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Abstract

Motivation: Evolutionary inferences depend crucially on the quality of multiple se-
quence alignments (MSA), which is problematic for distantly related proteins. Since protein
structure is more conserved than protein sequence, it seems natural to use structure align-
ments for distant homologs. However, structure alignments may not be suitable for inferring
evolutionary relationships at the sequence level.
Results: Here we investigate the mutual relationships between four protein similarity mea-
sures that depend on sequence and structure (fraction of aligned residues, sequence similarity,
fraction of superimposed backbones and contact overlap) and the corresponding alignments.
Changes in protein sequences and structures are intimately correlated, but our results sug-
gest that no individual measure can provide a complete and unbiased picture of changes in
protein sequences and structure. Therefore, we propose a new hybrid measure of protein
sequence and structure similarity based on Principal Components (PC sim). Starting from
an MSA, we obtain modified pairwise alignments (PA) based on PC sim, and from them
we construct a new MSA based on the maximal cliques of the PA graph. These alignments
yield larger protein similarities and agree better with the Balibase “reference” MSA and
with consensus MSA than alignments that target individual similarity measures. Moreover,
PC sim is associated with a divergence measure that correlates strongest with divergences
obtained from individual similarities, which suggests that it can infer more accurate evolu-
tionary divergences for the reconstruction of phylogenetic trees with distance methods.
Availability: https://github.com/ugobas/Evol div
Contact: ubastolla@cbm.csic.es

1 Introduction

The study of protein evolution relies heavily on the quality of multiple sequence alignments
(MSA). However, it is known that distant alignments have low accuracy with consequent er-
rors in evolutionary inference [1–4], which partly explains why current phylogenetic methods
show poor performance when applied to distantly related proteins [2]. Many MSA programs
have been developed in the past years but, when they are applied to genomic scale datasets,
different programs tend to produce qualitatively different conclusions [5], so that some schol-
ars have even advocated for the need of alignment-free approaches [6]. These problems are
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particularly strong at the superfamily level, which are the most distant groups of proteins
for which a common ancestry can be inferred and contain proteins of known structure that
diversified their biological functions through long evolutionary histories [7, 8].

The importance of alignments goes beyond evolutionary studies, as many bioinformatics
methods and techniques rely on them. In particular, alignment quality has a strong influence
on protein structure prediction both through homology modelling [9] and through correlated
substitutions [10–12], prediction of protein function [13] and molecular interactions [14]. It
is thus important to improve the current multiple alignment algorithms.

Several approaches attempted to integrate structural information to improve MSA, using
additional information such as for instance predicted secondary structure [15, 18] or the
statistical properties of gaps in structurally aligned proteins [16, 17]. These approaches are
based on the observation that protein structure is more conserved than protein sequence [19–
21], so that structure similarity may still yield valuable information when sequence divergence
is close to saturation. Consistently, it was found that structure-based alignments tend to be
more accurate on benchmark databases, in particular for distantly related proteins and for
buried residues; nevertheless, methods that combine sequence and structure information in
general do not outperform structure-based methods [22].

2 Approach

Here we consider diverse sequence and structure similarity measures. Each of them captures
correlated but different aspects of protein evolution. Therefore, we derive the hybrid sequence
and structure similarity measure PC sim that captures all of them and we show that we can
use it for improving an input MSA when structure information is available.

Sequence and structure divergence provide consistent evolutionary information since they
are strongly correlated [23]. However, natural selection acts with different strength on se-
quence and structure. The rate of structure divergence tends to be slower than sequence
divergence when measured in comparable units (see Methods), in particular for proteins that
conserve the molecular function [21], which suggests that natural selection constrains protein
structure more strongly than sequence since mutations that conserve the protein structure
but may affect other properties such as the folding stability or the metabolic cost of the
protein are more frequently fixated than mutations that change the structure. Conversely,
proteins that change molecular function tend to evolve faster, in particular for structure
divergence, which is consistent with the idea that protein structure change is a target of
positive selection [24].

There are several ways of measuring protein structure similarity and divergence, and we
distinguish two main types. (1) Some similarities, such as the fraction of spatially superim-
posed residues, are computed after spatial superimposition, which depends on the optimal ro-
tation matrix. A commonly applied criterion for determining this optimal rotation consists in
numerically maximizing the template-model score [25] (TM, see Methods) that superimposes
pairs of residues that are closer than expected by chance. The average protein coordinates
in the native state allow predicting native dynamical fluctuations in reasonable agreement
with experiments through the structure based Elastic network model (ENM) [26,27]. These
predicted fluctuations correlate with observed large-scale functional motions [28]. Therefore,
we may expect that proteins with low TM score present very different native dynamics, as
predicted through their ENM.

