Structural insights into the mechanism of the human SGLT2-MAP17 glucose 1

transporter 2

3

4	Masahiro Hiraizumi ^{1,4,†,*} , Tomoya Akashi ^{2,4} , Kouta Murasaki ¹ , Hiroyuki Kishida ¹ ,
5	Taichi Kumanomidou ¹ , Nao Torimoto ¹ , Osamu Nureki ^{3,*} , and Ikuko Miyaguchi ^{1,*}
6	
7	¹ Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi
8	Tanabe Pharma Co., LTD., 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
9	² DMPK Research Laboratories Sohyaku Innovative Research Division, Mitsubishi
10	Tanabe Pharma Co., LTD., 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
11	³ Department of Biological Sciences, Graduate School of Science, The University of
12	Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
13	⁴ Co-first authors

- *Corresponding authors 14
- 15Masahiro Hiraizumi: 0000-0002-4340-2937
- Osamu Nureki: 0000-0003-1813-7008 16
- 17Ikuko Miyaguchi: 0000-0003-0021-7296
- [†]Current address: Department of Chemistry and Biotechnology, Graduate School of 18
- 19 Engineering, The University of Tokyo

20 Abstract

21	Selective sodium-glucose cotransporter 2 (SGLT2) plays an important role in glucose
22	reabsorption. SGLT2 inhibitors suppress glucose reabsorption from the kidneys, thus
23	reducing blood glucose levels in type 2 diabetes patients. We and other groups have
24	developed several SGLT2 inhibitors starting from a natural product, phlorizin, but their
25	action mechanisms remain unknown. Here, we elucidated the physiological
26	hSGLT2-MAP17 complex structures bound to five SGLT2 inhibitors using
27	single-particle cryo-electron microscopy. Canagliflozin, dapagliflozin, TA-1887, and
28	sotagliflozin were bound in the outward-facing structure, whereas phlorizin was bound
29	in the inward-open structure. The phlorizin-hSGLT2 interaction biochemically
30	exhibited biphasic binding. Phlorizin weakly binds, via the phloretin motif, from its
31	intracellular side near the Na ⁺ -binding site, while strongly interacts from its
32	extracellular side. Unexpectedly, bound Na^+ stabilizes the outward-open conformation,
33	while its release allows the transporter to adopt inward-open state. Our results first
34	visualized the Na ⁺ -binding and inward-open conformation of hSGLT2–MAP17,
35	clarifying the unprecedented Na ⁺ -dependent sugar transport mechanism with MAP17
36	acting as a scaffold, and may pave the way for development of next-generation SGLT
37	inhibitors.

38

39 Introduction

40 Type 2 diabetes mellitus is characterized by persistent hyperglycemia caused by

41 inadequate insulin action. Chronic high blood sugar level damages blood vessels,

42 causing serious health problems, such as nephropathy and cardiovascular disease. The

43 primary treatment for diabetes is blood glucose control; drugs such as selective

sodium-glucose cotransporter (SGLT1 and 2; also known as SLC5A1 and 2) inhibitors¹
hold great promise for reducing blood glucose levels. Human SGLT1 and SGLT2 are
responsible for the reabsorption of plasma glucose in the proximal tubules after
filtration through the renal capillaries². SGLT2 is located in the S1 and S2 segments of
the proximal tubule and absorbs 90% of plasma glucose; SGLT1, which has higher
glucose affinity, is located in the S3 segment of the proximal tubule and absorbs the
remaining 10%³.

51 SGLT2, a transmembrane protein with 14 helices (Fig. 1a) and expressed specifically in the kidneys, has 60% sequence homology to SGLT1, which is expressed 52in the small intestine as well. SGLT2 inhibitors that suppress glucose reabsorption and 53 54 promote urinary excretion are considered a promising therapeutic tool to manage blood 55 glucose levels in type 2 diabetes patients. SGLT2 inhibitor development initially focused on the natural product phlorizin (Figs 3b)⁴, an O-glucoside that is hydrolyzed 56 57 by β -glucosidase in the intestine, making oral administration difficult owing to its poor metabolic stability. This was replaced by N- or C-glucosides, with better metabolic 58 59 stability. C-glucosides, including canagliflozin, dapagliflozin, and empagliflozin, are marketed as approved drugs in USA, Japan and many countries (Figs 1b, 2g, h)⁵. 60 SGLT2 inhibitors have ushered in a new phase of diabetes treatment, providing many 61 benefits including, reduced risk of heart failure and kidney protection⁶⁻⁹. It was initially 62 thought that rare mutations in the Na⁺–glucose cotransporter gene *SLC5A1* can cause 63 lethal glucose-galactose malabsorption and that inhibitors with high specificity for 64 65 SGLT2 over SGLT1 were necessary to treat diabetes. However, SGLT1 inhibition in the 66 gastrointestinal tract leads to postprandial glucose excursion control and gastrointestinal hormone secretion¹⁰. Therefore, SGLT1 and SGLT2 dual inhibitors (e.g., sotagliflozin 67

