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Nanopore sequencers generate electrical raw signals in real-
time while sequencing long genomic strands. These raw signals
can be analyzed as they are generated, providing an opportu-
nity for real-time genome analysis. An important feature of
nanopore sequencing, Read Until, can eject strands from se-
quencers without fully sequencing them, which provides oppor-
tunities to computationally reduce the sequencing time and cost.
However, existing works utilizing Read Until either 1) require
powerful computational resources that may not be available for
portable sequencers or 2) lack scalability for large genomes,
rendering them inaccurate or ineffective.

We propose RawHash, the first mechanism that can accu-
rately and efficiently perform real-time analysis of nanopore
raw signals for large genomes using a hash-based similarity
search. To enable this, RawHash ensures the signals corre-
sponding to the same DNA content lead to the same hash value,
regardless of the slight variations in these signals. RawHash
achieves an accurate hash-based similarity search via an ef-
fective quantization of the raw signals such that signals corre-
sponding to the same DNA content have the same quantized
value and, subsequently, the same hash value.

We evaluate RawHash on three applications: 1) read map-
ping, 2) relative abundance estimation, and 3) contamination
analysis. Our evaluations show that RawHash is the only tool
that can provide high accuracy and high throughput for ana-
lyzing large genomes in real-time. When compared to the state-
of-the-art techniques, UNCALLED and Sigmap, RawHash pro-
vides 1) 25.8× and 3.4× better average throughput and 2) an
average speedup of 32.1× and 2.1× in the mapping time, re-
spectively. Source code is available at https://github.com/CMU-
SAFARI/RawHash.

1. Introduction
High-throughput sequencing (HTS) devices can generate

a large amount of genomic data at a relatively low cost [1].
HTS can be used to analyze a wide range of samples, from
small amounts of DNA or RNA to entire genomes. Oxford
Nanopore Technologies (ONT) is one of the most widely-used
HTS technologies that can sequence long genomic regions,
called reads, with up to a few million bases [2]. ONT devices
use the nanopore sequencing technique, which involves passing
a single DNA or RNA strand through a tiny pore, nanopore, at
an average speed of 450 bases per second [3] and measuring
the electrical current as the strand passes through. Nanopore
sequencing enables two key features. First, nanopores provide
the electrical raw signals in real-time as the DNA strand passes
through a nanopore. Second, nanopore sequencing provides
a functionality, known as Read Until [4], that can partially
sequence DNA strands without fully sequencing them. These
two features of nanopores provide opportunities for 1) real-time
genome analysis and 2) significantly reducing sequencing time
and cost.

Real-time analysis of nanopore raw signals using Read Until
can reduce the sequencing time and cost per read by terminat-

ing the sequencing of a read whenever sequencing the full read
is not necessary. The freed-up nanopore can then be used to
sequence a different read. A purely computational mechanism
can send a signal to eject a read from a nanopore if the partial
sequencing of a read meets certain conditions for particular
genome analysis, such as 1) reaching a desired coverage for a
species in a sample [5] or 2) identifying that a read does not
originate from a certain genome of interest (i.e., a target re-
gion) [3, 6] and hence, does not need to be fully sequenced. By
terminating the sequencing of reads that do not correspond to
the target region, the sequencer can spend time and resources on
higher coverage sequencing of the reads that correspond to the
target. This process is referred to as targeted sequencing. By
providing high coverage at target regions and avoiding unessen-
tial sequencing of reads outside those regions, this approach can
improve the quality of sequencing and the downstream analysis
utilizing the obtained data.

To effectively utilize the Read Until technique in nanopore
sequencing, it is crucial to have computational methods that
can accurately analyze the raw output signals from nanopores
in real-time. These methods must provide 1) low latency
and 2) throughput matching or exceeding that of the se-
quencer [3, 6, 7]. Several works propose methods for real-time
analysis of raw nanopore signals with Read Until [3, 5–11].
However, these works have three key limitations. First, most
techniques require powerful computational resources, such
as GPUs [5, 9], or specialized hardware [7, 10] due to the
use of computationally-intensive algorithms. This can make
real-time genome analysis challenging for portable and low-
cost nanopore-based sequencers, such as the ONT Flongle
or MinION, which are not typically equipped with such re-
sources. Therefore these techniques cannot be used in resource-
constrained environments. Second, the sheer size of genomic
data at the scale of large genomes (e.g., human genome) makes
it challenging to process the data in real-time. This is because
such large genomes require efficient and accurate similarity
identification across a large number of regions. This renders
many current methods [3, 6] inaccurate or useless for large
genomes as they cannot either provide accurate results or match
the throughput of nanopores for these genomes. Third, machine
learning models used in past works [5, 8, 9] to analyze raw
nanopore signals often require retraining or reconfiguring the
model to improve accuracy for a certain experiment [11, 12],
which can be a barrier to flexibly and easily performing real-
time analysis without retraining or reconfiguring these models.
To our knowledge, there is no work that can efficiently and ac-
curately perform real-time analysis of raw nanopore signals on
a large scale (e.g., whole-genome analysis for human) without
requiring powerful computational resources, which can easily
and flexibly be applied to a wide range of applications that
could benefit from real-time nanopore raw signal analysis.

Our goal is to enable efficient and accurate real-time genome
analysis for large genomes. To this end, we propose RawHash,
the first mechanism that can efficiently and accurately perform
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real-time analysis of raw nanopore signals for large genomes
in resource-contained environments. Unlike all the past works,
RawHash is the only mechanism that can efficiently scale to
large genomes and perform accurate real-time genomic analysis
without requiring dedicated GPU support. Our key idea is to
encode regions of the raw nanopore signal into hash values
such that similar signal regions can efficiently be identified
by matching their hash values, facilitating efficient similarity
identification between signals. However, enabling accurate
hashing-based similarity identification in the raw signal domain
is challenging because raw signals corresponding to the same
DNA content are unlikely to have exactly the same signal ampli-
tudes. This is because the raw signals generated by nanopores
can vary each time the same DNA fragment is sequenced due
to several factors impacting nanopores during sequencing, such
as variations in the properties of the nanopores or the condi-
tions in which the sequencing is performed [13]. Although the
similarity identification of raw signals is possible via calculat-
ing the Euclidean distance between a sequence of signals in
a multi-dimensional space [6], such an approach can become
impractical when dealing with larger sequences as the number
of dimensions increases with the length of the sequences. This
increase in dimensionality can lead to computational complex-
ity and the curse of dimensionality, making it expensive and
impractical.

To address these challenges, RawHash provides three key
mechanisms for efficient signal encoding and similarity identi-
fication. First, RawHash encodes signal values that have a wider
range of values into a smaller set of values using a quantization
technique, such that signal values within a certain range are
assigned to the same encoded value. This helps to alleviate the
probability of having varying signal values for the same DNA
content and enables RawHash to directly match these values
using a hashing technique. Second, RawHash concatenates the
quantized values of multiple consecutive signals and generates
a single hash value for them. The hashing mechanism enables
RawHash to efficiently identify similar signal regions of these
consecutive signal values by directly matching their correspond-
ing hash values. Representing many consecutive signals with
a single hash value increases the size of the regions examined
during similarity identification without suffering from the curse
of dimensionality. Using larger regions can substantially reduce
the number of possible matching regions that need to be exam-
ined. RawHash is the first work that can accurately use hash
values in the raw signal domain, which enables using efficient
data structures commonly-used used in the sequence domain
(e.g., hash tables in minimap2 [14]). Third, RawHash uses
an existing algorithm, known as chaining [14, 15], to find the
colinear matches of hash values between signals to identify
similar signal regions. These efficient and accurate mechanisms
enable RawHash to perform real-time genome analysis for large
genomes.