(2) The fraction of shared inter-residue contacts (contact overlap, CO, see Methods) is
a structure similarity measures that does not require any rotation. These contacts allow
estimating the folding stability of the protein through simple contact-based models [29], and
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we may expect that the CO correlates with the similarity of folding free energies. It is
thought that protein dynamics is a target of selection more relevant than protein stability
that evolves almost neutrally [30]. Consistently with this expectation, we and coworkers
observed that the TM score decays more slowly than the CO in protein evolution and it
is subject to stronger accelerations upon function change [24], which is consistent with the
above idea that protein dynamics is subject to stronger evolutionary pressure, both negative
and positive, than protein stability.

Given the intricate sequence-structure-function relationship that characterizes proteins
and the fact that different similarity measures capture only part of it, we studied the corre-
lations between these different measures. Different similarity measures give consistent infor-
mation, since they are all strongly correlated between themselves. We found here that their
main Principal Component (PC) represents more than 75% of the total variance, depending
on the type of alignment.

We propose that the main PC of protein similarity measures (PC sim) yields a conve-
nient description of the similarity between proteins that integrates sequence conservation,
conservation of the local coordinates (related with native dynamics), and conservation of
the contact matrix (related with folding stability). We modified the MSAs obtained from
popular MSA programs by targeting PC sim as well as other structure similarity measures
(TM score and CO). We found that the pairwise alignments (PA) that target PC sim yield
the highest or second highest value of all similarity scores, both for structure and sequence,
and that they arguably provide better performances than alignments that target other mea-
sures. Subsequently, from the PC sim-modified PAs we derived an MSA by determining the
maximal cliques of the PA graph. We show that this modified MSA has larger similarity
scores and larger similarity with reference alignments of the Balibase database [42] than the
original MSA from which it is derived.

Finally, the protein similarity measures can be transformed into inferred evolutionary di-
vergences in the same way as the Tajima-Nei divergence can be derived from sequence iden-
tity [32]. These inferred divergences may be adopted to build the guide tree for progressive
multiple alignments, which has a strong influence on the final MSA and bias the phylogenetic
relationships inferred from the MSA through Maximum Likelihood methods [3,4]. We found
that the divergence measure obtained from PC sim provides the highest correlation with all
other divergence measures, which suggests that it may provide a more robust inference of
divergence time and guide tree.

3 Methods

Alignment algorithms

We generated multiple sequence alignments (MSA) with 4 commonly used MSA programs:
Clustal-Omega [35], MAFFT [34], MUSCLE [36] and T-coffee [37] and MStA with the pro-
gram Mammoth-mult [38]. In all cases we used default parameters and we built the MSA
using the Ebi-tool API [33].

Protein similarity measures

For each pair of proteins with known structure, we computed the following global similarity
measures, either in sequence or in structure:

• Fraction aligned (ali): Fraction of positions that are considered homologs (no gaps)
with respect to the maximum length of the two proteins. This normalization penalizes
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insertions and deletions, which can produce functional or structural changes, although
different length might also come from different crystallization constructs.

• Sequence identity (SI): Fraction of aligned positions that share the same amino acid
(note that indels are not scored by SI).

• TM score (TM): Fraction of spatially superimposed aligned positions. While the root
mean square deviation (RMSD) is a good measure of structure divergence for fixed
number of superimposed positions, it cannot be used when this number is variable,
since there is a trade-off between the length of the superimposition and the RMSD.
To address this problem, Zhang and Skolnick introduced the template-model (TM)
score [25], defined as

TM = max
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where L is the number of aligned positions, di is the distance between the two alpha
carbons aligned at column i after optimal rotation, d0 = 1.24(L − 15)1/3 − 1.8 is the
L-dependent distance expected for structurally unrelated positions, and the optimal
rotation matrix is determined self-consistently by iteratively maximizing the TM score.

• Contact overlap (CO): Fraction of shared contacts between two aligned protein
structures. Different from the TM score, the CO does not depend on any rotation
matrix, and it is defined as
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, (2)

where Cij and C ′

ij are the binary contact matrices of the two protein structures defined

as 1 if any pair of heavy atoms of residues i and j are closer than 4.5Åand 0 otherwise,
a(i), a(j) are the residues of the second structure aligned to residues i, j of the first
one (excluding gaps). The CO is normalized so that its maximum value is 1.

• PC similarity (PC). The PC is the weighted combination of the four similarity mea-
sures described above. The weights were determined through the Principal Component
Analysis of the four similarity measures for all the superfamilies studied in this work.
Using the MAFFT alignment to compute the similarity scores, we obtained:

PC = (0.84ali + 0.79SI + 0.95TM+ 0.95CO) /3.53 .

These are the weights used in this work. Other alignment programs yielded similar
weights, which are reported in Supplementary Table S1.