69SGLT1 and SGLT2 belong to the LeuT transporter family and are conserved70in all bacterial and animal taxa, with six isoforms in humans ^{12,13} . Structural homology71modeling studies have been conducted using SGLT from Vibrio parahaemolyticus72(vSGLT) and similar protein structures, such as SiaT ^{14,15} , because of the difficulties in73protein preparation and structural analysis. A functional model of SGLT2 glucose74uptake has been proposed: SGLT2 undergoes a conformational change to an75outward-facing conformation by binding to a single Na* ion (at Na2 site ¹⁶) before76binding to the substrate, depending on Na* concentration gradient across the plasma77membrane, which then promotes glucose binding. Subsequently, Na* and sugars are78incorporated into the cell in an inward-open conformation ^{3,12,13} . In contrast, SGLT1 and79requires two Na* ions (at Na2 and Na3 sites) for glucose transport, which probably80affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family81was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and82SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations83and molecular dynamics calculations, revealed the mechanism of glucose binding and84selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been85difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZKIP1), an86essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via87MAP17 tethering and	68	and LX-2761; Fig. 2e) are currently being developed for the treatment of diabetes ^{9,11} .
modeling studies have been conducted using SGLT from <i>Vibrio parahaemolyticus</i> (vSGLT) and similar protein structures, such as SiaT ^{14,15} , because of the difficulties in protein preparation and structural analysis. A functional model of SGLT2 glucose uptake has been proposed: SGLT2 undergoes a conformational change to an outward-facing conformation by binding to a single Na ⁺ ion (at Na2 site ¹⁶) before binding to the substrate, depending on Na ⁺ concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na ⁺ and sugars are incorporated into the cell in an inward-open conformation ^{3,12,13} . In contrast, SGLT1 requires two Na ⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 ²⁰ . The role of amino acid	69	SGLT1 and SGLT2 belong to the LeuT transporter family and are conserved
 (vSGLT) and similar protein structures, such as SiaT^{14,15}, because of the difficulties in protein preparation and structural analysis. A functional model of SGLT2 glucose uptake has been proposed: SGLT2 undergoes a conformational change to an outward-facing conformation by binding to a single Na⁺ ion (at Na2 site¹⁶) before binding to the substrate, depending on Na⁺ concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na⁺ and sugars are incorporated into the cell in an inward-open conformation^{3,12,13}. In contrast, SGLT1 requires two Na⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1²⁰. The role of amino acid 	70	in all bacterial and animal taxa, with six isoforms in humans ^{12,13} . Structural homology
 protein preparation and structural analysis. A functional model of SGLT2 glucose uptake has been proposed: SGLT2 undergoes a conformational change to an outward-facing conformation by binding to a single Na* ion (at Na2 site¹⁶) before binding to the substrate, depending on Na* concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na* and sugars are incorporated into the cell in an inward-open conformation^{3,12,13}. In contrast, SGLT1 requires two Na* ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 ²⁰. The role of amino acid 	71	modeling studies have been conducted using SGLT from Vibrio parahaemolyticus
 uptake has been proposed: SGLT2 undergoes a conformational change to an outward-facing conformation by binding to a single Na⁺ ion (at Na2 site¹⁶) before binding to the substrate, depending on Na⁺ concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na⁺ and sugars are incorporated into the cell in an inward-open conformation^{3,12,13}. In contrast, SGLT1 requires two Na⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1²⁰. The role of amino acid 	72	(vSGLT) and similar protein structures, such as SiaT ^{14,15} , because of the difficulties in
outward-facing conformation by binding to a single Na ⁺ ion (at Na2 site ¹⁶) before binding to the substrate, depending on Na ⁺ concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na ⁺ and sugars are incorporated into the cell in an inward-open conformation ^{3,12,13} . In contrast, SGLT1 requires two Na ⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 ²⁰ . The role of amino acid	73	protein preparation and structural analysis. A functional model of SGLT2 glucose
 binding to the substrate, depending on Na⁺ concentration gradient across the plasma membrane, which then promotes glucose binding. Subsequently, Na⁺ and sugars are incorporated into the cell in an inward-open conformation^{3,12,13}. In contrast, SGLT1 requires two Na⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	74	uptake has been proposed: SGLT2 undergoes a conformational change to an
membrane, which then promotes glucose binding. Subsequently, Na ⁺ and sugars are incorporated into the cell in an inward-open conformation ^{3,12,13} . In contrast, SGLT1 requires two Na ⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1 ²⁰ . The role of amino acid	75	outward-facing conformation by binding to a single Na^+ ion (at Na2 site ¹⁶) before
 incorporated into the cell in an inward-open conformation^{3,12,13}. In contrast, SGLT1 requires two Na⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	76	binding to the substrate, depending on Na ⁺ concentration gradient across the plasma
 requires two Na⁺ ions (at Na2 and Na3 sites) for glucose transport, which probably affects its glucose affinity¹⁶. The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	77	membrane, which then promotes glucose binding. Subsequently, Na^+ and sugars are
affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1 ²⁰ . The role of amino acid	78	incorporated into the cell in an inward-open conformation ^{3,12,13} . In contrast, SGLT1
was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1 ²⁰ . The role of amino acid	79	requires two Na^+ ions (at Na2 and Na3 sites) for glucose transport, which probably
SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1 ²⁰ . The role of amino acid	80	affects its glucose affinity ¹⁶ . The structural understanding of the human SGLT family
 and molecular dynamics calculations, revealed the mechanism of glucose binding and selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	81	was advanced by the cryo-electron microscopy (cryo-EM) structures of SGLT1 and
 selectivity and water permeability¹⁷. The activity of hSGLT2, whose gene has long been difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	82	SGLT2. The structure of the hSGLT1 apo-form with consensus stabilizing mutations
 difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	83	and molecular dynamics calculations, revealed the mechanism of glucose binding and
 essential auxiliary subunit of hSGLT2¹⁸. Determination of the hSGLT2 structure via MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	84	selectivity and water permeability ¹⁷ . The activity of hSGLT2, whose gene has long been
 MAP17 tethering and the introduction of several mutations revealed that it is bound by empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	85	difficult to clone, is greatly enhanced by the co-expression of MAP17 (PDZK1P1), an
 empagliflozin in an outward-facing conformation¹⁹. Furthermore, introduction of MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	86	essential auxiliary subunit of hSGLT2 ¹⁸ . Determination of the hSGLT2 structure via
 MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor LX2761 was bound in the outward conformation of hSGLT1²⁰. The role of amino acid 	87	MAP17 tethering and the introduction of several mutations revealed that it is bound by
90 LX2761 was bound in the outward conformation of $hSGLT1^{20}$. The role of amino acid	88	empagliflozin in an outward-facing conformation ¹⁹ . Furthermore, introduction of
	89	MAP17 tethering and several mutations in hSGLT1 revealed that the dual inhibitor
91 residues in the binding of SGLT inhibitors in these two outward conformations was	90	LX2761 was bound in the outward conformation of hSGLT1 ²⁰ . The role of amino acid
	91	residues in the binding of SGLT inhibitors in these two outward conformations was

