1	The pGinger family of expression plasmids
2 3	Allison N. Pearson ^{1,2,3*} , Mitchell G. Thompson ^{1,4*} , Liam D. Kirkpatrick ^{1,4} , Cindy Ho ^{1,2} , Khanh
4	M. Vuu ^{1,4} , Lucas M. Waldburger ^{1,2,5} , Jay D. Keasling ^{1,2,6,7,8†} , Patrick M. Shih ^{1,3,4,9†}
5	
6	¹ Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
7 8	² Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
9 10	³ Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
11	⁴ Environmental Genomics and Systems Biology Division, Lawrence Berkeley National
12	Laboratory, Berkeley, California, USA
13	⁵ Department of Bioengineering, University of California, Berkeley, California, USA
14	⁶ Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA
15	94720, USA
16	⁷ The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark,
17	Denmark
18	⁸ Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for
19	Advanced Technologies, Shenzhen, China
20 21	⁹ Innovative Genomics Institute, University of California, Berkeley, CA
22 23	*Allison N. Pearson and Mitchell G. Thompson contributed equally to this manuscript
24	[†] Correspondence should be addressed to either Jay D. Keasling (jdkeasling@lbl.gov) or Patrick
25	M. Shih (pmshih@lbl.gov)

26 Abstract

27 The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise

28 constitutive and inducible gene expression in a wide range of gram-negative bacterial species.

29 Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of RFP, with

30 a broad host range BBR1 origin and a kanamycin resistance marker. The family also has seven

31 inducible promoters (Jungle Express, NahR, XylS, RhaS, Lac, LacUV5, and TetR) controlling

32 RFP expression on BBR1/kanamycin plasmid backbones. For four of these inducible promoters

33 (Jungle Express, NahR, Lac, and TetR), we created variants that utilize the RK2 origin and

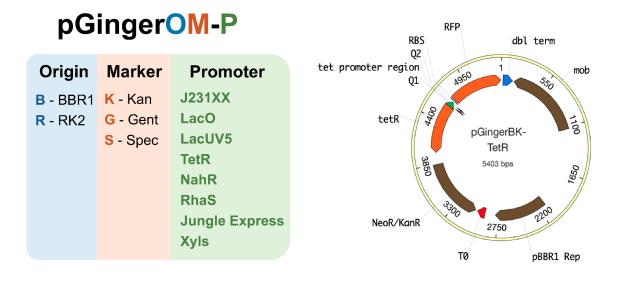
34 spectinomycin or gentamicin selection. Relevant RFP expression and growth data have been

collected in the model bacterium *Escherichia coli* as well as *Pseudomonas putida*. All pGinger
vectors are available via the Joint BioEnergy Institute (JBEI) Public Registry.

37 Introduction

38 Precise and reliable control over gene expression is one of the most fundamental 39 requirements of synthetic biology (1). Consequently, there has been considerable effort towards 40 identifying myriad genetic elements that enable researchers to regulate the strength and timing of 41 transcription across all domains of life (2-4). The end result of these efforts are often 42 consolidated families of plasmid vectors that facilitate advanced genetic engineering, such as the 43 BglBrick family of plasmids for E. coli (5, 6) and the jStack vectors used in multiple plant 44 species (7). However, as the field of synthetic biology moves beyond traditional model 45 organisms, families of expression vectors must be tailored to meet the specific requirements of 46 particular hosts. Advances in non-model organisms often come in the form of species or genus specific toolkits (8, 9), though more recently comprehensive plasmid toolkits have been 47 48 developed and validated for a wide range of gram-negative organisms (10). Still, given that many 49 bacteria require very particular combinations of promoters, origins, and selectable markers to 50 enable controlled gene expression, there remains a need for vectors that will allow rapid 51 prototyping of genetic circuits in understudied bacteria.

To facilitate the exploration of non-model hosts, we have developed a small suite of plasmids that permit both constitutive and inducible expression from the broad host-range origin of replication BBR1 using a kanamycin selection marker. For a subset of the inducible promoters that are known to work across multiple hosts, we have assembled combinatorial variants that utilize the compatible broad host-range origin RK2 (11) as well as both spectinomycin and gentamicin selection markers. This family of plasmids, which we have named the pGinger suite,


- requires no assembly of these parts, can be easily cloned into via standard Gibson assembly
- 59 techniques, and has both digital sequences and physical samples that can be publicly accessed
- 60 through the Joint BioEnergy Institute (JBEI) registry (12).