Evolutionary divergences

To each pairwise similarity measure we associate an evolutionary divergence that estimates
the time during which the two proteins diverged. For sequence identity, we adopted the
Tajima-Nei (TN) divergence [32] that represents the maximum likelihood estimate of the
divergence time under the Juke-Cantor (JC) model of molecular evolution in which sites are
regarded as independent, all amino acids have the same stationary frequency and all pairs of
different amino acids have the same exchangeability. We adopted this estimate because it is
simple and parameter-free. For the other similarity measures, we define divergences that are
formally equivalent to the TN divergence. We postulate that these structural divergences can
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estimate the divergence time for suitably defined models of structure evolution analogous to
JC, which is supported by their strong correlation with the TN divergence that we observed
in previous work [21,24].

• TN divergence [32] is computed from sequence identity (SI) as

TNdiv = − ln

(

SI− SI0
1− SI0

)

(3)

where SI0 = 0.05 is the sequence identity expected for unrelated sequences.

• Contact divergence [21], computed from the CO as

CD = − ln

(

CO− q(L)

1− q(L)

)

(4)

where q(L) = 0.39L−0.55 + 6.64L−0.67 is the CO expected under convergent evolution,
L is the number of aligned residues.

• TM divergence computed from the TM score (TM) as

TMdiv = − ln

(

TM− TM0

1− TM0

)

(5)

where TM0 = 0.167 is the TM score expected under convergent evolution [25], which
is independent of L because the TM score is carefully normalized.

• PC divergence. It is a new hybrid sequence-structure divergence measure computed
from the PC similarity, Eq.(3) as

PCdiv = − ln

(

PC− PC0

1− PC

)

(6)

PC0 = (0.84ali0+0.79SI0+0.95TM0+0.95q(L))
0.84+0.79+0.95+0.95 , ali0 = 0.5.

Note that the divergences can be evaluated only for similarities larger than expected un-
der no homology (SI > SI0, CO > q(L), TM > TM0, PC > PC0). Structure divergences are
not guaranteed to vanish for identical sequences, since the structures used to evaluate them
may be related through a conformational change. To reduce this risk, we cluster the stud-
ied conformations in groups with identical sequence and we define the structure divergence
between two groups as the minimum value of the divergence between their members.

Protein superfamilies

In this work we studied four protein domain superfamilies: Globins, Ploops, NADP and
Aldolases, selected as they are among the largest superfamilies in the SCOP and CATH
databases [7,8]. Proteins were parsed into globular domains in the SCOP database [7], from
which we obtained the average native coordinates of the selected domains.

For each superfamily, we clustered protein structures with Contact Divergence < 2.5 as
in [21], because it is not possible to obtain a Multiple structure alignment (MStA) if structural
domains are too divergent. We obtained 2 clusters each for Ploops and Aldolases and one
each for Globins and NADP, so that we ultimately studied 6 clusters. The distributions of
the sequence and structure similarity measures for each of the four largest clusters is shown in
Supplementary Fig.S1, from which one can see that sequence identity covers a broad range,
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with many pairs below 20% (designated as the twilight zone), most pairs between 20 and
50%, and several pairs above 50%.

Since proteins may have different conformations, we also considered proteins with iden-
tical sequences within one point mutation and clustered their structures, computing the
structure similarity between clusters as the maximum across all conformations in the same
cluster. The correlations and the Principal Component Analysis shown in this paper are
based on the similarities between pairs of clusters. The numbers of conformations and dif-
ferent sequences in each cluster were the following: Aldolase C1: 38, 15; Aldolase C2: 23, 9;
Globins C1: 397, 71; NADP C1: 161, 92; Ploop C1: 150, 73; Ploop C2: 45, 16.

Modified pairwise alignments

We compute the similarity and divergence scores described above for the starting alignments
as well as four new pairwise alignments (PA) modified through the use of structure informa-
tion. Given the exploratory nature of the present work, we only implemented fast modified
alignments that are based on the starting alignment and do not require to score gaps, which
is a critical point of all alignment methods.

The first modification that we studied is the secondary structure based alignment (SS ali).
It is grounded on the idea that the sequence and the structure alignment have different aims:
to infer homology and to identify structurally equivalent residues, respectively. Thus, they
need not coincide everywhere. For instance, if a residue inside a secondary structure element
(SSE) is deleted, the structure of the mutated residue will rearrange so to maintain the
structural integrity and, in the structure alignment, the resulting gap will move to one of the
two ends of the SSE. Our program detects such cases and moves the gap in the direction in
which the displacement is smaller, it computes sequence identity and TM score both for the
starting and the modified alignment and it selects the largest similarity. If the TM score of
the modified alignment is higher, the CO is also taken from the modified alignment.