92	discussed. However, the function of Na ⁺ remains unknown, because these previous
93	studies did not detect Na^+ , which should bind to hSGLT before binding to the substrate.
94	Regarding the binding mode of inhibitors, only C-glucoside inhibitors have been shown
95	to bind in the outward conformation, while the binding mode of O- and N-glucoside
96	type inhibitors, including phlorizin, still needs to be elucidated. Moreover, the
97	conformational changes of SGLT2 between the outward and inward conformations as
98	well as the role of MAP17 as a scaffold have yet been unclarified.
99	Here, we performed cryo-EM single-particle analyses to determine the
100	structure of the genuine hSGLT2-MAP17 complexes with five inhibitors (canagliflozin,
101	dapagliflozin, TA-1887, sotagliflozin, and phlorizin). This characterization of
102	Na ⁺ -binding outward-facing structures and inward-open structures with MAP17 as a
103	scaffold, together with transport and binding assays, significantly clarifies the molecular
104	features of hSGLT2-MAP17, SGLT2 inhibition, and sugar transport, which helps
105	achievement of glycemic control in patients.
106	
107	Results and discussion
108	Structural determination of the hSGLT2-MAP17 heterodimer
109	We performed cryo-EM analysis of hSGLT2 to elucidate its inhibitory mechanism. To
110	obtain a stable and homogeneous sample, we first examined, by fluorescence-detection
111	size-exclusion chromatography (FSEC) ²¹ , the expression of hSGLT2 whose N or C
112	terminus was fused with enhanced green fluorescent protein (EGFP). However, we were
113	unable to detect hSGLT2 expression (Fig. 1c); given that its N-terminus is exposed to
114	the extracellular side, we hypothesized that N-terminal fusion of a signal sequence and

super folder GFP (sfGFP) would improve the protein expression²². Fusing the human

116	trypsinogen 1-derived signal peptide and sfGFP to the hSGLT2 N-terminus revealed a
117	peak, indicating that hSGLT2 can be solubilized by detergents (Fig. 1c). Co-expression
118	of MAP17 and hSGLT2 caused a high molecular-weight shift in FSEC, suggesting
119	heterodimer-complex formation. LC-MS/MS confirmed that signal peptides and sfGFP
120	fused with hSGLT2-MAP17-expressing cells could take up
121	α -methyl-D-glucopyranoside (α -MG; Fig. 1b); this uptake was sensitive to canagliflozin
122	(Fig. 1d). We used LC-MS/MS to determine whether the prepared membrane fractions
123	maintained their inhibitor-binding activity, verifying the binding of multiple inhibitors
124	to hSGLT2 (Fig. 1e; Supplementary Fig. 1c). Membrane fraction of
125	hSGLT2–MAP17-expressing cells was solubilized with N-dodecyl β -d-maltoside
126	(DDM) micelles in the presence of SGLT2 inhibitors, purified using GFP
127	nanobody-affinity chromatography, followed by cleavage of sfGFP using protease, and
128	subjected to gel-filtration column chromatography (Supplementary Fig. 1a, b).
129	Purified hSGLT2-MAP17 complexes were subjected to cryo-EM
130	single-particle analyses with five inhibitors (canagliflozin, dapagliflozin, TA-1887,
131	sotagliflozin, and phlorizin; Supplementary Figs 3-6, 8). The acquired movies were
132	motion-corrected and processed in RELION ^{23,24} providing cryo-EM maps at overall
133	resolutions of 2.6–3.3 Å, according to the gold-standard Fourier shell correlation (FSC)
134	= 0.143 criterion (Supplementary Data Table 1). All of the potential maps contained
135	disordered regions but were sufficient for building structural models of proteins and
136	inhibitors (Supplementary Figs 7, 9). The overall structure exhibits a LeuT fold
137	comprising 14 membrane-spanning helices (TM0–TM13). Helices TM1–5 and TM6–10
138	formed an inverted repeating structure (Fig. 1a). N-glycan, attached to N250 of hSGLT2,

139 was identified (Supplementary Figs 7, 9). Canagliflozin, dapagliflozin, sotagliflozin,

140	and TA-1887 were found to bind to the outward-facing conformation, whereas phlorizin
141	was found to bind to the inward-open conformation. Because of their high flexibility,
142	the N-terminal loop of hSGLT2 (15-20 amino acids), the IL6 loop between TM12 and
143	TM13, and the extracellular or intracellular region of MAP17, were not visible in either
144	structure. The inward-open structure does not exhibit density for IL0 between TM0 and
145	TM1. In MAP17, a single transmembrane helix interacts with TM13 of hSGLT2,
146	consistent with the published interaction between MAP17 and hSGLT2 ¹⁹ . The
147	extracellular half interacts closely with hydrophobic residues and lipids, while the
148	intracellular half does not interact with hSGLT2 (Fig. 1f; Supplementary Fig. 10).
149	
150	The inhibitor-bound hSGLT2 structure and the roles of the Na2 site
151	The C-glucoside inhibitors (canagliflozin, dapagliflozin, and sotagliflozin), and the
152	N-glucoside TA-1887, are bound to the central hydrophobic cavity of the topologically
153	inverted repeats (IRs) (TM1, TM2, TM3, TM6, and TM10; Figs 1a, 2a) of hSGLT2 in
154	outward-facing conformation. This cavity was negatively charged, favoring the binding
155	of positively charged ions such as Na ⁺ . The binding mode was the same as that in the
156	recently reported SGLT2-empagliflozin structure ¹⁹ ; for the main chain, with
157	root-mean-square deviation (RMSD) ranging from 0.66 to 0.85 Å.
158	SGLT2 couples the transport of one Na^+ ion and one glucose molecule. The
159	Na ⁺ -binding Na2 site, which is conserved in many LeuT-fold transporters, was located
160	near the middle bend of TM1 (Fig. 2b). In SGLT2, the Na2 site is thought to be formed
161	by the backbone carbonyls of A73, I76, and A389 and the side chain oxygens of S392
162	and S393 (Fig. 2b), based on the vSGLT ¹⁵ and SiaT ²⁵ alignment (Supplementary Fig. 2).
163	The density corresponding to Na ⁺ at the Na2 site was confirmed in all four