While our proposed three key mechanisms have the potential
to be used for various purposes in raw signal similarity identi-
fication, we design RawHash as a tool for mapping nanopore
raw signals to their corresponding reference genomes in real-
time. RawHash operates the mapping in two steps 1) indexing
and 2) mapping. First, in the indexing step, RawHash 1) con-
verts the reference genome sequence into expected signal values
by simulating the expected behavior of nanopores based on a
previously-known model, 2) generates the hash values from

these signals, and 3) stores the hash values in a hash table for
efficient matching. Second, in the mapping step, RawHash
1) generates the hash values from the raw signals in a streaming
fashion, 2) queries the hash table from the indexing step with
these hash values to find the matching regions in the reference
genome with the same hash value, and 3) performs chaining to
find the similar region between the reference genome and the
raw signal of a read.

RawHash can utilize the Read Until functionality to reduce
the sequencing time and cost in two ways. First, to avoid re-
dundant sequencing and processing of each read, RawHash
can use Read Until to eject a read before it is fully sequenced
if RawHash identifies that the sequenced portion of the read
can already be mapped to a reference genome. Second, to per-
form a cost- and time-efficient relative abundance estimation,
RawHash utilizes Read Until to fully stop the entire sequencing
of all subsequent reads after sequencing a certain amount of
reads that is sufficient to make an accurate relative abundance
estimation. We refer to such usage of Read Until during abun-
dance estimation as Sequence Until. Avoiding the redundant
sequencing of further reads that are unlikely to substantially
change the relative abundance estimation has the potential to
significantly reduce the sequencing time and cost. To utilize
Sequence Until, RawHash integrates a confidence calculation
mechanism that evaluates the relative abundance estimations in
real-time and fully stops the entire sequencing run if using more
reads does not change its estimation. To stop the entire sequenc-
ing run for further reads, Read Until can continuously be used
for a nanopore to instantly eject the reads from the pore. We find
that Sequence Until can be applied to other mechanisms (e.g.,
UNCALLED) that can perform real-time relative abundance
estimations. Prior work [5] proposes a technique to terminate
the sequencing process when species in the sample reach a cer-
tain coverage depth. The key difference of Sequence Until is
that it reduces the cost of sequencing for relative abundance
estimation and is based on our adaptive, accurate, and low-cost
confidence calculation during real-time abundance estimation.

We evaluate RawHash on three important applications that
can benefit from real-time genome analysis: 1) read mapping,
2) relative abundance estimation, and 3) contamination analy-
sis. We compare RawHash with the state-of-the-art approaches,
UNCALLED and Sigmap, which can be used with nanopore
sequencers that may not be equipped with GPUs, such as the
MinION devices. We evaluate RawHash, UNCALLED, and
Sigmap in terms of their performance, accuracy, and their esti-
mated benefits in reducing the sequencing time and cost.

This paper provides the following key contributions and
major results:

• We propose RawHash, the first mechanism that can efficiently
and accurately find the similarities between raw nanopore
signals and a reference genome for large genomes without
requiring powerful computational resources such as GPUs.

• We extensively evaluate RawHash by comparing it with state-
of-the-art approaches, UNCALLED and Sigmap, on various
datasets ranging from small genomes (i.e., genomes with up
to 100 million bases) to large genomes (e.g., human genome).
Our results show that RawHash provides 1) comparable ac-
curacy to UNCALLED and Sigmap for small genomes and
2) significantly better accuracy for large genomes than UN-
CALLED and Sigmap.
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• We show that Sigmap cannot perform real-time genome anal-
ysis for large genomes as it cannot match the throughput of
nanopores.

• We provide the open source implementation of RawHash and
the complete set of scripts to reproduce the results shown in
this paper at https://github.com/CMU-SAFARI/RawHash.

2. Methods
We propose RawHash, a mechanism that can efficiently and

accurately identify similarities between raw nanopore signals
of a read and a large reference genome in real-time (i.e., while
the read is sequenced). The raw nanopore signal of each read
is a series of electrical current measurements as a strand of
DNA passes through a nanopore. The reference genome is a
set of strings over the alphabet A,C,G,T. RawHash provides
the mechanisms for generating hash values from both a raw
nanopore signal and a reference genome such that similar re-
gions between the two can be efficiently and accurately found
by matching their hash values.

2.1. Overview
Figure 1 shows the overview of how RawHash identifies sim-

ilarities between raw nanopore signals of a read and a reference
genome in four steps. First, RawHash pre-processes both 1) the
raw nanopore signal and 2) the reference genome into values
that are comparable to each other. For raw signals, RawHash
segments the raw signal into non-overlapping regions such that
each region is expected to contain a certain amount of signal
values that are generated from reading a fixed number k of DNA
bases. Each such region is called an event [13]. Each event
is usually represented as a floating point value derived from
the signal values in the segment. For the reference genome,
RawHash translates each substring of length k (called a k-mer)
into their expected event values based on the nanopore model.

The event values from the reference genome are not directly
comparable to the event values from raw nanopore signals due to
variability in the current measurements in nanopores generating
slightly different event values for the same k-mer [13]. To
generate the same values from slightly different events that
may contain the same k-mer information, the second step of
RawHash quantizes the event values from a larger set of values
into a smaller set. The quantization technique ensures that the
event values within a certain range are likely to be assigned to
the same quantized value such that the effect of signal variation
is alleviated, i.e., the same k-mer is likely assigned the same
quantized value.

Due to the nature of nanopores, each event usually represents
a very small k-mer of length around k=6 bases, depending on
the nanopore model [6]. Such a short k-mer is likely to exist in
a large number of locations in the reference genome, making
it challenging to efficiently identify the correct one. To make
the events more unique (i.e., such that they exist only in a small
number of locations in the reference genome), the third step
of RawHash combines multiple consecutive quantized events
into a single hash value. These hash values can then be used to
efficiently identify similar regions between raw signals and the
reference genome by matching the hash values generated from
their events using efficient data structures such as hash tables.

Fourth, to map a raw nanopore signal of a read to a reference
genome, RawHash uses a chaining algorithm [6, 14, 15] that
find colinear matching hash values generated from regions that

are close to each other both in the reference genome and the
raw nanopore signal.
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Figure 1: Overview of RawHash.

2.2. Event Generation
Our goal is to translate a reference genome sequence and

a raw nanopore signal into comparable values. To this end,
RawHash converts 1) each k-mer of the reference genome and
2) each segmented region of the raw signal into its correspond-
ing event.
Sequence-to-Event Conversion. To convert a reference
genome sequence into a form that can be compared with raw
nanopore signals, RawHash converts the reference genome se-
quence into event values in three steps, as shown in Figure 2.