61 **Results**

62 Design and Architecture of pGinger Plasmids

- 63 All pGinger vectors express RFP with a consensus ribosomal binding site (RBS -
- 64 TTTAAGAAGGAGATATACAT) derived from the BglBrick plasmid library. The overall
- 65 conserved plasmid architecture and naming convention of the pGinger suite are shown in Figure

66 **1**.

67

Figure 1: Plasmids architecture of the pGinger suite: The pGinger plasmids share a common naming convention where the first two letters after pGinger correspond to the origin and resistance marker respectively, followed by the promoter. All plasmids share the same architecture as the above map of pGingerBK-TetR, whereby a conserved RBS-RFP is downstream of the promoter followed by a strong terminator. All selectable markers are upstream of the promoter, with the origin between the marker and the RFP cassette.

74	The BBR1 origin and kanamycin cassette of relevant pGinger vectors were both derived from
75	plasmid pBADTrfp (13). To develop a family of constitutive expression plasmids, the AraC
76	coding sequence and promoter of pBADTrfp were replaced with 16 different synthetic promoters
77	from the Anderson Promoter Library (http://parts.igem.org/Promoters/Catalog/Anderson). For
78	the inducible vectors, the AraC coding sequence and promoter of pBADTrfp were replaced with
79	the following seven inducible systems: Jungle Express - derived from pTR_sJExD-rfp (14);
80	NahR - derived from pPS43 (15); RhaS - derived from pCV203 (15); TetR - derived from
81	pBbE2a-RFP; XylS - derived from pPS66 (15); Lac - derived from pBbE6a-RFP (6); LacUV5 -
82	derived from pBbE5a-RFP (6). For four of the inducible promoters (Jungle Express, NahR, Lac,
83	and TetR), additional vectors were constructed that varied both the origin and antibiotic marker.
84	All RK2 origins were derived from pBb(RK2)1k-GFPuv (8), while the gentamicin resistance
85	cassette was derived from pMQ30 (16), and the spectinomycin cassette was derived from
86	pSR43.6 (17). All BBR1 derivatives of pBADTrfp contain the mob element that facilitates
87	conjugal transfer. A full description of each pGinger vector can be found in Table 1.

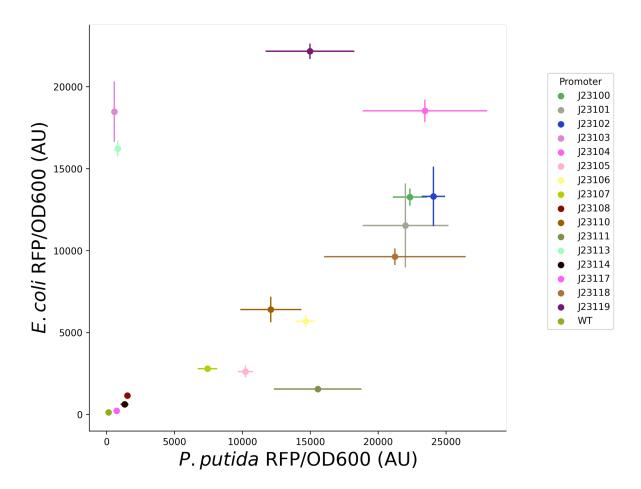
Name	Origin	Marker	Promoter Class	Promoter	Inducer	JBEI ICE No.
pGingerBK-J23100	BBR1	Kanamycin	Constitutive	J23100	NA	JPUB_020797
pGingerBK-J23101	BBR1	Kanamycin	Constitutive	J23101	NA	JPUB_020799
pGingerBK-J23102	BBR1	Kanamycin	Constitutive	J23102	NA	JPUB_020815
pGingerBK-J23103	BBR1	Kanamycin	Constitutive	J23103	NA	JPUB_020801
pGingerBK-J23104	BBR1	Kanamycin	Constitutive	J23104	NA	JPUB_020803
pGingerBK-J23105	BBR1	Kanamycin	Constitutive	J23105	NA	JPUB_020817
pGingerBK-J23106	BBR1	Kanamycin	Constitutive	J23106	NA	JPUB_020793
pGingerBK-J23107	BBR1	Kanamycin	Constitutive	J23107	NA	JPUB_020819
pGingerBK-J23108	3K-J23108 BBR1 Kanamycin		Constitutive	J23108	NA	JPUB_020821

