To determine the cell cycle phase for each cell, module scores for S-phase and G2M-phase 589 

were estimated from gene sets (30) using the Seurat function ‘CellCycleScoring’. Module 590 

scores for mesenchymal and adrenergic state were calculated from published gene sets 591 

(33,34) using the Seurat function ‘AddModuleScore’. 592 

Cell type annotation 593 

Cell types were annotated per cluster and sample by using marker genes and cell type 594 

annotation curated from (23).  595 

Differential gene expression and gene set enrichment analysis 596 

For cells sequenced using the 10X single-nuclei technology, tumour cells were identified and 597 

cells without measured MYCN expression were removed.  598 

Remaining nuclei in each sample were ranked by their MYCN expression level and grouped 599 

by assigning the top 30 percent of cells with highest expression levels the label ‘MYCN-high’ 600 

and bottom 30 percent of cells with lowest expression the label ‘MYCN-low’. All other cells 601 

were annotated as ‘MYCN-med’ corresponding to intermediate expression levels. The cell 602 

line samples were grouped in the same manner. 603 

Differential expression analysis was performed between MYCN-high and MYCN-low cells in 604 

each sample and cell line individually using the Seurat function ‘FindMarkers’ without 605 
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logarithmic fold change threshold and a minimum of 5% presence of a feature in the sample 606 

of only regarding protein-coding genes. 607 

For GSEA, genes were ranked by their logarithmic fold change in decreasing order. The 608 

enrichment score of MYCN target genes (32) were calculated using the R package fgsea 609 

v1.18 (54). Unsupervised gene set enrichment of all biological processes in the gene 610 

ontology terms was performed using the R package clusterProfiler v4.0.5 (55) function 611 

‘gseGO’ with a gene set size between 3 and 800 genes and p-values were corrected using 612 

BH. The network of recurrent significant enriched pathways was built using the Add-on 613 

ClueGO v.2.5.9 in Cytoscape v.3.9.1 (56,57). 614 

Non negative matrix factorisation and module scores 615 

Transcriptional profiles (modules) for each high-throughput patient sample were determined 616 

by non-negative matrix factorization (NMF) using cNMF v1.4 (25). The input matrix was 617 

restricted to only contain tumour cells and protein-coding genes. The number of modules k 618 

for each sample was determined by running the ‘cnmf prepare’ command with variable k 619 

equals 5 through 15. The resulting stability and error plots were used as guidance as 620 

described by Kotliar et al., mostly choosing the most stable number of modules. Each 621 

module activity matrix was normalised, so that the sum for each cell equals 1.  622 

Pairwise Pearson correlation of module TPM gene score (further as gene score) was 623 

performed to determine similar modules. Modules that showed less than 50% significant 624 

correlation (p<0.05) with other modules were excluded. The remaining modules were 625 

grouped using hierarchical clustering and the number of meta modules was determined by 626 

comparing the heights in the corresponding dendrogram, by choosing the maximum height. 627 

The number of submodules was chosen such that each meta module is divided into at least 628 

2 groups and the height in the dendrogram is the largest under this assumption. 629 

Functional association of meta modules and sub modules was determined using the top 10 630 

genes with the highest gene score in each module and ranking those genes by their 631 

frequency among the modules classified as the corresponding meta and sub module. The 632 
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top 50 genes were evaluated using g:profiler (58) and STRING (59). In addition, GSEA of all 633 

GO-biological processes was performed in each module and the most frequent pathways 634 

with a significant positive NES were evaluated. 635 

For meta module representation in UMAP space, the module activity was determined by the 636 

sample specific module activity corresponding to the meta module, in case multiple sample 637 

modules refer to the same meta module, the sum of module activity is displayed. 638 

The meta pathway analysis is performed for each meta and sub module separately on the 639 

ranked list of pathways based on the average NES across sample modules in the respective 640 

meta and sub module and uses the set of previously described recurrent significant 641 

pathways as pathway test set.  642 

Single-cell DNA-seq analysis 643 

The copy number profiles from cells sequenced with G&T-seq were determined using 644 

Ginkgo (36) on the DNA data with bin size 500 kB for CHP212 and TR14 cells and 250 kB 645 

for the patient sample. EcDNA amplicon specific copy number was estimated from the raw 646 

Ginkgo output (Normalised read counts) by leveraging the bins that overlap amplicon 647 

boundaries. Amplicon boundaries were obtained from previous publications (18,22) and 648 

recapitulated in the DNA data. For each cell a step function was determined based on the 649 

raw Ginkgo output and the Ginkgo copy number. Then the step function was applied to the 650 

average read count in the overlapping bins.  651 

For the TR14 MYCN and CDK4 amplicon an additional step was included, because of their 652 

overlapping region. The percentage of contributing normalised read count of each amplicon 653 

to the overlapping region was estimated by averaging only unique amplicon bins and 654 

dividing the normalised read count of the unique MYCN amplicon by the sum of the unique 655 

MYCN and CDK4 amplicon. The normalised read count in the overlapping region was then 656 

split up with respect to the contributing percentage and was further used to average over the 657 

raw data of the bins overlapping the amplicon regions. 658 
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Correlation of genomic and transcriptomic content 659 

A sample specific linear model was built for each gene present on an ecDNA amplicon using 660 

the lm function in R. The models were built on the G&T-seq data using the gene expression 661 

from RNA-seq and the respective amplicon copy number determined as described above. 662 

The scEC&T-seq data was used to correlate the gene expression with extrachromosomal 663 

(ec) content. Gene specific ec content was determined by binning the genome into 1MB 664 

segments, summing up their reads from EC-seq and overlapping the segment boundaries 665 

with the gene location. The copy number was estimated using gene expression and applying 666 

the gene and sample specific linear model described above. 667 
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