Next, we construct modified alignments that target the TM score (TM ali), the CO
(CO ali) or the PC similarity (PC ali) while modifying the input alignment as little as
possible, through the following procedure. (1) For each residue we identify the nearest
residue in the other protein as the one that maximizes the target score (CO, inter-residue
distance or PC sim), which depends on the input alignment and the optimal rotation matrix.
(2) We identify as neighbors two residues that present a double match, i.e. i1 is the nearest
residue of i2 and i2 is the nearest residue of i1. (3) We align neighbors that are aligned in the
input alignment, obtaining frames. (4) Proceeding from left to right, we align neighbors that
are intermediate between frames. We iterate this procedure, calling new neighbors using the
modified alignment. In this way, we obtain modified alignments that are similar to the input
alignment and increase the target score without having to specify a gap penalty parameter.
This procedure provides a modified PA for each target measure.

Multiple alignment

We then obtained an MSA from the set of modified PA through the following simple graph-
based algorithm. (1) We transform the PAs into a graph with residues of the n proteins
as nodes, whose links connect aligned residues. The maximum number of links per residue
is n. If all PAs are consistent with an MSA, each column of the MSA corresponds to a
maximal clique in the graph, i.e. a maximal set of fully interconnected residues. (2) We
determine the maximal cliques of the graph for each residue i iteratively, exploiting the list
of its neighbours limited to residues j > i in order to avoid repeated computations. The
first clique is constituted by i and its first linked residue l1(i). At each step s we add to all
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previous cliques the residue ls(i) linked to i. If this residue is linked to all residues in the
clique it is added to it, otherwise a new clique is created with all residues that are linked
to both i and ls(i). Crucially, to reduce the computation time at each step we keep only
the 100 largest cliques. When the neighbors of i are exhausted we store the largest cliques.
The ranking is very fast because the size can only take values from 2 to n. For each residue
we store the maximum size and the sum of the sizes of its cliques, and exclude from future
computations residues for which each of them is larger than n/2. This precaution provides
a good compromise between completeness and computational efficiency. (3) We assemble
the cliques that are reciprocally consistent, i.e. they do not violate sequential order, starting
from the largest one. (4) We assign the residues that are not assigned to any maximal
clique to the clique most connected to them if this assignment is consistent with all other
pre-existing cliques. If this is not possible, unassigned residues seed a new column. (5) We
reconstruct the MSA from the set of all ordered columns (maximal cliques) and we print it
for subsequent use.

Assessment of the MSA

To assess the MSA, we downloaded the Balibase set of structure-curated multiple alignments
[42]. For each MSA we only considered sequences that are associated to a protein structure
in the PDB [43]. We assessed the similarity between pairs of alignments through the sum
of pairs score [42] that sums the pairs of residues that are aligned in both alignments. We
adopted a symmetric version of the score, normalizing the sum through the geometric mean
of the sum of aligned pairs in the two alignments, which also penalizes overalignments.

Output files

For each pair of proteins, the program Evol div outputs for posterior analysis five similarity
measures (ali, SS, TM, CO and PC) and the corresponding divergences for each of five align-
ments (input and modified to target SS, TM, CO and PC). The pairwise scores are printed
both for all examined structures (.sim and .div) and for the clusters of structures with iden-
tical sequence (.prot.sim and .prot.div). The program also prints the MSA modified through
secondary structure (ss ali.msa) and modified by targeting the PC similarity (PC.msa).

4 Results

Correlations between similarity measures

In this work we consider four protein similarity measures: fraction of aligned residues (ali),
fraction of aligned residues that are identical (SI), fraction of spatially superimposed residues
(TM score) and fraction of shared contacts (CO) (see Methods).

Fig.1A to D shows the similarity scores obtained with four sequence alignment programs
(Clustal [35], MAFFT [34], MUSCLE [36] or T-coffee [37]) and one structure alignment
program (Mammoth [38]).

As expected, the sequence alignment programs attain higher sequence similarity scores
and lower structure similarity scores than the structure alignment program (see Fig.1).
Therefore, targeting different similarity scores with sequence alignment and structure align-
ment algorithms has a deep influence on the final results. Clustal and the MStA program
Mammoth aligned on the average fewer residues than the other MSA programs (Fig.1A).
Mammoth obtained the highest TM-scores of all programs (Fig.1D), which is not surprising
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Figure 1: Similarity scores obtained by different alignment algorithms (A-D) and their principal
components (E-H).
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since the score that it targets is related with the TM score. MAFFT achieved the sec-
ond highest TM score and the highest CO, even higher than the MStA program Mammoth
(Fig.1C). Due to its good performances with structural scores, sequence identity, and frac-
tion of aligned residues (Fig.1B), in the following we present results for the MSA computed
by MAFFT and the MStA computed by Mammoth if not otherwise stated.