pGingerBK-J23110	BBR1	Kanamycin	Constitutive	J23110	NA	JPUB_020805
pGingerBK-J23111	BBR1	Kanamycin	Constitutive	J23111	NA	JPUB_020807
pGingerBK-J23113	BBR1	Kanamycin	Constitutive	J23113	NA	JPUB_020809
pGingerBK-J23114	BBR1	Kanamycin	Constitutive	J13114	NA	JPUB_020811
pGingerBK-J23117	BBR1	Kanamycin	Constitutive	J13117	NA	JPUB_020795
pGingerBK-J23118	BBR1	Kanamycin	Constitutive	J23118	NA	JPUB_020823
pGingerBK-J23119	BBR1	Kanamycin	Constitutive	J23119	NA	JPUB_020813
pGingerBK-JE	BBR1	Kanamycin	Inducible	Jungle Express	Crystal Violet	JPUB_020825
pGingerBK-NahR	BBR1	Kanamycin	Inducible	NahR	Salicylic acid	JPUB_020831
pGingerBK-RhaS	BBR1	Kanamycin	Inducible	RhaS	Rhamnose	JPUB_020829
pGingerBK-TetR	BBR1	Kanamycin	Inducible	TetR	Oxytetracycline	JPUB_020835
pGingerBK-XylS	BBR1	Kanamycin	Inducible	XylS	Benzoate	JPUB_020827
pGingerBK-Lac	BBR1	Kanamycin	Inducible	Lac	IPTG	JPUB_020833
pGingerBK-LacUV5	BBR1	Kanamycin	Inducible	LacUV5	IPTG	JPUB_020837
pGingerBG-JE	BBR1	Gentamicin	Inducible	Jungle Express	Crystal Violet	JPUB_020847
pGingerBS-JE	BBR1	Spectinomycin	Inducible	Jungle Express	Crystal Violet	JPUB_020855
pGingerRK-JE	RK2	Kanamycin	Inducible	Jungle Express	Crystal Violet	JPUB_020871
pGingerRG-JE	RK2	Gentamicin	Inducible	Jungle Express	Crystal Violet	JPUB_020881
pGingerRS-JE	RK2	Spectinomycin	Inducible	Jungle Express	Crystal Violet	JPUB_020863
pGingerBG-NahR	BBR1	Gentamicin	Inducible	NahR	Salicylic acid	JPUB_020845
pGingerBS-NahR	BBR1	Spectinomycin	Inducible	NahR	Salicylic acid	JPUB_020853
pGingerRK-NahR	RK2	Kanamycin	Inducible	NahR	Salicylic acid	JPUB_020869
pGingerRG-NahR	RK2	Gentamicin	Inducible	NahR	Salicylic acid	JPUB_020879
pGingerRS-NahR	RK2	Spectinomycin	Inducible	NahR	Salicylic acid	JPUB_020859
pGingerBG-TetR	BBR1	Gentamicin	Inducible	TetR	Oxytetracycline	JPUB_020843
pGingerBS-TetR	BBR1	Spectinomycin	Inducible	TetR	Oxytetracycline	JPUB_020851
pGingerRK-TetR	RK2	Kanamycin	Inducible	TetR	Oxytetracycline	JPUB_020865
pGingerRG-TetR	RK2	Gentamicin	Inducible	TetR	Oxytetracycline	JPUB_020877
pGingerRS-TetR	RK2	Spectinomycin	Inducible	TetR	Oxytetracycline	JPUB_020861
pGingerBG-Lac	BBR1	Gentamicin	Inducible	Lac	IPTG	JPUB_020841
pGingerBS-Lac	BBR1	Spectinomycin	Inducible	Lac	IPTG	JPUB_020849

pGingerRK-Lac	RK2	Kanamycin	Inducible	Lac	IPTG	JPUB_020867
pGingerRG-Lac	RK2	Gentamicin	Inducible	Lac	IPTG	JPUB_020875
pGingerRS-Lac	c RK2 Spectinomy		Inducible	Lac	IPTG	JPUB_020857

90

91 Table 1: Plasmids in the pGinger suite: Relevant characteristics of pGinger plasmids including origin of


92 replication, antibiotic selection, promoter characteristics, and if applicable inducing molecule. JBEI public registry

93 numbers are also included for digital accessibility.

94 Evaluation of Constitutive Expression pGinger Plasmids

To evaluate the relative strength of constitutive Anderson promoters in the context of the pGinger vectors, plasmids were introduced into both *P. putida* and *E. coli*. Fluorescence was measured after growth in LB medium after 24 hours. When fluorescence was normalized to cell density, expression from Anderson promoters showed significant correlation (Spearman's ρ = 0.49, *p* = 0.045) between *P. putida* and *E. coli* (**Figure 2**). Promoters J23103 and J23113 were significantly stronger in *E. coli* than in *P. putida*, while promoter J23111 was significantly stronger in *P. putida*. Promoter sequences and mean expression values in both *E. coli* and *P*.