164	outward-facing structures studied here (Supplementary Fig. 11). As predicted from the
165	alignment, Na^+ interacts with A73 and I76 of TM1 and with A389, S392, and S393 of
166	TM8, resulting in a trigonal bipyramidal form (Fig. 2b). Thus, TM1 and TM8 are
167	connected by Na^+ and form part of the substrate-binding site. In the outward-facing
168	structure, this connection not only brought TM1 and TM8 closer together but also
169	allowed the entire outer region of the glucose-binding site, such as TM5, to move
170	outward, causing the inward-open to outward-facing conformational change (Fig. 2c).
171	The binding affinity of canagliflozin to hSGLT2 was lower in the Na^+ absent conditions
172	(Fig. 2d, Supplementary Data Table 2). Therefore, Na^+ binds to hSGLT2 before the
173	substrate or inhibitors binding, allosterically stabilizing the outward-facing structure.
174	Our current findings first clarified the role of sodium ions in the transport state
175	exchange. This is consistent with the fact that, in SGLT1, substitutions of S392 and
176	S393 at the Na2 site significantly reduced glucose uptake ²⁶ .
177	

178 Implication of the role of Na3 site of SGLT1

179 SGLT1 requires two Na⁺ ions for sugar transport and has an Na3 site in addition to the

180 Na2 site³. In SGLT2, the region corresponding to SGLT1 Na3 site, located on the

- 181 cytoplasmic side and away from the glucose-binding pocket, is occluded by the side
- 182 chain carboxyl group of D201 in TM5 and the backbone carbonyls of S392, S393, A395,
- and S396 in TM8 (Fig. 3c and Sup. Fig. 2 and 11b). In SGLT1, the residue
- 184 corresponding to A395 in hSGLT2 is replaced by Thr, which probably contributes to
- 185 Na⁺ binding¹⁷. This is consistent with the fact that no density corresponding to Na⁺ was
- 186 observed at the Na3 site in the present hSGLT2 structures (Supplementary Fig. 11b).

187	It has been proposed that, as at the Na2 site, Na^+ at the Na3 site binds before
188	substrate binding and is taken up by the cell before the substrate ¹⁴ . In the present
189	outward-facing structure of hSGLT2, the region corresponding to SGLT1 Na3 site is
190	located very close to Na2 site so as to partially share the same amino acid residues,
191	suggesting that the Na3 site, in addition to Na2 site, of SGLT1 also stabilizes the
192	outward-open, substrate-binding structure by connecting TM1 to TM5, as Na2 connects
193	TM1 and TM8 in SGLT2. Taken together, this may contribute to the higher affinity of
194	SGLT1 for its substrate ¹⁶ but its slower turnover relative to SGLT2 ²⁷ .
195	
196	The hSGLT2 outward-facing conformation in complex with inhibitors
197	SGLT2 inhibitors were composed of glucose and aglycone moieties (Fig. 1b). The
198	aglycone moiety comprises two aromatic rings that bend at the methylene bridge and
199	extend toward the extracellular space (Fig. 2a, b). The glucose moiety of all gliflozin
200	inhibitors stacks with the aromatic side chain of the inner gate, Y290. The hydroxyl
201	groups of the glucose moiety form hydrogen bonds in the side chains of N75, H80, E99,
202	S287, W291, K321, and Q457, and in the main chain carbonyl group of F98 (Fig. 2b);
203	these residues were conserved in SGLT1 (Supplementary Fig. 2). A water molecule-like
204	density was observed near S460 in the structures of canagliflozin, dapagliflozin, and
205	TA-1887 (Fig. 2b and Supplementary Fig. 7). It has been reported that the
206	corresponding T460 mutant of SGLT1 has reduced sugar transport activity ²⁸ . Therefore,
207	these S460-bound water molecules may also participate in D-glucose transport in
208	hSGLT2.
209	The IC50 values of the five compounds for hSGLT2 were 1–6 nM, with little
210	difference, while sotagliflozin, an SGLT1/2 dual inhibitor, had >10-fold stronger

211	activity toward SGLT1 (IC50 of 40 nM) than the other inhibitors ⁶ . Sotagliflozin has a
212	methylsulfanyl group at C5 of glucose, whereas dapagliflozin has a hydroxymethyl
213	group which has a hydrogen bonding interaction with Gln457 and a water
214	molecule-mediated interaction with S460 (Fig. 2e, g, Supplementary Fig. 7). In SGLT1,
215	S460 of hSGLT2 near C5 was replaced by Thr, V286 by Leu, and L283 by Met, causing
216	the inhibitor-subtype selectivity ¹⁹ .
217	In all of the gliflozin inhibitors, the central aromatic ring is exposed to the
218	hydrophobic cavity formed by TM1, TM3, and TM10 (Figs. 2e-h): in TA-1887, this is a
219	benzylindole ring, which extends into the hydrophobic cavity (Fig. 2f). The
220	hydrophobic substituents at the para position affect hSGLT2 inhibitory activity ^{29,30} , and
221	are all located at approximately the same position (Fig. 2a, b, and e-h). V157, located in
222	TM3 in hSGLT2, is replaced by A160, smaller than Val, in hSGLT1. This site is
223	potentially selective for hSGLT2, because the hydrophobic pocket sizes should be
224	different. Molecular dynamics simulation frames in the hSGLT1 with mizagliflozin
225	showed that A160 is important for the selectivity, which is consistent with the present
226	results ³¹ .
227	Distal aromatic rings form a long hydrophobic aglycon tail that extends into
228	the extracellular vestibule. In all gliflozins, each tail formed a T-shaped π - π stacking
229	with F98 of TM2 and was surrounded by hydrophobic amino acids such as Leu84 of

TM1, V95 of TM2, and F453 of TM10 (Fig. 2b, e–h). Canagliflozin extends with

231 fluorophenyl via a thiophene ring, forming a hydrophobic interaction with the

extracellular vestibule (Fig. 2b). Structure-activity relationship studies during the

233 development of canagliflozin showed that its inhibitory activity increases with furan

234 replaced by thiophene in the center²⁵, suggesting that this moiety should be hydrophobic.