As expected, all similarity measures are strongly correlated: two proteins that are similar
because their alignment presents few gaps also present large sequence identity, large number
of spatially superimposed residues and large fraction of shared contacts. Principal component
(PC) analysis shows that the main PC, which we call PC0, accounts for more than three
quarters of the total variance (Fig. 1E). All examined alignment programs yield similar
values of the weight of PC0, with the MStA program Mammoth yielding the largest value.
All similarity measures contribute positively to PC0 (Fig. 1G), and the measures that
contribute most are the two structure similarity measures, which are strongly correlated
between each other, while SI contributes least, except for Muscle. We can interpret PC0 as
an integrated measure of evolutionary relatedness, since it is large for pairs of proteins that
are strongly related under the point of view of both sequence and structure. Therefore, we
adopted PC0 as a new similarity measure, PC sim, which integrates sequence and structure
conservation.

The PC loads are remarkably robust to the five used program: Their range is 0.79− 0.81
(SI), 0.94 − 0.96 (CO), 0.91 − 0.97 (TM), with largest variation 0.71 − 0.90 for the load of
the aligned fraction (see Supplementary Table S1). The loads determined with only one
superfamily are very similar to those obtained with the full data set (see Supplementary Fig.
S2). One might expect that the loads vary with the sequence identity, but the subsets of very
distantly related pairs (SI< 0.2) and intermediate ones (0.2 <SI< 0.5) provide essentially
the same loads, whereas for the small number of closely related pairs (SI> 0.5, 5% of pairs)
the SI has a small load (see Supplementary Fig. S2) because it is weakly correlated with
structure similarity and aligned fraction, possibly due to proteins with same sequence and
different conformations. These results show that we can define the hybrid PC similarity in
a robust way.

The second PC (PC1) accounts for most of the remaining variance, but its weight is much
smaller (Fig. 1F). It is contributed by the ali measure and by the SI measure with opposite
signs, while the structure similarities yield small contributions (Fig. 1H). This means that
aligned proteins with large PC1 score have larger fraction of identical amino acids and fewer
aligned residues, i.e. more gaps. This may suggest that PC1 arises from the tendency
of alignment programs to overfit the sequence identity at the expense of placing gaps and
slightly reducing the structure similarity. However, this interpretation is questioned by the
fact that we observe PC1 also for alignments produced by the structure alignment program
Mammoth that does not score sequence identity, although with the smallest weight among all
examined alignment programs. An alternative interpretation is that pairs with large PC1 are
domains with different size, either because they were crystallized from different constructs or
because they were differently parsed in the SCOP database. Among the sequence alignment
programs, the lowest weight of PC1 is attained by Clustal, followed by T-coffee, MAFFT
and then MUSCLE, for which it is largest.

4.1 Structure-guided modified alignments

In this work, we considered four structure-guided modifications of input MSAs constructed
either by the sequence alignment algorithm MAFFT [34] or by the structure alignment
program Mammoth-multiple [38], which we used in previous studies and which provided good
results in a recent benchmark test [22]. We obtained qualitatively similar results with both
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alignment (PC ali) and the input alignment (A,E) and three additional modified alignments
(B,F: SS ali; C,G: TM ali; D,H: CO ali) with respect to fraction of aligned residues (ali), identical
amino acids (SI), spatially superimposed residues (TM), shared contacts (CO), and the hybrid
PC sim that integrates all of them (PC). The upper plots show the case in which the starting
alignment is Mammoth, in the lower plots it is MAFFT. The error bars indicate the standard
error of the mean.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.22.525078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525078
http://creativecommons.org/licenses/by-nc-nd/4.0/


programs, and with other sequence alignment programs as well. Three modified alignments
target structure similarity scores: TM ali targets the TM score, CO ali targets the CO, and
PC ali targets the hybrid sequence and structure similarity score PC sim.

Figure 2 shows the differences in 5 similarity measures (ali, SI, TM, CO and PC sim)
between PC ali and the input alignment and other three modified alignments, averaged
over all pairs of alignments. One can see that the targeted score is always highest in the
alignment that targets it compared to other alignments. However, compared with PC ali,
this improvement happens at the expense of all other scores. PC ali obtains the first or
second highest score for all similarity measures, both sequence and structure, except a small
decrease in the aligned fraction when the input alignment is MAFFT. Globally, PC ali was
the modification with the highest average improvement of the similarity measures.

Note that, when using as input the MStA obtained through Mammoth, the PC ali cor-
rection increase all the sequence and structure similarities, which suggests that the alignment
quality overall improves. PC ali obtains the second highest structural score TM and CO,
the highest sequence score SI and aligned fraction and, not surprisingly, the highest hybrid
score PC sim. Of note, a recent paper reported that hybrid sequence-structure alignment
methods performed worse than the Mammoth program [22], which is not the case for the
approach based on PC ali.