102 *putida* are listed in **Table 2**.

103

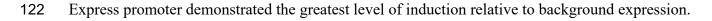
Figure 2: Activity of Constitutive Promoters in *E. coli* and *P. putida*. RFP expression normalized to cell density
 from Anderson promoters within either *E. coli* (y-axis) or *P. putida* (x-axis) are shown with standard deviations (

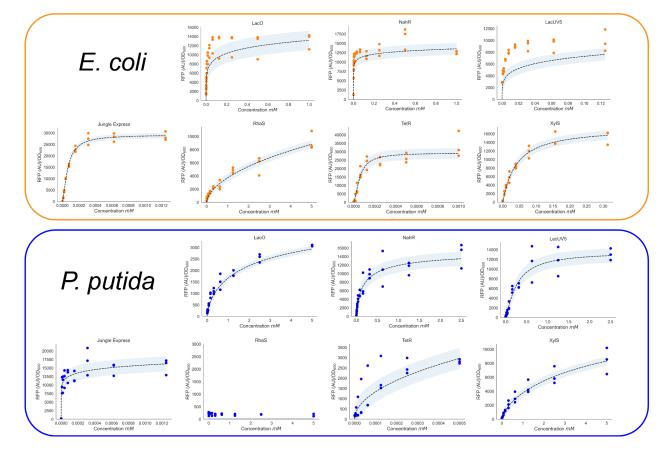
106 n=3).

Promoter	Promoter Sequence	E. coli expression	P. putida expression
J23100	ttgacggctagctcagtcctaggtacagtgctagc	13267 (+/- 517)	22343 (+/- 1262)
J23101	tttacagctagctcagtcctaggtattatgctagc	11530 (+/- 2565)	22010 (+/- 3162)
J23102	ttgacagctagctcagtcctaggtactgtgctagc	13300 (+/- 1815)	24067 (+/- 858)
J23103	ctgatagctagctcagtcctagggattatgctagc	18476 (+/- 1857)	565 (+/- 135)
J23104	ttgacagctagctcagtcctaggtattgtgctagc	18522 (+/- 682)	23440 (+/- 4588)
J23105	tttacggctagctcagtcctaggtactatgctagc	2622 (+/- 363)	10220 (+/- 558)

J23106	tttacggctagctcagtcctaggtatagtgctagc	5697 (+/- 369)	14659 (+/- 748)
J23107	tttacggctagctcagccctaggtattatgctagc	2798 (+/- 44)	7429 (+/- 716)
J23108	ctgacagctagctcagtcctaggtataatgctagc	1149 (+/- 84)	1523 (+/- 84)
J23110	tttacggctagctcagtcctaggtacaatgctagc	6402 (+/- 782)	12098 (+/- 2251)
J23111	ttgacggctagctcagtcctaggtatagtgctagc	1547 (+/- 106)	15548 (+/- 3229)
J23113	ctgatggctagctcagtcctagggattatgctagc	16220 (+/- 480)	826 (+/- 92)
J23114	tttatggctagctcagtcctaggtacaatgctagc	625 (+/- 48)	1325 (+/- 289)
J23117	ttgacagctagctcagtcctagggattgtgctagc	229 (+/- 25)	730 (+/- 28)
J23118	ttgacggctagctcagtcctaggtattgtgctagc	9628 (+/- 507)	21237 (+/- 5215)
J23119	ttgacagctagctcagtcctaggtataatgctagc	22157 (+/- 473)	14979 (+/- 3262)
WT	NA	124 (+/- 6)	141 (+/- 17)

108


Table 2: Expression of pGinger Anderson promoters: For each Anderson promoter the sequence is provided as
 well as the mean cell density normalized RFP fluorescence in both *E. coli* and *P. putida*. Standard deviations are
 provided in parentheses, n=3.