235	Thus, F98 and F453 are suggested to play important roles in the inhibitory action. It has
236	been reported that SGLT1 has I98 at the position corresponding to V95 in hSGLT2 TM2,
237	and that V95I reduced the inhibitory activity of empagliflozin in hSGLT2 ¹⁹ . The distal
238	aromatic rings also contribute to the selectivity between hSGLT1 and hSGLT2 ⁸ .
239	
240	High concentration phlorizin fixes hSGLT2 in the inward-open state.
241	Unexpectedly, phlorizin was found to bind to TM1, TM5, and TM8 in an inward-open
242	structure (Fig. 3a), in contrast to the above gliflozins. This binding site is located near
243	the Na2 site, where sodium ions bind to the outward-facing structure (Fig. 2b). The
244	corresponding site is occluded in the inward-facing state of vSGLT and SGLT1
245	(Supplementary Fig. 12) ^{15,17} , and a PEG molecule was observed in the same location in
246	the inward-open structure of vSGLT (Supplementary Fig. 12) ¹⁴ . The glucose moiety of
247	phlorizin is bound to the bending site of the intracellular side of TM1, whereas the
248	aglycon moiety, connected to the glucose moiety via an ether bond, is surrounded by the
249	side chain of A69, S70, A73 and S74 of TM1, D201 of TM5, and R300 of TM6,
250	extending toward the lipid membrane (Fig. 3c). The ether bond is unique to phlorizin,
251	whereas the central aromatic ring of gliflozins connects directly to the glucose moiety,
252	causing rigidity that prevents binding to the inward-opening structure.
253	The binding of phlorizin to the hSGLT2 expressing membrane fraction at up
254	to 5000 nM did not saturate and exhibit biphasic kinetics, indicating that phlorizin has
255	two binding sites on hSGLT2 (high- and low-affinity sites; Fig. 3d-f). Similarly, the
256	binding of [³ H]phlorizin exhibits biphasic binding in rat renal plasma membrane ³³ . In

- 257 whole-cell clamp experiments, hSGLT2 inhibitors, including phlorizin, achieve
- inhibition by acting on the extracellular side^{34,35}; but phlorizin is the only one that has

been reported to act weakly from the intracellular side at high concentrations 34 .

260	Inhibition from the inside is more potent when there is no intracellular or extracellular
261	Na^+ concentration gradient ³⁴ . Here, we added high concentration (500 μ M) of phlorizin
262	to the hSGLT2–MAP17 solution during the purification process, with no Na ⁺ gradient;
263	cryo-EM captured the binding state of phlorizin accessing from the intracellular side.
264	We examined the binding activity and transport function of hSGLT2 alanine mutants of
265	residues S74 or D201 involved in phlorizin binding in the inward-open structure, and of
266	F98 or F453 involved in the inhibitor interactions in the outward-facing structure of
267	hSGLT2. Based on FSEC, all mutants (including the WT) preserved their conformation
268	(Supplementary Fig. 1d).
269	Unexpectedly, the F98A and F453A single mutants did not bind to phlorizin
270	(Fig. 3e); F98 and F453 not only participate in the inhibitor binding in the
271	outward-facing conformation, but also form π - π stacking interactions with each other in
272	the inward-open conformation, which is probably important for maintaining the
273	inward-open state (Fig. 3c). The low-affinity binding phase of phlorizin was lost in both
274	the S74A and D201A mutants, with phlorizin binding only to the high-affinity site of the
275	WT (Fig. 3e, f, Supplementary Data Table 3). Phloretin, the aglycon tail of phlorizin,
276	binds to the WT as well as phlorizin but not to the S74A and D201A mutants (Fig. 3g).
277	Therefore, S74A and D201A have lost the ability to bind phlorizin on the cytoplasmic
278	side but can still bind it on the extracellular site. Since the S74A, F98A, and F453A
279	mutants maintained α -MG uptake (Fig. 3h), we performed experiments to inhibit sugar
280	uptake using phlorizin. Inhibition of α -MG uptake by phlorizin was greatly impaired in
281	the F98A and F453A mutants, which lacked phlorizin-binding ability, but was
282	maintained in the S74A mutant, in which the outer binding site was functional (Fig. 3i,

283	Supplementary Data Table 4). No clear uptake of α -MG was observed in the D201A
284	mutant (Fig. 3h). D201 corresponds to D204 in hSGLT1, which is involved in the Na3
285	site formation and is important for sugar uptake activity and cell trafficking; it is
286	expected to play a similar role in hSGLT2 ³⁶ . These results support the previous
287	suggestions that phlorizin strongly and weakly inhibits hSGLT2 from the extracellular
288	and intracellular sides, respectively.
289	
290	Structural rearrangement from the outward to inward conformations
291	Given that hSGLT2 exhibits outward and inward conformations, we will consider its
292	structural changes during sugar transport. TM1-10 is conserved in the LeuT family.
293	hSGLT2 contains a bundle domain comprising TM1, -2, -6, and -7, a hash domain
294	comprising TM3, -4, -8, and -9, and two gating helices, TM5 and -10. In addition, the
295	core of hSGLT2 was surrounded by TM0, TM11–13, and MAP17 (Fig. 4).
296	The bundle domain of LeuT-fold transporters such as Mhp1 and vSGLT1 is
297	reportedly fixed, while the hash domain and gating helices rotate to transport substrates
298	via an alternating-access mechanism ¹² . When the bundle domains are superimposed
299	between the inward and outward structures, TM13 and MAP17 are also well
300	superimposed, while the other parts of the transporter change their location and
301	conformation (Fig. 4a, Supplementary Movie 1). MAP17 is expected to affect the active
302	conformation of hSGLT2, because its co-expression enhances hSGLT2 activity, without
303	altering hSGLT2 expression on the plasma membrane ¹⁸ . However, the present structure
304	suggests that MAP17 stabilizes the bundle domain together with TM13, as a scaffolding
305	protein in the plasma membrane (Fig. 4a).