First, RawHash extracts all k-mers of length k from the ref-
erence genome sequence, where k depends on the nanopore.
The k-mer model of a nanopore1 includes the information about
the expected k-mer length of an event and the expected av-
erage event value for each k-mer based on certain variables
affecting the signal outcome of the nanopore’s current measure-
ments [16].

Second, RawHash queries the k-mer model for each k-mer
of the reference genome to convert k-mers into their expected
event values. Although the k-mer model of a nanopore pro-
vides an extensive set of information for each possible k-mer,
RawHash uses only the mean values of events that provide an
average value for the signals in the same event since these mean
values provide a sufficient level of meaningful information for
comparison with the raw nanopore signals.

Third, RawHash normalizes the event values from the same
reference genome sequence (e.g., entire chromosome sequence
or a contig) by calculating the standard scores (i.e., z-scores) of
these events. RawHash uses these normalized values as event
values since the same normalization step is taken for raw signals
to avoid certain variables that may affect the range of raw signal
amplitudes during sequencing [3, 6].
Signal-To-Event Conversion. Our goal is to accurately convert
the series of raw nanopore signals into a set of values where each

1For many nanopore models, ONT provides the k-mer model [16]. For
some recent nanopore models, such as the R10 devices, ONT has not provided
k-mer models. In such cases, they can still be generated [17, 18]).
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Figure 2: Converting sequences to event values based on the k-mer
model of a nanopore.

value corresponds to certain DNA sequences of fixed length k,
k-mers, and consecutive values differ by one base. To achieve
this, RawHash converts the raw signals into their corresponding
values in three steps, as shown in Figure 3. First, to accurately
identify the distinct regions in the raw signal that correspond to
a certain k-mer from DNA, RawHash performs a segmentation
step as described in a basecalling tool, Scrappie [19], and used
by earlier works UNCALLED and Sigmap. The segmentation
step aims to eliminate the factors that affect the speed of the
DNA molecules passing through a nanopore, as the speed af-
fects the number of signal measurements taken for a certain
amount of bases in DNA. To perform the segmentation step,
RawHash identifies the boundaries in the signal where the sig-
nal value changes significantly compared to the certain amount
of previously measured signal values, which indicates a base
change in the nanopore. Such boundaries are computed using
a statistical test, known as Welch’s t-test [20], over a rolling
window of consecutive signals. RawHash performs this t-test
for multiple windows of different lengths to avoid the variables
that cause a change in the number of current measurements due
to the varying speed of DNA through a nanopore, known as skip
and stay errors [13]. Signals that fall within the same segment
(i.e., between the same measured boundaries) are usually called
events since each event contains the signals from a reading of a
fixed amount of DNA bases, k-mers.

Second, since the number of signals that each event includes
is not constant across different events due to the stay and skip
errors, RawHash generates a single value for each event to
quickly avoid these potential errors and other factors that cause
variations from reading the same amount of DNA bases. To this
end, RawHash measures the mean value of the signals that fall
within the same segment and uses this mean value for an event.

Third, since the amplitudes of the signal measurements
may significantly vary when reading k-mers at different times,
RawHash normalizes the mean event values based on the mean
event values generated from the nanopore within the same cer-
tain time interval in a streaming fashion. Although this time
interval parameter can be modified in our tool, the default con-
figuration of RawHash processes the events of signals gener-
ated by the nanopore within one second. For normalization,
RawHash uses the same z-score calculation that it uses for nor-
malizing the event values generated from reference sequences
as described earlier. RawHash uses these normalized values
as event values when comparing with the event values from
reference sequences.
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Figure 3: Detecting events from raw signals.

2.3. Quantization of Events

Our goal is to avoid the effects of generating different event
values when reading the same k-mer content from nanopores
so that we can identify k-mer matches by directly matching
events. Although the segmentation and normalization steps
explained in Section 2.2 can avoid the potential sequencing
errors, such as stay and skip errors and significant changes in
the current readings at different times, these approaches still do
not guarantee to generate exactly the same event values when
reading the same k-mer content. This is because slight changes
in the normalized event values may occur when reading the
same DNA content due to the high sensitivity and stochasticity
of nanopores [13]. Thus, it is challenging to generate the same
event value for the same k-mer content after the segmentation
and normalization steps. Since these event values generated
from reading the same k-mer content are expected to be close
to each [6], we propose a quantization mechanism that encodes
event values so that events with close mean values can have the
same quantized value in two steps as shown in Figure 4.

First, to increase the probability of assigning the same value
for similar event values, RawHash trims the least significant
fractional part of mean values by using only the most significant
Q bits of these mean event values from their binary format,
which we represent as E[1,Q] for simplicity where E is the
event value and E[1,Q] gives the most significant Q bits of E.
We assume that the mean event values are represented by the
standard single-precision floating-point format with the sign,
exponent, and fraction bits. This enables RawHash to reduce
the wide range of floating-point values into a smaller range
without significantly losing from the accuracy such that event
values closer to each other can be represented by the same
value in the smaller range of values. We can perform this
trimming technique without significant sensitivity loss because
we observe that these normalized event values mostly use at
most six digits from the fractional part of their values, leaving a
large number of fractional bits useless.

Second, to avoid using redundant bits that may carry little or
no information in the most significant Q bits of an event value,
RawHash prunes p bits after the most significant two bits of
E[1,Q] such that 2 + p < Q and the resulting quantized value
is E[1,2]E[3 + p,Q]. For simplicity, we show the quantized
value of E as EQ,p. By ignoring these p bits, we effectively
pack Q bits into Q–p bits without losing significant information
from event values. We can perform such a pruning operation
because we observe that the normalized event values are usually
between in the range [–3,3] such that these p bits provide little
information in distinguishing different event values due to the
small range of values. We note that these Q and p values are
parameters to RawHash and can empirically be adjusted based
on the required sensitivity and quantization efficiency. This
quantization technique enables RawHash to assign the same
quantized values for a pair of close event values, E and F,
that may be generated from reading the same k-mer such that
EQ,p = FQ,p where |E – F| < ε and ε is small enough for two
events to represent the same k-mer content. RawHash always
uses the most significant two bits as these two bits consistently
carry the most significant information of the normalized event
values, including the sign bit.
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Event	Values

Figure 4: Quantization of two event values.

2.4. Generating the Hash Values
Our goal is to generate values for large regions of raw

nanopore signals and reference sequences such that these val-
ues can be used to efficiently and accurately identify similar-
ities between raw signals and a reference genome. To this
end, RawHash generates hash values using quantized values
of events in two steps, as shown in Figure 5. First, to avoid
finding a large number of matches, RawHash uses the quantized
values of n consecutive events to pack them in n× (Q – p) bits
while preserving the order information of these consecutive
events. RawHash uses several consecutive events in a single
hash value because matching a single event is likely to generate
a larger number of matches for larger genomes as a single event
usually corresponds to a k-mer of 6 to 9 bases depending on the
nanopore model [13]. It is essential to use several consecutive
events to reduce the number of matching regions between raw
signals and the reference genome by increasing the region that
these consecutive events span.