112

113 Evaluation of Inducible pGinger Plasmids

The expression of the seven inducible promoters within the pGinger suite was evaluated using the BBR1 origin and kanamycin marker (pGingerBK) against a titration of the inducer in both *E. coli* and *P. putida* (Figure 3). All promoters showed inducibility in *E. coli*, and all but the rhamnose inducible RhaS promoter showed inducibility in *P. putida*. Relevant expression characteristics of the inducible pGingerBK vectors in both tested bacteria are listed in Table 3. The strongest normalized expression from an inducible promoter in *E. coli* was the TetR system, while both the strongest promoters in *P. putida* were found to be NahR and Jungle Express

121 promoters, which showed nearly identical maximal expression. In both bacteria, the Jungle

123

Figure 3: Activity of Inducible Promoters in *E. coli* and *P. putida*. RFP expression normalized to cell density (yaxis) from inducible promoters within either *E. coli* (top panel in orange) or *P. putida* (bottom panel in blue) as a
function of inducer concentration in mM (x-axis). Fits to the Hill equation are shown as dashed lines and shaded to
show confidence intervals. Raw data points are overlaid (n=3).

Promoter	Promoter Organism Background		Max Exp.	Max Conc.	Induction	
LacO	E. coli	1510 (+/- 186)	13127 (+/- 1693)	1 mM	9x	
	P. putida	137 (+/- 5)	3074 (+/- 30)	5 mM	22x	
NahR	NahR <i>E. coli</i> 1260 (+/- 57)		16484 (+/- 1693)	500 uM	9x	
	P. putida	847 (+/- 244)	25697 (+/- 2976)	5 mM	30x	

LacUV5	E. coli	2889 (+/- 36)	10137 (+/- 855)	250 uM	4x
	P. putida	203 (+/- 53)	16622 (+/- 3671)	10 mM	82x
Jungle Express	ingle Express <i>E. coli</i> 100		28545 (+/- 1890)	125 nM	285x
	P. putida	183 (+/- 1)	16956 (+/- 4002)	313 nM	93x
RhaS	RhaS E. coli		9251 (+/- 1389)	5 mM	54x
	P. putida	NA	NA	NA	NA
TetR	TetR E. coli 341		33631 (+/- 7692)	1 uM	98x
	P. putida	176 (+/- 9)	3214 (+/- 319)	1 uM	18x
XylS	E. coli	329 (+/- 57)	15280 (+/- 1590)	313 uM	46x
	P. putida	161 (+/- 7)	8401 (+/- 1877)	5 mM	52x

129

Table 3: Inducible Promoters in *E. coli* and *P. putida*: For each inducible promoter on a BBR1 origin with a
kanamycin marker, the experimentally observed background (uninduced) fluorescence and maximal fluorescence
are given for both *E. coli* and *P. putida*. Standard deviations are provided in parentheses, n=3. Additionally, the
inducer concentration used to achieve maximal expression and the relative induction levels are listed.

134

To evaluate the effect of varying origin and selectable markers on expression from inducible promoters, all six variants of the Jungle Express, LacO, NahR, and TetR were investigated for their dose-response to their inducer molecules in *E. coli* (**Figure 4**). Relevant expression parameters are listed in **Table 4**. In general, BBR1 variants showed greater expression than RK2 origin plasmids, which is expected given the higher copy of BBR1 plasmids in *E. coli* (10). Amongst the pGinger Jungle Express vectors, both pGingerRS-JE and pGingerRK-JE showed dose-responses distinct from the other vectors (**Figure 4A**). Notably, all

142 pGingerRS (RK2-Spectinomycin) plasmids showed the lowest expression across each promoter

143 tested (Table 4).

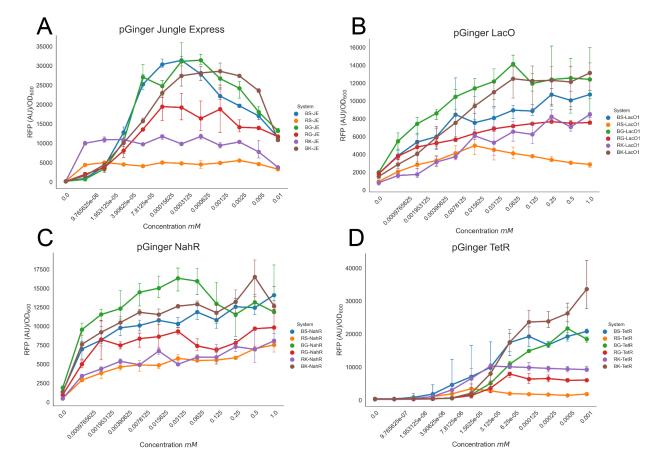


Figure 4: Activity of Inducible pGinger variants in *E. coli*. For origin and selection marker pGinger variants of
Jungle Express (A), LacO (B), NahR (C), and TetR (D), dose-response curves of normalized RFP expression are
shown as a function of mM inducer. Error bars represent standard deviations (n=3). Note that the x-axis is nonlinear.