306	The substrate-binding site and external vestibule are formed by TM1, -2, -6,
307	and -10 in the outward-facing conformation (Fig. 4b, c). Y290 in TM6, N75 in TM1,
308	and K154 in TM3 form π -cation interactions, where the corresponding interaction of
309	vSGLT1 is thought to act as an inner gate for substrates. SGLT1/2 has a characteristic
310	Pro-Pro motif (465, 466) in the middle of TM10, causing a bend in the α -helix (Fig. 4c,
311	e). This causes F453 of TM10 to form a T-shaped π - π interaction with F98 of TM2 in
312	the inward-open conformation; the external vestibule is covered by this interaction, and
313	by L84 of TM1 (Fig. 4e). These residues are thought to act as external gates for
314	transporters. The binding of the distal aromatic ring to the outward-facing conformation
315	moves the F453 side chain of TM10 to the opposite side, and instead the distal aromatic
316	ring forms a tight interaction with F98 of TM2, thus inhibiting the inward transition
317	(Supplementary Movie 1). This is consistent with the reduced binding activity of
318	SGLT2 inhibitors in the F98A and F453A mutants (Supplementary Fig. 1e).
319	The inward-open structure, which has no Na ⁺ bound, is thought to mimic the structure
320	once Na^+ and the substrate are transported into the cytoplasmic side ¹⁴ . With the
321	movement of the hash domain and gating helices, the interaction between K154 of TM3
322	and Y290 of TM6 is broken (Fig. 4c, e), and TM8 moves so that it fills the space
323	partially occupied by TM3. Furthermore, TM8 and the intracellular part of its
324	connecting TM9 outwardly shift significantly. The small-loop structure of IL0 stabilizes
325	the outward-facing structure from the intracellular side, together with a cation- π
326	interaction between R427 and Y55, which becomes lost and disordered in the
327	inward-open conformation. In SGLT1 and vSGLT, the small helical structure IL0 in the
328	inward-open conformation is also disordered ^{14,17} , and is therefore thought to be
329	conserved among these proteins.

330	Because phlorizin was bound to the low-affinity binding site in the
331	inward-open conformation under these experimental conditions, we suggest that, in the
332	absence of an Na ⁺ concentration gradient, hSGLT2 is stabilized in the inward-open
333	conformation, and that the Na ⁺ concentration gradient may promote sodium binding to
334	the Na2 site. Although this study does not fully elucidate the dynamics of Na^+
335	binding/release and sugar uptake, it reveals that sugar uptake depends on the change
336	from the outward-facing to the inward-open conformation, and that groove formation by
337	the inward-open structure without Na^+ binding is the driving force of sugar uptake.
338	Based on molecular dynamics studies of vSGLT, sugar uptake occurs after Na^+ is
339	released ¹⁴ , which is consistent with our findings. After the uptake of sugar and sodium
340	is completed in the inward-open state of the protein, the sodium concentration gradient
341	drives the change toward the outward-open conformation, allowing the next sodium ion
342	to be accepted, thus rotating the glucose transport cycle. Our structural findings
343	therefore provide support for the proposed Na ⁺ -glucose co-transport mechanism.
344	In summary, we have elucidated the structures of five
345	hSGLT2-MAP17-inhibitor complexes using cryo-EM, in addition to the
346	sodium-binding outward-facing and inward-open structures of hSGLT2 and a two-phase
347	mode of inhibition. This allowed us to identify the unprecedented role of Na^+ ions in
348	regulating transport state dynamics (Fig. 5). Most sodium-bound symporters of the
349	LeuT family share their Na2 site and domain structures and may employ a common
350	transport mechanism. We believe that our findings will help us to better understand the
351	molecular mechanism of action of this transporter family and to develop new drugs that
352	target disease-related transporters.

353

- 354 Methods
- 355 *Reagent and Chemicals*
- 356 Canagliflozin and TA-1887 were synthesized by Mitsubishi Tanabe Pharma Corporation
- 357 (Yokohama, Japan)^{32,37}. Dapagliflozin and sotagliflozin were purchased from Cayman
- ³⁵⁸ Chemical Company (Ann Arbor, MI). Phlorizin, phloretin, and α-MG were purchased
- 359 from Sigma-Aldrich (St. Louis, MO).
- 360

361 Expression and purification of the hSGLT2-MAP17 heterodimer

- hSGLT2 (UniProt: P31639-1) cDNA and human MAP17 (UniProt: Q13113-1) cDNA
- 363 were synthesized and codon-optimized for expression in human cell lines. Both cDNAs
- 364 were cloned into pcDNA3.4 vector. The hSGLT2 sequence was fused with an
- N-terminal signal sequence from human trypsinogen 1, a His10 tag, and super-folder
- 366 green fluorescent protein (sfGFP), followed by a human rhinovirus 3C protease
- 367 (HRV3C protease) recognition site. Point mutations were introduced into this construct
- 368 using site-directed mutagenesis.
- 369 Mammalian Expi293 cells (Thermo Fisher Scientific, Waltham, MA) were grown and
- maintained in Expi293 Expression Medium at 37 °C and 8% CO₂ under humidified
- 371 conditions. Cells were transiently transfected at a density of 2.0×10^6 cells mL⁻¹ with
- 372 the plasmids and FectoPRO (Polyplus, Illkirch-Graffenstaden, France). Approximately
- 373 320 µg of the hSGLT2 plasmid and 160 µg of the MAP17 plasmid were premixed with
- ³⁷⁴ 720 μL of FectoPRO reagent in 60 mL of Opti-MEM (Gibco) for 10–20 min before
- transfection. For transfection, 60 ml of the mixture was added to 0.6 L the cell culture
- and incubated at 37 °C in the presence of 8% CO₂ for 72 h before collection. The cells

377	were collected by	centrifugation	$(800 \times g)$	$10 \square \min$.	$4 \square \circ \mathbf{C}$	and stored	at -80	°C before
011	were concered by	commugation	$(000 \land s)$	$10 \square mm$,	$+ \cup \cup$	and stored	at 00	C 00101