Second, to efficiently and accurately find matches between
large regions of raw signals and a reference genome using a
constrained space, RawHash uses a low collision hash function
to generate a 32-bit hash value from n× (Q – p) bits of n con-
secutive quantized event values. Since n× (Q – p) can be larger
than 32, using such a hash function is likely to increase the
collision rate for dissimilar regions. To avoid inaccurate simi-
larity identifications due to these incorrect collisions, RawHash
requires several matches of hash values within close proximity
for similarity identification, which we explain next.

Quantized	Values	(in	binary)	of	𝒏 Consecutive	Events:

11 0 0 1 00 1 1 0 … 10 0 0 1

Pack

11 0 0 1 00 1 1 0 … 10 0 0 1

Hash

0x400D70A4 32-bit	Hash	Value	
of	𝒏 Events

Figure 5: Generating a hash value from n consecutive quantized
event values.

2.5. Seeding and Mapping
To efficiently identify similarities, RawHash uses hash values

generated from raw nanopore signals and the reference genome
in two steps. First, RawHash efficiently identifies matching
regions between raw nanopore signals and a reference genome
by matching their hash values. These hash values used for
matching are usually known as seeds. Matching seeds enable

efficiently finding similar regions between raw nanopore signals
and a reference genome Second, RawHash uses the chaining
algorithm proposed in Sigmap [6] to identify the best colinear
matching seeds within close proximity to identify similar re-
gions between raw signals and a reference genome by chaining.
Incorrect seed matches due to collisions or our quantization
mechanism that may generate the same quantized value for dis-
tinctly dissimilar events are likely to be filtered in the chaining
step due to the difficulty of finding colinear seed matches in
dissimilar regions. We note that we modify the original chain-
ing algorithm in Sigmap by disabling the distance coefficient as
RawHash does not calculate the distance between seed matches,
unlike Sigmap.

To efficiently map raw signals to a reference genome,
RawHash provides efficient data structures. To this end,
RawHash uses hash tables to store the hash values generated
from reference genomes (i.e., the indexing step) and efficiently
query the same hash table with the hash values generated from
the raw signal as the read is sequenced from a nanopore to find
positions in the reference genome with matching hash values.
RawHash uses the events in chunks to find seed matches and
perform chaining in a streaming fashion such that the chaining
computation from previous chunks (i.e., seed matches) is trans-
ferred to the next chunk if the mapping is unsuccessful for the
current chunk.

3. Results
3.1. Evaluation Methodology

We implement RawHash as a tool for mapping raw nanopore
signals to a reference genome. Similar to regular read map-
ping tools, RawHash has two steps to complete the mapping
process: 1) indexing the reference genome and 2) mapping
raw signals. Although indexing is usually a one-time task that
can be performed prior to the mapping step, the indexing of
RawHash is efficient that can be performed relatively quickly
within a few minutes for large genomes. RawHash provides the
mapping information using a standard pairwise mapping format
(PAF). In our implementation, we provide an extensive set of pa-
rameters that allow configuring several options to fit RawHash
for many other applications and nanopore models that we do
not evaluate, such as configuring details about the nanopore
model (e.g., number of bases per second), number of events
that can be included in a single hash value, range of bits to
quantize, enabling seeding techniques such as minimizers and
fuzzy seed matching. We also provide a default set of parame-
ters that we empirically choose for each common application
of real-time genome analysis. These default parameters are set
to accurately and efficiently analyze 1) very small (e.g., viral)
genomes, 2) small and mid-sized genomes (i.e., genomes with
less than a few hundred million bases), 3) large genomes (e.g.,
genomes with a few billion bases such as a human genome).

We evaluate RawHash in terms of its performance, accuracy,
and estimated benefits in sequencing time and cost compared
to two state-of-the-art tools UNCALLED and Sigmap. For per-
formance, we evaluate the throughput of each tool in terms of
the number of bases they can process per second. Throughput
determines if the tool is at least as fast as the speed of DNA
passing through a nanopore. For many nanopore models (e.g.,
R9.4), a DNA strand passes through a pore at around 450 bases
per second [3, 6]. It is essential to provide a throughput higher
than the throughput of the nanopore to enable real-time genome
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analysis. To calculate the throughput, we use the tool that UN-
CALLED provides, UNCALLED pafstats, which measures
the throughput of the tool from the number of bases that the tool
processes and the time it takes to process those bases. Although
theoretically, it is not possible to exceed the throughput of a
nanopore due to the speed of raw signal generation, for com-
parison purposes, such a limitation is ignored by UNCALLED
pafstats.

For accuracy, we evaluate the correctness of the mapping
positions that each tool provides when compared to the ground
truth mapping positions. To generate the ground truth mapping,
we use a read mapping tool, minimap2 [14], to map the base-
called sequences of raw nanopore signals to their corresponding
whole-genome references. We use UNCALLED pafstats to
compare the mapping output of a tool with the ground truth
mapping to find the number of true positives or TP (i.e., correct
mappings), false positives or FP (i.e., incorrect mappings), and
false negatives or FN (i.e., unmapped reads that are mapped in
ground truth). Correct and incorrect mappings are identified
based on the distance of the mapping positions between ground
truth and the tool. To evaluate the accuracy, we calculate the
precision (P = TP/(TP + FP)), recall (R = TP/(TP + FN)) and the
F1 (F1 = 2× (P×R)/(P + R)) values.

For estimating the benefits in sequencing time and cost of
each tool, we calculate the average time that each tool takes
to process each read for mapping. The mean time determines
the estimations of how quickly each tool can make a mapping
decision to activate Read Until, which indicates the potential
savings from overall sequencing time and cost.

We evaluate RawHash, UNCALLED, and Sigmap for three
applications 1) read mapping, 2) relative abundance estimation,
and 3) contamination analysis. Read mapping aims to map the
raw signals to their corresponding reference genomes. Relative
abundance estimation measures the abundance of each genome
relative to other genomes in the same sample by mapping raw
signals to a given set of reference genomes. Contamination
analysis aims to identify if a sample is contaminated with a
certain genome (e.g., a viral genome) by mapping raw signals
to the reference genome that the sample may be contaminated
with. For each tool, we use their default parameter settings in
our evaluation.

To evaluate each of these applications, we use real datasets
that we list in Table 1. These datasets include both raw nanopore
signals in the FAST5 [21] format and their corresponding base-
called sequences in the FASTA format [22]. For relative abun-
dance estimation, we create a mock community using all the
read sets from datasets D1 to D5, and the reference genome is
the combination of reference genomes used in these datasets.
We slightly modify the reference genome we use in the relative
abundance estimation such that the sequence IDs in the refer-
ence genome provide additional information about the species
(e.g., taxonomy IDs) to enable calculating relative abundance in
real-time. For contamination analysis, we combine the SARS-
CoV-2 read sets (D1) with human read sets (D5) to identify
if the combined sample is contaminated with the SARS-CoV-
2 sample by mapping raw signals in the combined set to the
SARS-CoV-2 reference genome. For all evaluations, we use the
AMD EPYC 7742 processor at 2.26GHz to run the tools.
Evaluating Sequence Until. Our goal is to avoid redundant
sequencing to reduce sequencing time and cost for relative abun-
dance estimation. We find that the Read Until mechanism can

Table 1: Details of datasets used in our evaluation.