149

Promoter	Origin	Marker	Background	Max Exp.	Max Conc.	Induction
LacO	BBR1	Kan	1510 (+/- 186)	13127 (+/- 1693)	1 mM	9x
LacO	BBR1	Gent	1976 (+/- 70)	14143 (+/- 1608)	63 uM	7x
LacO	BBR1	Spec	1830 (+/- 320)	10694 (+/- 943)	250 uM	6x

	ĺ	I	l		I	
LacO	RK2	Kan	803 (+/- 216)	8213 (+/- 721)	250 uM	10x
LacO	RK2	Gent	1823 (+/- 78)	7654 (+/- 230)	250 uM	4x
LacO	RK2	Spec	950 (+/- 46)	4967 (+/- 895)	16 uM	5x
NahR	BBR1	Kan	1260 (+/- 57)	16484 (+/- 1693)	500 uM	9x
NahR	BBR1	Gent	1877 (+/- 334)	16317 (+/- 1534)	31 uM	9x
NahR	BBR1	Spec	1372 (+/- 84)	14083 (+/- 984)	1 mM	10x
NahR	RK2	Kan	445 (+/- 39)	8048 (+/- 859)	1 mM	18x
NahR	RK2	Gent	934 (+/- 56)	9299 (+/- 460)	1 mM	10x
NahR	RK2	Spec	482 (+/- 69)	7510 (+/- 817)	1 mM	16x
Jungle Express	BBR1	Kan	100 (+/- 2)	28545 (+/- 1890)	125 nM	285x
Jungle Express	BBR1	Gent	124 (+/- 24)	31409 (+/- 1348)	625 nM	254x
Jungle Express	BBR1	Spec	107 (+/- 9)	31360 (+/- 905)	313 nM	292x
Jungle Express	RK2	Kan	151 (+/- 25)	11702 (+/- 3180)	625 nM	78x
Jungle Express	RK2	Gent	91 (+/- 6)	19413 (+/- 3180)	156 nM	214x
Jungle Express	RK2	Spec	153 (+/- 18)	4978 (+/- 305)	20 nM	32x
TetR	BBR1	Kan	341 (+/- 10)	33631 (+/- 7692)	1 uM	98x
TetR	BBR1	Gent	351 (+/- 32)	21646 (+/- 5579)	500 nM	62x
TetR	BBR1	Spec	232 (+/- 43)	19224 (+/- 3027)	125 nM	83x
TetR	RK2	Kan	184 (+/- 5)	10281 (+/- 967)	31 nM	56x
TetR	RK2	Gent	232 (+/- 39)	7883 (+/- 865)	63 nM	34x
TetR	RK2	Spec	197 (+/- 5)	3399 (+/- 143)	16 nM	17x

Table 4: Inducible pGinger variants in *E. coli*: For pGinger variants of LacO, NahR, Jungle Express, and TetR
 promoters, the experimentally observed background (uninduced) fluorescence and maximal fluorescence in *E. coli*

- are provided. Standard deviations are provided in parentheses, n=3. Additionally, the inducer concentration used to
 achieve maximal expression and the relative induction levels are listed.
- 155
- 156

157 Discussion

158 The pGinger suite of plasmids offers researchers an array of small, pre-assembled vectors 159 that will permit rapid identification of useful genetic elements in diverse gram-negative bacteria 160 due to the use of broad host-range origins (RK2) and selectable markers known to work across 161 many species (kanamycin, spectinomycin, gentamicin). The compatibility of RK2 and BBR1 162 origins may also permit researchers to introduce multiple pGinger vectors into a single strain 163 simultaneously (11). In combination with other recent plasmid suites that have been publicly 164 released, the pGinger plasmids have the potential to facilitate more advanced synthetic biology 165 and metabolic engineering efforts in bacterial species that have been traditionally understudied.

166 Materials & Methods

167 <u>Strains and Media</u>

168 Cultures were grown in lysogeny broth (LB) Miller medium (BD Biosciences, USA) at

- 169 37 °C for *E. coli* XL1-Blue (QB3 Macrolab, USA) and 30 °C for *P. putida* KT2440 (ATCC
- 170 47054). The medium was supplemented with kanamycin (50 mg/L, Sigma Aldrich, USA),
- 171 gentamicin (30 mg/L, Fisher Scientific, USA), or spectinomycin (100mg/L, Sigma Aldrich,
- 172 USA), when indicated. All other compounds were purchased through Sigma Aldrich (Sigma
- 173 Aldrich, USA).
- 174 <u>Plasmid Design and Construction</u>