- 378 use. The detergent-solubilized proteins were analyzed by fluorescence-detection
- 379 size-exclusion chromatography (FSEC) using an ACQUITY UPLC BEH450 SEC 2.5
- 380 µm column (Waters, Milford, MA).
- 381 To prepare the complex sample with phlorizin, the cells were solubilized for 1 h at
- 382 4 □ °C in buffer (50 □ mM HEPES-NaOH [pH 7.5], 300 □ mM NaCl, 2% (w/v)
- ³⁸³ N-dodecyl β -d-maltoside (DDM, Calbiochem, San Diego, CA), protease inhibitor
- cocktail, and 1 mM phlorizin). After ultracentrifugation (138,000 × g, 60 \square min, 4 \square °C),
- the supernatant was incubated with Affi-Gel 10 (Bio-Rad, Hercules, CA) coupled with a
- 386 GFP-binding nanobody³⁸ and incubated for $2 \Box h$ at $4 \Box$ °C. The resin was washed five
- times with three column volumes of wash buffer (50 mM HEPES-NaOH (pH 7.5),
- 388 300 mM NaCl, 0.05% DDM (GLYCON Biochemicals, Luckenwalde, Germany), and
- 1 mM phlorizin), and gently suspended overnight with HRV3C protease to cleave the
- ³⁹⁰ His10-sfGFP tag. After HRV3C protease digestion, the flow-through was pooled,
- 391 concentrated, and purified by size-exclusion chromatography on a Superose 6 Increase
- ³⁹² 10/300 GL column (GE Healthcare, Chicago, IL), and equilibrated with SEC buffer
- 393 (20 mM HEPES-NaOH [pH 7.5], 150 mM NaCl, 0.03% DDM [GLYCON], and 0.5
- mM phlorizin). For the complex samples with canagliflozin, TA-1887, dapagliflozin,
- and sotagliflozin, the same procedure was performed, but at inhibitor concentrations of
- 396 30 μ M each. The peak fractions were pooled and concentrated to $6-10 \square mg \square ml^{-1}$.
- 397

398 Methyl a-D-glucopyranoside (a-MG) uptake in hSGLT2-transfected HEK293 cells

- HEK293 cells (ECACC 85120602) were maintained in Dulbecco's modified Eagle's
- 400 medium (Gibco) supplemented with 10% fetal bovine serum (FBS; Thermo Scientific),

401	2 mM l-glutamate, 100 U/mL benzylpenicillin, and 100 $\mu g/mL$ streptomycin, at 37 $^{\circ}C$
402	in a humidified atmosphere of 5% CO_2 in air. HEK293 cells were transiently transfected
403	with 0.25 μ g pcDNA3.4 vector containing a MAP17-coding region and 0.50 μ g
404	pcDNA3.4 vector containing an hSGLT2-coding region, using Lipofectamine 2000
405	(Life Technologies, Carlsbad, CA), and cultured for 48 h. The medium was removed,
406	and the cells were washed twice, then preincubated with extracellular fluid buffer
407	without glucose (122 mM NaCl, 25 mM NaHCO ₃ , 3 mM KCl, 1.4 mM CaCl ₂ , 2 mM
408	MgSO ₄ , 0.4 mM K ₂ HPO ₄ , 10 mM HEPES; pH 7.4) at 37 °C for 20 min. After
409	preincubation, uptake was initiated by replacing the preincubation buffer with
410	extracellular fluid buffer containing 500 μ M α -MG in the absence or presence of
411	inhibitors. Uptake was completed by removing the uptake buffer and washing with
412	ice-cold buffer three times, followed by solubilization in 1 N NaOH at room
413	temperature. The uptake of α -MG gradually increased over 60 min (Supplementary Fig.
414	1E) and the incubation time in the inhibition assay was 30 min.
415	Cell lysates were deproteinized by adding acetonitrile containing candesartan as the
416	internal standard. The concentration of α -MG was quantified via LC-MS/MS, using the
417	internal standard method.
418	Specific peaks of α -MG were observed in the lysates of mock cells and
419	hSGLT2-expressing cells incubated with α -MG, but no specific peaks were observed in
420	the lysates of mock cells without the addition of α -MG (Supplementary Fig. 1F).
421	Cellular protein content was determined using a bicinchoninic acid (BCA) protein assay
422	kit (Thermo Fisher Scientific). The uptake of α -MG was expressed as the ratio of
423	pmol/mg protein in the cells to pmol/ μ L in the medium (cell-to-medium ratio; μ L/mg
424	protein).

425	In the inhibition study, the cell-to-medium ratio of cells transfected with the empty
426	vector was used as the background. The specific α -MG uptake was calculated by
427	subtracting the background from the total cell-to-medium ratio and normalized to the
428	uptake achieved without the inhibitor. The three replicates were obtained from the same
429	samples. IC50 was calculated via nonlinear regression using GraphPad Prism 8.4.3.
430	
431	SGLT2 inhibitor-binding assay by affinity selection-mass spectrometry
432	To examine the inhibition of binding to the crude membrane, mammalian Expi293 cells
433	were co-transfected with hMAP17 and wild-type hSGLT2 or its mutants, as described
434	above. The cells were collected and disrupted by sonication in a hypotonic buffer
435	(50 mM HEPES-NaOH [pH 7.5], 10 mM KCl, and protease inhibitor cocktail) or
436	Na ⁺ -free hypotonic buffer (50 I mM Tris-HCl [pH 7.5], 10 I mM KCl, and protease
437	inhibitor cocktail). Cell debris were removed by centrifugation (2,000 $\square \times g$, 5 \square min,

438 4 \square °C). The membrane fraction was collected by ultracentrifugation (112,000 × *g*, 30

439 min, $4 \square °C$) and stored at -80 °C before use. The crude membrane (250 µg per sample)

440 was incubated with SGLT2 inhibitor in an assay buffer (100 mM NaCl, 10 mM

441 HEPES/Tris, pH 7.4) or Na⁺-free assay buffer (100 mM choline chloride, 10 mM

442 HEPES/Tris, pH 7.4) at room temperature for 2 h. Reactions were terminated by

filtration through a GF/C filter plate (Corning Inc., Corning, NY) presoaked in assay

buffer containing 0.1% BSA. The sample in the filter plate was washed three times with

the assay buffer and eluted with acetonitrile : water (80:20, v/v). The extract solution

446 from the filter plate was diluted with water containing candesartan as an internal

standard, and the concentration of SGLT2 inhibitors was quantified using LC-MS/MS.