Organism Reads Bases SRA Reference Genome
(#) (#) Accession Genome Size

Read Mapping

D1 SARS-CoV-2 1,382,016 594M CADDE [23] GCF_009858895.2 29,903

D2 E. coli 353,317 2,365M ERR9127551 GCA_000007445.1 5M

D3 Yeast 49,989 380M SRR8648503 GCA_000146045.2 12M

D4 Green Algae 29,933 609M ERR3237140 GCF_000002595.2 111M

D5 Human HG001 269,507 1,584M FAB42260 [24] T2T-CHM13 (v2) 3,117M
Relative Abundance Estimation

D1-D5 2,084,762 5,531M D1-D5 D1-D5 3,246M
Contamination Analysis

D1, D5 1,651,523 2,178M D1, D5 D1 29,903
Dataset numbers (e.g., D1-D5) show the combined datasets. Base counts in millions (M).

be utilized to fully stop the sequencing run when the real-time
relative abundance estimation reaches a certain confidence level
to achieve accurate estimations, which we call Sequence Until.
While a similar mechanism is evaluated to enrich the coverage
depth of low-abundance species [5], we evaluate the potential
benefits of Read Until for low-cost relative abundance estima-
tions. We integrate a real-time confidence calculation mecha-
nism in RawHash to activate the Sequence Until mechanism in
three steps. First, RawHash measures the relative abundance
estimation after every n reads that can be mapped to a reference
genome in real-time. Second, to identify if the recently mapped
reads provide substantial changes in the abundance estimations,
RawHash performs a cross-correlation calculation between the
last w estimations. Cross-correlation can identify outliers from
a set of estimations to identify if the outlier is substantially dif-
ferent than other estimations, which indicates that recent reads
can still change the relative abundance estimation, and more
reads should be sequenced from the sample. Third, RawHash
activates Sequence Until by fully stopping the sequencing (e.g.,
continuous use of Read Until to instantly eject reads without
processing them) when there are no outliers in the last w es-
timations, which indicates a convergence to a certain relative
abundance estimation, and further sequencing is unlikely to
change this estimation. RawHash provides a set of parameters
to adjust these parameters related to Sequence Until.

We evaluate the benefits of Sequence Until by comparing
1) RawHash without Sequence Until and 2) RawHash with
Sequence Until in terms of 1) the difference in the relative abun-
dance estimations and 2) the estimated benefits in sequencing
time and cost. To evaluate Sequence Until in a realistic se-
quencing environment where reads from different species can
be sequenced in a random order, we randomly shuffle the reads
in the relative abundance dataset and generate a set of 50,000
reads with a random order of species so that we can simulate
this random behavior. We also find that Sequence Until can be
applied to other mechanisms. To evaluate the potential benefits
of Sequence Until, we simulate the benefits when using UN-
CALLED with Sequence Until and compare it with RawHash.

3.2. Performance
Figure 6 shows the throughput of regular nanopores that we

use as a baseline and the throughput of the tools when map-
ping raw nanopore signals to each dataset for read mapping,
contamination analysis, and relative abundance estimation. We
make three key observations. First, RawHash and UNCALLED
are the only tools that can perform real-time genome analysis
for large genomes, as they can provide higher throughputs than
nanopores for all datasets. Sigmap cannot perform real-time
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genome analysis for large genomes as it can provide 0.7× and
0.6× throughput of a nanopore for human genome mapping
and relative abundance estimations, respectively. RawHash can
achieve high throughput as its seeding mechanism is based on
efficiently matching hash values compared to the costly distance
calculations that Sigmap performs for matching seeds, which
shows poor scalability for larger genomes. Second, the through-
put of UNCALLED is not affected by the genome size as it
provides a near-constant throughput of around 16× for all appli-
cations. This is because UNCALLED uses FM-index [25] and
a branching algorithm that provides robust scaling with respect
to the reference genome size [3]. Third, RawHash provides an
average throughput 25.8× and 3.4× better than UNCALLED
and Sigmap, respectively. We conclude that RawHash provides
significant benefits in improving the throughput to scale the real-
time analysis to large genomes while matching the throughput
of nanopores.
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Figure 6: Throughput of each tool. Values inside the bars show
the throughput ratio between each tool and a nanopore.

3.3. Accuracy
Table 2 shows the accuracy results of tools for each dataset

and application. We make four key observations. First,
RawHash provides the best accuracy in terms of precision, re-
call, and F1 values compared to UNCALLED and Sigmap when
mapping reads to large genomes (i.e., the human genome and
the relative abundance estimation). RawHash can efficiently
match several events using hash values, which is specifically
beneficial in reducing the number of matching regions in large
genomes and increasing the specificity due to finding longer
matches compared to UNCALLED and Sigmap.

Second, RawHash and UNCALLED can accurately perform
contamination analysis while Sigmap suffers from significantly
lower precision and recall values. Due to the nature of a con-
tamination analysis, it is essential to correctly eliminate the
genomes other than the contaminating genome (precision) with-
out missing the correct mappings of reads from the contaminat-
ing genome (recall). Unfortunately, Sigmap can provide high
values in neither of these categories, making it significantly
unsafe for contamination detection.

Third, the precision of RawHash does not drop with the
increased length in the reference genome due to the benefits of
finding long matches, which provides a higher confidence in
read mapping.

Fourth, although RawHash does not provide the best accu-
racy when mapping reads to genomes smaller than the human
genome, its accuracy is on par with UNCALLED and Sigmap
for these genomes. UNCALLED and Sigmap can achieve high
recall values as their mechanisms are best optimized for ac-
curately handling matches in relatively smaller genomes with
fewer repeats and ambiguous mappings [3,6]. We conclude that
RawHash is the only tool that can accurately scale to performing

real-time genome analysis for large genomes, especially with
significantly high precision rates.

Table 2: Mapping accuracy.

Dataset UNCALLED Sigmap RawHash

Read Mapping

D1 Precision 0.9547 0.9929 0.9868
SARS-CoV-2 Recall 0.9910 0.5540 0.8735

F1 0.9725 0.7112 0.9267

D2 Precision 0.9816 0.9842 0.9573
E. coli Recall 0.9647 0.9504 0.9009

F1 0.9731 0.9670 0.9282

D3 Precision 0.9459 0.9856 0.9862
Yeast Recall 0.9366 0.9123 0.8412

F1 0.9412 0.9475 0.9079

D4 Precision 0.8836 0.9741 0.9691
Green Algae Recall 0.7778 0.8987 0.7015

F1 0.8273 0.9349 0.8139

D5 Precision 0.4867 0.4287 0.8959
Human HG001 Recall 0.2379 0.2641 0.4054

F1 0.3196 0.3268 0.5582

Relative Abundance Estimation

Precision 0.7683 0.7928 0.9484
D1-D5 Recall 0.1273 0.2739 0.3076

F1 0.2184 0.4072 0.4645

Contamination Analysis

Precision 0.9378 0.7856 0.8733
D1, D5 Recall 0.9910 0.5540 0.8735

F1 0.9637 0.6498 0.8734

Best results are highlighted with bold text.