1	75	A 11	nlasmids	were desi	oned using	Device Ec	litor and Ve	ctor Editor s	oftware	while all
	15	$\Delta \Pi$	Diasinius	were desi	encu usine	DUVICU LU	intor and ve	CIOI LUIIOI S	Univare.	white an

- primers used for the construction of plasmids were designed using j5 software (12, 18, 19).
- 177 Plasmids were assembled via Gibson Assembly using standard protocols (20). Plasmids were
- 178 routinely isolated using the Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were
- 179 purchased from Integrated DNA Technologies (IDT, Coralville, IA).
- 180 <u>Plasmid and Sequence Availability</u>
- 181 All strains and plasmids from Table 1 can be found via the following link to the JBEI
- 182 Public Registry: <u>https://public-registry.jbei.org/folders/771</u>.
- 183 <u>Characterization assays</u>

184 To characterize RFP expression from these vectors, we measured optical density and 185 fluorescence after growth in 96 well plates for 24 hours. First, overnight cultures were inoculated into 5 mL of LB medium from single colonies and grown at 30 °C or 37 °C. These cultures were 186 then diluted 1:100 into 500 µL of LB medium with the appropriate antibiotic in 96 square v-187 188 bottom deep well plates (BiotixTM DP22009CVS). For characterization of the inducible systems, 189 inducer was added to wells in the first column of the plate at the maximum concentration tested 190 and diluted two-fold across the plate until the last column, which was left as the zero-inducer 191 control. Plates were sealed with a gas-permeable microplate adhesive film (Axygen[™] BF400S) and grown for 24 hours at either 30 °C or 37 °C with shaking at 200 rpm. Optical density was 192 193 measured at 600 nm, and fluorescence was measured at an excitation wavelength of 535 nm and 194 an emission wavelength of 620 nm. All data was analyzed and visualized using custom Python 195 scripts using the SciPy (22), NumPy (23), Pandas, Matplotlib, and Seaborn libraries. Fits to the 196 Hill equation were done as previously described (24).

197 Acknowledgements

198	The order of authors was determined by who has the reddest hair. Mitchell Thompson is a
199	Simons Foundation Awardee of the Life Sciences Research Foundation. Lucas Waldburger is
200	funded by the National Science Foundation Graduate Research Fellowship. This work was part
201	of the DOE Joint BioEnergy Institute (https://www.jbei.org) supported by the U.S. Department
202	of Energy, Office of Science, Office of Biological and Environmental Research, supported by the
203	U.S. Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy Technologies
204	Office, through contract DE-AC02-05CH11231 between Lawrence Berkeley National
205	Laboratory and the U.S. Department of Energy. The views and opinions of the authors expressed
206	herein do not necessarily state or reflect those of the United States Government or any agency
207	thereof. Neither the United States Government nor any agency thereof, nor any of their
208	employees, makes any warranty, expressed or implied, or assumes any legal liability or
209	responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
210	product, or process disclosed, or represents that its use would not infringe privately owned rights.
211	The United States Government retains and the publisher, by accepting the article for publication,
212	acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable,
213	worldwide license to publish or reproduce the published form of this manuscript, or allow others
214	to do so, for United States Government purposes. The Department of Energy will provide public
215	access to these results of federally sponsored research in accordance with the DOE Public Access
216	Plan (<u>http://energy.gov/downloads/doe-public-access-plan</u>).

217 Contributions

- 218 Conceptualization; A.N.P., M.G.T.; Methodology; A.N.P., M.G.T.; Investigation, A.N.P.,
- 219 M.G.T., L.D.K., K.M.V., L.M.W.; Writing Original Draft, A.N.P., M.G.T..; Writing Review
- and Editing, All authors.; Resources and supervision; P.M.S, J.D.K.

221 Competing Interests

- 222 J.D.K. has financial interests in Amyris, Ansa Biotechnologies, Apertor Pharma, Berkeley Yeast,
- 223 Demetrix, Lygos, Napigen, ResVita Bio, and Zero Acre Farms.

224 References

- Khalil AS, Collins JJ. 2010. Synthetic biology: applications come of age. Nat Rev Genet
 11:367–379.
- Nielsen AAK, Segall-Shapiro TH, Voigt CA. 2013. Advances in genetic circuit design:
 novel biochemistries, deep part mining, and precision gene expression. Curr Opin Chem
 Biol 17:878–892.
- Zhang Y, Ding W, Wang Z, Zhao H, Shi S. 2021. Development of Host-Orthogonal
 Genetic Systems for Synthetic Biology. Advanced Biology 5:e2000252.
- 4. Johns NI, Gomes ALC, Yim SS, Yang A, Blazejewski T, Smillie CS, Smith MB, Alm EJ,
- 233 Kosuri S, Wang HH. 2018. Metagenomic mining of regulatory elements enables
- programmable species-selective gene expression. Nat Methods 15:323–329.
- 235 5. Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD. 2010.
- BglBricks: A flexible standard for biological part assembly. J Biol Eng 4:1.