The other modification (SS ali) moves the gaps contained inside any secondary structure
element (SSE) towards the closest end of the SSE. This is motivated by the idea that gaps
inside a SSE might happen in evolution, so that the sequence alignment correctly infers
homology, but the structure reorganizes so that the structural correspondence is different
from the one dictated by the sequence alignment, i.e. sequence and structure alignment
do not need to coincide. Accordingly, when we compute the average similarity scores we
consider the higher between the SI score of the starting and the modified alignment, and the
higher between the two TM scores. Not surprisingly, this procedure increases all similarity
scores in Fig.2. To test our interpretation, we consider the effect of SS ali on the similarity
scores without selecting the higher score. If SS ali is capturing gaps inside SSE, we expect
that the SI tends to decrease when the structure similarity scores TM and CO increase.
Nevertheless, contrary to our interpretation, we found that in most cases SS ali decreases
the similarity scores SI, TM and CO, both with respect of the sequence aligner MAFFT
and with respect to the structure aligner Mammoth, i.e. modifications that improve the
structure similarity are less frequent (Supplementary Fig.S3A). Moreover, sequence identity
and structure similarity tend to increase or decrease together (see Supplementary Fig.S3B),
which suggests that SS ali is either correcting alignment errors through the use of secondary
structure information or it is creating mistakes, instead of dealing with genuine cases of
indels inside SSE that motivated it.

The best results are obtained with MAFFT as input alignment, which achieves the high-
est PC sim followed by Mammoth (see Supplementary Fig. S4). Interestingly, the scores
obtained with PC ali are more robust with respect to changes of the input alignment than
the scores obtained with the input alignment itself. In particular, using MAFFT or Mam-
moth as input alignment does not have a significant influence on the score PC sim (see
Supplementary Fig. S4).

Generation and assessment of the MSA

As explained in the Methods section, we transform the PC-modified pairwise alignments into
a graph and we determine its maximal cliques, from which we generate an MSA. We assess
these PC and clique-derived MSAs by comparing them with the structure-curated MSAs of
the Balibase data set [42], retaining only sequences with available structure in the PDB.
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As a preliminary step, we assessed the quality of the Balibase alignments against the struc-
ture alignments obtained through Mammoth. Not surprisingly, the Mammoth alignments
have significantly higher structural scores in terms of TM-score (mean difference ∆ = 0.013,
Standard Error of Mean 0.005) and, not significantly, in terms of contact overlap (∆ = 0.0056,
SEM= 0.005) , while the Balibase alignments have significantly higher fraction of aligned
residues (∆ = 0.023, SEM= 0.006) and sequence identity (∆ = 0.017, SEM= 0.002), re-
sulting in not significantly different PC scores (∆ = 0.0046, SEM= 0.004), see Fig.3M and
N. As for all other alignments, the structural scores of the Balibase alignments can be im-
proved through our algorithm (Fig.3S). Furthermore, we found bugs in Balibase sequences,
since they omit residues whose index in the PDB presents an insertion code (this relatively
frequent situation affects 8% of the PDB sequences in Balibase). Rarely, Balibase sequences
include more than one chain when the order of the chains in the PDB file is distinct from
the alphabetic order. These discrepancies forced us to realign the Balibase alignments with
the modified alignments produced by our program, which are based on the PDB sequences.

Therefore, in addition to adopting the Balibase alignment as the reference alignment,
we also adopted as reference the PC-modified Balibase alignment that has higher structural
scores, and we adopted a consensus assessment based on comparing all alignments against
all (the six input alignments Balibase, Mammoth, MAFFT, muscle, Clustal and Tcoffee, and
their modified versions, omitting the comparison between each alignment and its modified
version). All three comparisons show that the modified alignments have significantly higher
similarity than the original alignments, with the exception of the modified Mammoth align-
ment for which the difference is not significant (Fig.3G-L). Moreover, for all input alignments
including Balibase and Mammoth, the structural scores of the modified alignments improve
at the price of producing shorter alignments (Fig.3G-L). We think that the structural scores
provide a less biased assessment of the alignment quality than choosing a golden reference or
a consensus, which may be biased if most of the alignments are biased in a similar direction.

Divergence measures

The results presented above suggest the existence of compensatory changes, particularly
strong for closely related protein pairs, that make difficult to disentangle the evolutionary
history of a protein superfamily in terms of only one divergence measure (e.g., at the level
of amino acid identity, or 3D superimposition, or contact divergence). These observations
support our proposal to adopt a hybrid measure that integrates various aspects of protein
sequence and structure similarity, such as the PC sim measure presented in this paper. We
now assess whether the new similarity measure can improve our ability to infer protein
divergence.

From the comparison of the aligned sequences we can infer the time past since the diver-
gence of the two proteins using simple substitution models. This inference can be expressed
by simple measures such as the Tajima-Nei (TN) divergence [32]. The estimated divergence is
often used to construct a guide tree for guiding the processive multiple alignment algorithm,
therefore its accuracy has an important influence on the final results.