Relative Abundance Estimations. Table 3 shows the relative
abundance estimations that each tool makes and the Euclidean
distance of their estimation to the ground truth estimation. We
make two key observations. First, we find that RawHash pro-
vides the most accurate relative abundance estimations in terms
of the estimation distance to the ground truth compared to UN-
CALLED and Sigmap. This observation correlates with the
accuracy results we show in Table 2 where RawHash provides
the best overall accuracy for relative estimation, which results
in generating the most accurate relative abundance estimations.
Second, although Sigmap cannot perform real-time relative
abundance estimation due to its throughput being lower than a
nanopore (Figure 6), Sigmap provides accurate estimations that
are on par with RawHash. This observation shows that while
Sigmap provides mappings with more incorrect positions due
to lower precision than RawHash (Table 2), these reads with
incorrect mapping positions are mostly mapped to their correct
species. We conclude that RawHash is the only tool that can
accurately be applied to analyze relative abundance estimations
while matching the throughput of nanopores at a large-scale
based on the prior knowledge of the set of reference genomes
to map the reads.
3.4. Sequencing Time and Cost

Our goal is to estimate the benefits that each tool provides in
reducing the sequencing time and cost. To this end, we measure
the average time each tool takes for each read while the read is
sequenced in a nanopore, as shown in Figure 7. We make two
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Table 3: Relative abundance estimations.

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance

Ground Truth 0.0929 0.4365 0.0698 0.1179 0.2828 N/A

UNCALLED 0.0026 0.5884 0.0615 0.1313 0.2161 0.1895

Sigmap 0.0419 0.4191 0.1038 0.0962 0.3390 0.0877

RawHash 0.1249 0.4701 0.0957 0.0629 0.2464 0.0847

Best results are highlighted with bold text.

key observations. First, RawHash provides an average speedup
of 32.1× and 2.1× per read compared to UNCALLED and
Sigmap, respectively. This observation suggests that RawHash
can 1) reduce the number of overall bases that need to be se-
quenced in the entire sequencing lifetime (sequencing cost) and
2) increase the number of bases sequenced at a constant time in-
terval by utilizing Read Until more frequently than other tools.
Second, while RawHash and Sigmap are significantly faster
than UNCALLED for shorter reference genomes, UNCALLED
usually spends less time per read when mapping them to larger
genomes. This observation correlates with our observation in
the near-constant throughput results of UNCALLED, which
shows that the performance of UNCALLED is not significantly
affected by the reference genome length. We conclude that
RawHash can provide significant reductions in sequencing time
and cost as it, on average, takes shorter times when mapping
reads, while UNCALLED is better at reducing the time and
cost for larger genomes.
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Figure 7: Average time spent per read by each tool in real-time.
Values inside the bars show the speedups that RawHash provides
over other tools in each dataset.

3.5. Benefits of Sequence Until
Simulated Sequence Until. Our goal is to estimate the ben-
efits of implementing the Sequence Until mechanism in UN-
CALLED and compare it with RawHash when they both use
Sequence Until under the same conditions. To this end, we use
shuf in Linux to randomly shuffle the mapping files that both
RawHash and UNCALLED generate for relative abundance and
extract a certain portion of the randomly shuffled file to identify
their relative abundance estimations after 0.01%, 0.1%, 1%,
10%, and 25% of the overall reads in the sample are randomly
sequenced from nanopores.

Table 4 shows the distance of relative abundance estima-
tions after a certain portion of the read is randomly sequenced
from nanopores. We make two key observations. First, both
RawHash and UNCALLED can significantly benefit from Se-
quence Until by stopping sequencing after processing a smaller
portion of the entire sample since their estimations using smaller
portions are close to those using the entire set of reads (Table 3)
in terms of their distance to the ground truth. This suggests
that many other tools can benefit from Sequence Until as their
sensitivity to relative abundance estimations may not signifi-

cantly change while providing opportunities for reducing the
sequencing time and cost up to a certain threshold based on the
tool.

Second, RawHash can provide more accurate relative abun-
dance estimations when using only 0.1% of the reads than the
estimation that UNCALLED provides using the entire set of
reads (Table 3). We conclude that Sequence Until provides
significant opportunities in reducing sequencing time and cost
while more accurate tools such as RawHash can benefit fur-
ther from Sequence Until by using fewer portions of the entire
read set than the portions that less accurate tools would need to
achieve similar accuracy.

Table 4: Relative abundance with simulated Sequence Until.

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance

Ground Truth 0.0929 0.4365 0.0698 0.1179 0.2828 N/A

UNCALLED (25%) 0.0026 0.5890 0.0613 0.1332 0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786 0.3170 0.0995

UNCALLED (10%) 0.0026 0.5906 0.0611 0.1316 0.2141 0.1920
RawHash (10%) 0.0273 0.4869 0.0963 0.0772 0.3124 0.1004

UNCALLED (1%) 0.0026 0.5750 0.0616 0.1506 0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882 0.3088 0.0928

UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910 0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810 0.2814 0.1136

UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000 0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122 0.0000 0.0000 0.2972 0.2232

Percentages show the portion of the overall reads used. Best results are highlighted with bold text.

Sequence Until with RawHash. Our goal is to evaluate Se-
quence Until when used in real-time with RawHash for relative
abundance estimation. Table 5 shows the relative abundance
estimations that RawHash makes with and without Sequence
Until. We note that the estimations we show for RawHash in
Table 5 are different than the estimations in Table 3 since we
randomly subsample the reads in the relative abundance esti-
mation dataset, as explained in Section 3.1. We make two key
observations. First, we observe that the distance between the
relative abundance estimations between these two configura-
tions of RawHash is substantially low. This indicates that our
outlier detection mechanism can accurately detect the conver-
gence to the relative abundance estimations without using a
full set of reads. Second, Sequence Until enables accurately
stopping the entire sequencing after processing 7% of the reads
in the entire set without substantially sacrificing accuracy. We
conclude that Sequence Until has the potential to significantly
reduce the sequencing time and cost by using only fewer reads
from a sample while producing accurate results.

Table 5: Relative abundance with Sequence Until.

Estimated Relative Abundance Ratios in 50,000 Random Reads

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance

RawHash (100%) 0.0270 0.3636 0.3062 0.1951 0.1081 N/A

RawHash + 0.0283 0.3539 0.3100 0.1946 0.1133 0.0118
Sequence Until (7%)

Percentages show the portion of the overall reads used.

4. Discussion
We discuss the benefits we expect RawHash can immediately

make, the limitations of RawHash, and future work. We en-
vision that RawHash can be useful mainly for two directions.
First, RawHash provides a low-cost solution for analyzing large
genomes in real-time. Such an analysis can be significantly
useful when using nanopore sequencers with limited computa-
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tional resources to enable portable real-time genome analysis at
a large scale.