237	6.	Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD.
238		2011. BglBrick vectors and datasheets: A synthetic biology platform for gene expression.
239		J Biol Eng 5:12.
240	7.	Shih PM, Vuu K, Mansoori N, Ayad L, Louie KB, Bowen BP, Northen TR, Loqué D.
241		2016. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology.
242		Nat Commun 7:13215.
243	8.	Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. 2018. Genetic tools for
244		reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol
245		Biotechnol 45:517–527.
246	9.	Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG,
247		Reider Apel A, Rasor BJ, Katz L, Keasling JD. 2017. Development of Next Generation
248		Synthetic Biology Tools for Use in <i>Streptomyces venezuelae</i> . ACS Synth Biol 6:159–166.
249	10.	Schuster LA, Reisch CR. 2021. A plasmid toolbox for controlled gene expression across
250		the Proteobacteria. Nucleic Acids Res 49:7189–7202.
251	11.	Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA.
252		2017. Multiple T-DNA Delivery to Plants Using Novel Mini Binary Vectors with
253		Compatible Replication Origins. ACS Synth Biol 6:1962–1968.
254	12.	Ham TS, Dmytriv Z, Plahar H, Chen J, Hillson NJ, Keasling JD. 2012. Design,
255		implementation and practice of JBEI-ICE: an open source biological part registry platform
256		and tools. Nucleic Acids Res 40:e141.
257	13.	Bi C, Su P, Müller J, Yeh Y-C, Chhabra SR, Beller HR, Singer SW, Hillson NJ. 2013.
258		Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its

259		application to engineering hydrocarbon biofuel production. Microb Cell Fact 12:107.
260	14.	Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, Tomaleri GP,
261		Singer SW, Hillson NJ, Simmons BA, Adams PD, Thelen MP. 2018. Jungle Express is a
262		versatile repressor system for tight transcriptional control. Nat Commun 9:3617.
263	15.	Calero P, Jensen SI, Nielsen AT. 2016. Broad-Host-Range ProUSER Vectors Enable Fast
264		Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production
265		in Pseudomonas putida KT2440. ACS Synth Biol 5:741–753.
266	16.	Shanks RMQ, Kadouri DE, MacEachran DP, O'Toole GA. 2009. New yeast
267		recombineering tools for bacteria. Plasmid 62:88–97.
268	17.	Schmidl SR, Sheth RU, Wu A, Tabor JJ. 2014. Refactoring and optimization of light-
269		switchable Escherichia coli two-component systems. ACS Synth Biol 3:820-831.
270	18.	Chen J, Densmore D, Ham TS, Keasling JD, Hillson NJ. 2012. DeviceEditor visual
271		biological CAD canvas. J Biol Eng 6:1.
272	19.	Hillson NJ, Rosengarten RD, Keasling JD. 2012. j5 DNA assembly design automation
273		software. ACS Synth Biol 1:14–21.
274	20.	Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009.
275		Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods
276		6:343–345.
277	21.	Thompson MG, Pearson AN, Barajas JF, Cruz-Morales P, Sedaghatian N, Costello Z,
278		Garber ME, Incha MR, Valencia LE, Baidoo EEK, Martin HG, Mukhopadhyay A,
279		Keasling JD. 2020. Identification, Characterization, and Application of a Highly Sensitive
280		Lactam Biosensor from Pseudomonas putida. ACS Synth Biol 9:53-62.

281	22.	Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski
282		E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ,
283		Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, SciPy 1.0 Contributors.
284		2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods
285		17:261–272.
286	23.	van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy Array: A Structure for
287		Efficient Numerical Computation. Comput Sci Eng 13:22-30.
288	24.	Thompson MG, Costello Z, Hummel NFC, Cruz-Morales P, Blake-Hedges JM, Krishna
289		RN, Skyrud W, Pearson AN, Incha MR, Shih PM, Garcia-Martin H, Keasling JD. 2019.
290		Robust Characterization of Two Distinct Glutarate Sensing Transcription Factors of
291		Pseudomonas putida l -Lysine Metabolism. ACS Synth Biol 8:2385–2396.