Adopting the TN formula, we can estimate divergence times using other structure di-
vergence as well. Although the analogy is only formal, we expect that these measures may
be also derived from simple probabilistic models of protein structure evolution. Since all
divergence measures aim at inferring the same quantity, we can estimate their quality by
assessing the strength of their reciprocal correlations.

We compute these correlations through a linear model with an offset, D2 = aD1 + b. In
principle the offset b should vanish, because the divergence D2 should vanish for D1 = 0.
However, protein structures may differ even for identical sequences due to the presence of

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.22.525078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525078
http://creativecommons.org/licenses/by-nc-nd/4.0/


conformational changes or the influence of different experimental condition on the structure
determination, so that in practice the offset b is never zero for structural divergence, even
if it is minimized by our approach to consider the maximum structural similarity over all
conformations of the same protein.

For every divergence measure we compute the average correlation coefficient with the
other divergences, which we present in Fig.4. High average correlation means that the
divergence measure can be used to reliably estimate the other measures. The measure with
highest correlation allows to reliably predict the other measures and it is expected to provide
the most reliable inference of the divergence time.

We see from Fig.4 that the sequence-based TN divergence Eq.(3) has the lowest average
correlation with the other measures, followed by the divergences of the structural scores
TM score Eq.(5) and contact overlap Eq.(4). The highest correlation (0.92 for alignments
derived from MStA) is attained by the divergence of the hybrid sequence and structure sim-
ilarity PC sim (PC Div), Eq.(6), which is therefore expected to provide the best inference
of the divergence time among all divergence measures that we examined. The five modified
alignments yield the same ranking of the divergence measures (Fig.2), with the input align-
ment MAFFT generally providing lower correlations than the modified alignments whereas
the correlations obtained starting from the MStA program Mammoth are higher and quite
robust with respect to the modified alignment.

5 Discussion

Alignment methods optimize the global similarity between aligned positions, defined either
in terms of sequence or in terms of structure. Structure similarity can be measured either in
terms of atomic coordinates superimposed through an optimal rotation (as in the TM-align
[40] or Mammoth [38] programs) or in terms of inter-residue contacts that are independent
of rotations (as in the Dali program [41]).

Here we addressed the influence of the similarity score that is targeted by an alignment
program. Different similarity scores tend to be correlated, as expected if similarity is in-
versely correlated with evolutionary divergence (see for instance [21]). This suggests that
different criteria tend to identify aligned positions in a consistent way. However, the corre-
lations between similarity measures are not perfect, and they may produce systematically
different evolutionary inferences, since the adopted similarity measure has a strong influence
on the resulting inferred homology. Sequence alignments and structure alignments tend to
present important differences, in particular for distantly related proteins, as well as structure
alignment programs based on optimal rotation matrices or based on contacts.

In order to get more insight on the agreement and disagreement between different mea-
sures of protein similarity and evolutionary change, we performed a large scale analysis of
the correlations between conservation and changes of different properties over four large
protein superfamilies, i.e. homologous proteins with known structures that have diverged
in sequence, structure and function throughout a long evolutionary story [7, 8]: Globins,
Aldolases, P-loop and NADPH.

First of all, we confirmed that the global conservation scores of different properties are
correlated. These correlations can be exploited for constructing a new integrated similarity
measure based on the main principal component of both sequence similarity and structure
similarity measures, see Fig.1. We called this new hybrid score “PC sim”.

We then constructed three new alignments that modify the starting MSA (produced
either by the sequence aligner MAFFT [34] or by the structure aligner Mammoth-multiple
[38]) by targeting three different similarity measures: rotation-dependent structure similarity
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measured by the TM score [25] Eq.(1), rotation-independent structure similarity measured
by the contact overlap Eq.(2), and the hybrid sequence and structure similarity measure
PC sim. Our algorithm, described in the Methods section, is based on the identification of
structural “neighbors” through double best match, it does not require to determine new gap
parameters, and it produces modified pairwise alignments that minimally modify the input
alignment.

Our analysis supports the idea that different properties tend to give consistent informa-
tion, but not exactly interchangeable. In fact, compensatory mechanisms may reduce the
correlation between similarity measures: for instance, contact conservation may be achieved
through compensatory changes of the coordinates of the residues in contact. Therefore, we
expect that no individual similarity measure can give an unbiased description of protein
evolution, and it is useful to combine different measures, as we do with our new integrated
similarity measure PC sim, in order to exploit the synergies that exist among them. Tar-
geting PC sim increases not only the targeted measure, but all of the structure similarity
measures that we examined, including sequence similarity.