Second, we expect that RawHash can also be useful for
genome analysis that does not require real-time solutions by
reducing the time and energy that further steps in genome anal-
ysis may require. One of the immediate steps after generating
raw nanopore signals is their translation to their corresponding
DNA bases as sequences of characters with a computationally-
intensive step, basecalling. Basecalling approaches are usually
computationally costly and consume significant energy as they
use complex deep learning models [26–38]. Although we do
not evaluate in this work, we expect that RawHash can be used
as a low-cost filter to eliminate the reads that are unlikely to
be useful in downstream analysis, which can reduce the overall
workload of basecallers and further downstream analysis. We
believe that RawHash can be applied for such a filtering purpose
since a previous work [39] proposes a lightweight basecalling
solution to use as a filter before using the costly basecallers.
Limitations. We find four limitations of RawHash, which we
believe can be improved with further optimizations and better
solutions. First, RawHash depends on previously generated
k-mer models to generate events from reference genomes. Al-
though these k-mer models can be trained and generated [17,18],
this makes it challenging to adapt the most accurate parameters
for each k-mer model based on the nanopore model used for
sequencing. A more generic k-mer model that can accurately
represent all nanopores is needed to easily adapt RawHash to
all possible nanopore models that may be released in the future.

Second, RawHash starts providing lower recall values as the
genome size increases, which indicates that a larger portion of
correct reads cannot be mapped by RawHash due to the increase
in the number of false negatives. Although such an increase
in false negatives does not substantially affect some applica-
tions, such as contamination analysis, where providing higher
precision is more critical to correctly identify the contaminated
sample, improving it is useful to provide more accurate genome
analysis overall.

Third, we perform our relative abundance estimations based
on a priori knowledge of reference genomes. While such an
experiment can still be useful in practical scenarios, this is not
the common case in metagenomic analysis, where a sample
is searched against a significantly larger set of species. We
expect that our mechanism can still scale to such metagenomic
analyses given that many metagenomic databases are efficiently
constructed by including fewer and useful information for each
species [40], as opposed to our analysis, where we include
whole-genome references.

Fourth, we observe that the throughput of RawHash is ex-
pected to reach the throughput of a nanopore when analyzing
reference genomes slightly larger than a human genome. Such
a limitation can be alleviated by applying 1) seeding techniques
that provide faster and more space-efficient searches in large
spaces and 2) chaining algorithms that are optimized for hash-
based seed matches without the notion of distance between
seeds, unlike the chaining algorithm used in Sigmap.
Future work. We find three key directions for future work.
First, we find that our efficient hash-based similarity identifica-
tion mechanism can be used to efficiently find overlaps between
signals as the reads are sequenced in real-time. Although we
observe that our indexing technique is efficient in terms of the
amount it requires to construct an index even for large genomes,

such an overlapping technique requires substantially more op-
timized indexing methods and techniques that can efficiently
find overlaps as more reads are sequenced and evolves the in-
dex. Finding overlaps between signals can be beneficial in
1) providing enriched information to basecallers to increase
their basecalling accuracy and 2) identifying redundant signals
that fully overlap with already sequenced reads in a potential
effort for generating assemblies from signals.

Second, since RawHash generates hash values for matching
similar regions, it provides opportunities to use the hash-based
seeding techniques [14, 41–70] that are optimized for identi-
fying sequence similarities accurately without requiring large
memory space, such as minimizers [14, 71], spaced seeds [45],
syncmers [67], strobemers [68, 69], and fuzzy seed matching
as in BLEND [70]. Although we do not evaluate in this work,
we implement the minimizer seeding technique in RawHash.
Our initial observation motivates us that future work can ex-
ploit these seeding techniques with slight modifications in their
seeding mechanisms to significantly improve the performance
of certain applications without reducing the accuracy.

Third, we find that RawHash can also benefit from a GPU
implementation as its low-cost and accurate implementation
can effectively be scaled to nanopore sequencers that include
thousands of nanopores such that these pores can be analyzed in
parallel with an efficient GPU implementation, which we leave
as future work.

5. Related Work
To our knowledge, RawHash is the first mechanism to

efficiently and accurately perform real-time analysis of raw
nanopore signals for large genomes. We discuss related work
in 1) basecalling, 2) accelerating genome analysis after the
basecalling step, and 3) real-time genome analysis with limited
computational resources.
Basecalling. Deep learning-based models are utilized by mod-
ern basecallers to considerably enhance the precision of iden-
tifying a nucleotide base from raw signals compared to tra-
ditional non-deep learning-based basecallers [26, 27, 72–75].
Deep learning models can successfully basecall genomes due
to the developments and advancements in their architecture,
which enables them to model and accurately recognize spatial
characteristics in the raw data. Many basecallers have been pro-
posed using modern deep learning-based architectures [28–37]
However, the use of complex deep learning models makes base-
calling slow and memory-hungry, bottlenecking all genomic
analyses that depend on it [27]. Recent works focus on de-
veloping methods to speed up the basecalling process. One
approach to basecalling acceleration is to use specialized hard-
ware, such as field-programmable gate arrays (FPGAs) [76–80]
or processing-in-memory (PIM) [38, 81, 82], to perform the
basecalling computations. These specialized hardware devices
can perform many calculations in parallel, allowing for signif-
icant speedups in the basecalling process. Another approach
is to use machine learning-based compression techniques to
improve the performance of the basecalling process. RUBI-
CON [27] provides a framework to develop hardware-optimized
basecallers using neural architecture search [83], knowledge
distillation [84], and pruning [85]. Dorado [86], a basecaller by
ONT, uses quantization [87] to reduce the bit-width precision at
which neural network calculations are performed. All the above
works accelerate the basecalling step without eliminating the
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wasted computation in basecalling. TargetCall [39] proposes
a pre-basecalling filter that eliminates the wasted computation
in basecalling by leveraging the observation that the majority
of reads are discarded after basecalling. However, RawHash is
different from these works as its goal is to perform real-time
analysis of raw signals without performing the computationally-
intensive basecalling step.
Accelerating the genome analysis after basecalling. There
are several works that aim to accelerate the entire genome
analysis pipeline by accelerating one or multiple steps in the
pipeline after basecalling the raw nanopore signals [88, 89].
These works accelerate the pre-alignment filtering and read
classification [90–102], chaining [103, 104], read mapping and
sequence alignment [105–162] steps. Although these works
can significantly improve the performance of the genome anal-
ysis pipeline, unlike RawHash, these works cannot perform
real-time genome analysis while the raw nanopore signals are
generated from nanopore sequencers.
Real-time analysis of raw nanopore signal. Several works
perform real-time genome analysis of raw nanopore signals
by utilizing Read Until [3, 5–11]. SquiggleFilter [7] uses an
ASIC accelerator that quickly filters non-related raw electrical
signals before basecalling for viral detection. HARU [10] is an
FPGA accelerator that accelerates real-time selective genome
sequencing on resource-constrained devices for detecting viral
genomes. RawHash differs from these works as it does not
require specialized hardware design and can scale to analyze
large genomes while matching the throughput of nanopores.