The targeted similarity measure has a systematic influence on the similarity scores, see
Fig.2. Targeting structure similarity with input MSA derived from MAFFT tends to de-
crease the sequence identity, except with SS ali and with PC ali that targets PC sim, which
considers sequence identity. The two purely structural modifications increase the TM score
and the CO at the expense of sequence similarity and aligned fraction, with no effect on
PC sim for the alignments that target TM and a moderate increase of PC sim for the align-
ment that targets CO. These results suggest that TM ali may be overfitting the TM. On the
other hand, the alignment PC ali that targets PC sim improves or maintains all similarity
measures, and arguably it has the best performances.

When starting from the MStA built by Mammoth, the targeted alignments improve both
the sequence similarity and the structure similarities, and PC ali achieves the best improve-
ment for sequence identity, aligned fraction and PC sim and the second best improvement for
the TM score and the CO, again suggesting that it outperforms the other targeted alignments.
Note that that a recent study found that hybrid sequence-structure alignment methods per-
formed worse than the Mammoth program [22], while our PC sim-based approach largely
improves upon Mammoth results. Moreover, the alignments that target PC sim are more
robust with respect to variation of the starting MSA than the starting MSA themselves,
which supports their use.

Our results suggest that the hybrid sequence and structure alignment method based on
optimizing PC ali can produce high quality alignments. We plan to work in the future at
developing a progressive MSA algorithm that adopts an evolutionary treatment of the indel
process. In this work, we obtained graph-based MSAs as the sets of the maximal cliques of
the graph of the PC-corrected pairwise alignments, and we assessed them on the Balibase
structure-curated MSAs [42]. On the average, the PC correction improves the similarity of
the input MSA with the Balibase MSA, with the PC-corrected Balibase MSA, and the mean
over all MSAs. More importantly, it improves all structural scores and the hybrid PC sim
measures (Fig.3). This supports the use of the PC-corrected MSAs.

We also constructed the modified alignment SS ali based on moving the gaps that occur
inside secondary structure elements (SSE) at the end of these elements. We reasoned that
it is possible that an indel occurs inside the SSE, and the sequence alignment that infers
homology should reflect it, but the native structure arranges to preserve structural integrity
so that in this case sequence alignment and structure alignment do not need to coincide. If
SS ali is accounting for these cases, we would expect that increases of the TM score tend
are associated with decreases of sequence similarity. However, we observed the opposite
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(see Supplementary figure S3): Instances in which the TM score improves and the sequence
similarity decreases are less frequent than expected by chance, while most changes tend
either to increase or to decrease both sequence similarity and TM score at the same time,
suggesting that they either correct mistakes in the alignment or create mistakes. This is
consistent with the result that gaps tend to occur rarely in SSE [16]. The same results were
obtained using input alignments based both on sequence and on structure, and they do not
support the use of SS ali, which was outperformed by the modification based on PC sim.

Last, we tested whether PC sim improves the inference of the evolutionary divergence
time. To this aim, we adopted simple estimates of the evolutionary divergence based on pro-
tein similarity measures, formally analogous to the Tajima-Nei divergence measure obtained
from protein identity and often used in evolutionary studies [32]. We previously introduced
a divergence measure based on contact divergence [21] and one based on the TM score [24],
finding that these divergence measures are strongly correlated with each other, as expected
if they are both correlated with the evolutionary time that we aim to infer. The divergence
measure that is most strongly correlated with all others may provide the most robust infer-
ence of the evolutionary time. We found that the Tajima-Nei divergence shows the weakest
correlations, while purely structure divergence measures are intermediate and the hybrid se-
quence and structure measure PC div, based on PC sim, shows the strongest correlations (see
Fig.4), suggesting that PC sim is able to better infer the evolutionary divergence time and,
consequently, to produce better guide trees for progressive multiple alignments. The con-
struction of these progressive multiple alignments based on PC sim and of the corresponding
trees will be the subject of our future work.
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Figure 3: Comparison between the input MSA and the PC-modified, clique-derived MSA of 146
protein sets of the Balibase database with at least 2 protein structures. Plots A-F: absolute values
and G-L: differences between alignment comparison scores (first column: Balibase reference; 2nd
column: PC-modified Balibase; 3rd column: mean of all MSA comparisons). One can see that
the PC correction improves the comparison with other alignments, except for Balibase and
Mammoth. Plots M-R: absolute value and S-X: differences of the protein similarity scores. One
can see that the PC correction improves the structural scores TM and CO for all input MSAs,
at the cost of decreasing the aligned fraction. The sequence identity decreases for the sequence
aligners MAFFT, Muscle and Tcoffee, but it improves for the structure aligner Mammoth and
for Balibase. The overall balance, as assessed through PC sim, is always positive. The error
bars denote the standard error of the mean and allow to visually assess the significance.
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Figure 4: Correlation coefficients between different divergence measures for different types of
modified alignments. In the top row the input alignment is Mammoth, in the bottom row it is
Balibase. For all modified alignments and input alignments the highest correlations are attained
with PC div (D,H), and the lowest ones with the purely sequence-based Tajima-Nei divergence
(A,E).
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