SquiggleNet [9] and RawMap [11] require training with ma-
chine learning techniques using sequencing reads as training
data without using reference genomes. These works train their
models to classify raw nanopore signals without mapping them
to the reference genome, which is different than RawHash as
it maps raw signals to a reference genome. These works often
require retraining and reconfiguring the neural network model
and architectures. Although such classification approaches can
provide high accuracy in labeling reads as target or non-target
reads based on a target genome of interest, it can be challenging
to easily perform real-time analysis with high accuracy without
retraining or reconfiguring these models. RawHash is different
than these works as it can map reads to any reference genome
using easily configurable parameter settings.

ReadFish [5] can scale to mapping reads to large genomes
such as a human genome using GPUs for performing base-
calling. RawHash differs from ReadFish as it does not require
powerful computational resources such as GPUs, which may not
be immediately available for portable sequences such as ONT
MinION. Similar to ReadFish, RUBRIC [8] uses a basecalling
approach followed by mapping the basecalled raw signals to
analyze raw nanopore signals in real-time. These basecalling
approaches are optimized to use the entire raw nanopore sig-
nal of a read rather than the portions of raw signals produced
in real-time, which can be challenging in generating an accu-
rate mapping with a small number of basecalled signals [3, 6].
RawHash differs from ReadFish and RUBRIC as it can directly
and accurately map a small number of raw signals (e.g., sig-
nals produced in one second) to a reference genome without
basecalling them.

UNCALLED [3] and Sigmap [6] are the most relevant works
to RawHash. These works map raw nanopore signals to a refer-
ence genome without using powerful computational resources

(e.g., GPUs), which can be directly used with portable nanopore
sequencers. UNCALLED detects events from raw signals, and
the probability of k-mers that each event can represent is calcu-
lated using k-mer models. UNCALLED identifies the sequence
of matching k-mers between the most probable k-mers of events
and a reference genome using an FM-index [25]. However, it
becomes challenging to accurately identify the matching re-
gions with such a probabilistic model from a large number of
matches as the genome size increases. Thus, UNCALLED
is highly accurate for small genomes (e.g., E. coli and Yeast
genomes) due to the smaller number of probabilistic matches in
the reference genome that can be identified accurately.

Sigmap can map raw nanopore signals to genomes larger
than the Yeast genome (e.g., Green Algae with around 100M
bases). To achieve this, Sigmap converts the k-mers of the
reference genome into events and matches the events between
raw nanopore signals with the events of the reference genome.
Since events are not necessarily identical when reading the same
DNA content, it is challenging to find accurate matches between
them due to the signal variations we discuss in Section 2.2. To
address this challenge, Sigmap creates a vector from each n
consecutive events (i.e., n-dimensional vector space) from the
reference genome (i.e., the indexing step) and measures the
Euclidean distance between these vectors and the vectors gener-
ated from raw nanopore signals (i.e., the mapping step) using
a k-d tree structure. Although the distance between vector of
events generated from similar regions is close, such a distance
calculation is computationally costly and suffers from the curse
of dimensionality that fundamentally prevents accurately and
efficiently increasing the number of events within a single vec-
tor, which makes it ineffective for larger genomes. RawHash is
different than UNCALLED and Sigmap as it identifies similari-
ties between a reference genome and a raw nanopore signal by
efficiently and accurately matching the hash values generated
from them without using probabilistic approaches that can be
inaccurate for large genomes or costly distance calculations.

6. Conclusion
We propose RawHash, a novel mechanism that provides a

low-cost and accurate approach for real-time genome analysis
for large genomes. RawHash can efficiently and accurately
perform real-time analysis of raw nanopore signals to identify
similarities between the signals and a reference genome in real-
time at a large-scale (e.g., whole-genome analysis for human or
communities with multiple samples). To efficiently and accu-
rately identify similarities, RawHash 1) generates events from
both raw signals and the reference genome, 2) quantizes the
events into values such that slightly different events that cor-
respond to the same DNA content can have the same value,
and 3) generates hash values from multiple events to efficiently
find matching regions between raw signals and a reference
genome using hash values with efficient data structures such
as hash tables. We compare RawHash with the state-of-the-art
approaches, UNCALLED and Sigmap, on three important appli-
cations in terms of their performance, accuracy, and estimated
benefits in reducing sequencing time and cost. Our results show
that 1) RawHash is the only tool that can be accurately ap-
plied to analyze raw nanopore signals at large-scale, 2) provides
25.8× and 3.4× better average throughput, and 3) can use Read
Until 32.1× and 2.1× faster than UNCALLED and Sigmap,
respectively.
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realignment in the cloud,” in HPCA, 2019.

[151] Y. Yan, N. Chaturvedi, and R. Appuswamy, “Accel-Align: a fast se-
quence mapper and aligner based on the seed–embed–extend method,”
BMC Bioinformatics, 2021.

[152] J. Daily, “Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments,” BMC Bioinformatics, 2016.

[153] S. Kalikar, C. Jain, M. Vasimuddin, and S. Misra, “Accelerating min-
imap2 for long-read sequencing applications on modern CPUs,” Nature
Computational Science, 2022.

[154] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast gap-
affine pairwise alignment using the wavefront algorithm,” Bioinformatics,
2021.

[155] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A resistive CAM
processing-in-storage architecture for DNA sequence alignment,” IEEE
Micro, 2017.

[156] S. K. Khatamifard, Z. Chowdhury, N. Pande, M. Razaviyayn, C. H. Kim,
and U. R. Karpuzcu, “GeNVoM: Read mapping near non-volatile memory,”
TCBB, 2021.

[157] F. Chen, L. Song, Y. Chen et al., “PARC: A processing-in-CAM ar-
chitecture for genomic long read pairwise alignment using ReRAM,” in
ASP-DAC, 2020.

[158] S. Gupta, M. Imani, B. Khaleghi, V. Kumar, and T. Rosing, “RAPID: A
reRAM processing in-memory architecture for DNA sequence alignment,”
in ISLPED, 2019.

[159] F. Zokaee, H. R. Zarandi, and L. Jiang, “AligneR: A process-in-Memory
architecture for short read alignment in ReRAMs,” CAL, 2018.

[160] J. M. Eizenga and B. Paten, “Improving the time and space complexity
of the WFA algorithm and generalizing its scoring,” bioRxiv, 2022.

[161] C. Firtina, K. Pillai, G. S. Kalsi, B. Suresh, D. S. Cali, J. Kim,
T. Shahroodi, M. B. Cavlak, J. Lindegger, M. Alser, J. G. Luna, S. Sub-
ramoney, and O. Mutlu, “Aphmm: Accelerating profile hidden markov
models for fast and energy-efficient genome analysis,” arXiv, Jul. 2022.

[162] S. Marco-Sola, J. M. Eizenga, A. Guarracino, B. Paten, E. Garrison, and
M. Moreto, “Optimal gap-affine alignment in O(s) space,” bioRxiv, 2022.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.525080doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525080
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Overview
	Event Generation
	Quantization of Events
	Generating the Hash Values
	Seeding and Mapping

	Results
	Evaluation Methodology
	Performance
	Accuracy
	Sequencing Time and Cost
	Benefits of Sequence Until

	Discussion
	Related Work
	Conclusion
	References