448 Non-specific binding was determined by the membrane fraction of the

- 449 non-transfected-Expi293 cells, and specific binding was calculated by subtracting the
- 450 non-specific binding from the binding of hSGLT2-expressing cells. Specific binding
- 451 was normalized to hSGLT2 protein expression levels, measured by FSEC. The
- 452 equilibrium dissociation constant (Kd) and maximum number of binding sites (B_{max})
- 453 were calculated via nonlinear regression in GraphPad Prism 8.4.3. The specific binding
- 454 of the hSGLT2 mutants was normalized to that of wild-type hSGLT2.
- 455

456 Quantification of SGLT2 substrate and inhibitors via LC-MS/MS

- The concentration of the extract solution from the filter plate and cell lysate was
- 458 quantified using tandem mass spectrometry (QTRAP6500 System (SCIEX,
- 459 Framingham, MA) coupled with an ACQUITY UPLC system (Waters) using the
- 460 internal standard method. Mobile phases A and B used 10 mM of ammonium
- 461 bicarbonate and acetonitrile, respectively. Chromatographic separation was performed
- 462 on an ACQUITY UPLC BEH C18 column (2.1 mm \times 100 mm, 1.7 μ m; Waters) at
- 463 50 °C, with the following gradient of mobile phase B: 1% (at 0.00 to 0.50 min), 1% to
- 464 95% (0.50 to 2.00 min), 95% (2.00 to 2.50 min), and 1% (2.51 to 3.0 min); the flow rate
- 465 was 0.4 mL/min. Mass spectrometric detection was performed by multiple reaction
- 466 monitoring in the electrospray-ionization negative-ion mode, using m/z 443.1 / 364.9
- 467 for canagliflozin; 425.9 / 264.1 for TA-1887; 407.0 / 328.8 for dapagliflozin; 423.0 /
- 468 387.0 for sotagliflozin; 435.0 / 273.0 for phlorizin; 273.0 / 148.9 for phloretin; and
- 469 192.9 / 100.9 for α -MG.

470

471 Electron microscopy sample preparation

- 472 The purified protein solution of hSGLT2–MAP17 was mixed with the inhibitor
- 473 solutions except for phlorizin, with final concentrations of 0.5 mM dapagliflozin,
- 474 TA-1887, sotagliflozin, or canagliflozin. After incubation for 1 h on ice, the grids were
- glow-discharged in low-pressure air with a 10 mA current in a PIB-10 (Vacuum
- 476 Device, Mito, Japan). The protein solutions containing 0.5 mM of the inhibitors were
- 477 applied to a freshly glow-discharged Quantifoil Holey Carbon Grid (R1.2/1.3, Cu/Rh,
- 478 300 mesh)(SPT Labtech, Melbourne Hertfordshire, UK) using a Vitrobot Mark IV
- 479 (Thermo Fisher Scientific) at 4 °C, with a blotting time of 4–6 s under 99% humidity
- 480 conditions; the grids were then plunge-frozen in liquid ethane.
- 481

482 Electron microscopy data collection and processing

- 483 The grids containing phlorizin, TA-1887, dapagliflozin, and sotagliflozin were
- 484 transferred to a Titan Krios G3i (Thermo Fisher Scientific) running at 300 kV and
- equipped with a Gatan Quantum-LS Energy Filter (GIF) and a Gatan K3 Summit direct
- 486 electron detector in the correlated double sampling mode. Imaging was performed at a
- nominal magnification of 105,000×, corresponding to a calibrated pixel size of 0.83
- ⁴⁸⁸ Å/px (The University of Tokyo, Japan). Each movie was dose fractionated to 64 frames
- 489 at a dose rate of $6.2-9.0 \text{ e}^{-/}$ px/s at the detector, resulting in a total accumulated exposure
- 490 of 64 $e^{-}/Å^2$ of the specimen. The data were automatically acquired using the image-shift
- 491 method in SerialEM software³⁹, with a defocus range of -0.8 to $-1.6 \,\mu\text{m}$.
- 492 The grid with canagliflozin was transferred to a Titan Krios G4 device (Thermo Fisher
- 493 Scientific) running at 300 kV and equipped with a Gatan Quantum-LS Energy Filter
- 494 (GIF) and a Gatan K3 Summit direct electron detector in correlated double sampling

495	mode. Imaging was performed at a nominal magnification of 215,000×, corresponding
496	to a calibrated pixel size of 0.4 Å/px (The University of Tokyo, Japan). Each movie was
497	recorded for 1.4 seconds and subdivided into 64 frames. Electron flux was set to 7.5
498	$e^{-}/px/s$ at the detector, resulting in an accumulated exposure of 64 $e^{-}/Å^2$ of the specimen.
499	The data were automatically acquired via the image-shift method using EPU software
500	(Thermo Fisher Scientific), with a defocus range of -0.6 to $-1.6 \mu\text{m}$. The total number
501	of images is described in Supplementary Data Table 1.
502	For all datasets, the dose-fractionated movies were subjected to beam-induced motion
503	correction using RELION ²³ , and the contrast transfer function (CTF) parameters were
504	estimated using CTFFIND4 ⁴⁰ .
505	For the canagliflozin-bound state dataset, 2,364,108 particles were initially selected
506	from 19,943 micrographs, using the topaz-picking function in RELION-4.0 ²⁴ . Particles
507	were extracted by downsampling to a pixel size of 3.2 Å/px. These particles were
508	subjected to several rounds of 2D and 3D classification. The best class contained
509	221,701 particles, which were then re-extracted with a pixel size of 1.60 Å/px and
510	subjected to 3D refinement. The second 3D classification resulted in three map classes.
511	The best class from the 3D classification contained 179,761 particles, which were
512	subjected to 3D refinement. The particles were subsequently subjected to micelle
513	subtraction and non-aligned 3D classification using a mask (without micelles), resulting
514	in three map classes. The best class, containing 65,919 particles, was subjected to 3D
515	refinement, reversion to the original particles, and 3D refinement. The particle set was
516	resized to 1.00 Å/px, and subjected to Bayesian polishing, 3D refinement, and
517	per-particle CTF refinement before the final 3D refinement and post-processing,
518	yielding a map with a global resolution of 3.1 Å, according to the FSC = 0.143 criterion.

519 Finally, local resolution was estimated using RELION-4. The processing strategy is
520 illustrated in Supplementary Fig. 3.

521

522	For the dapagliflozin-bound-state dataset, 3,692,950 particles were initially selected
523	from 4,841 micrographs, using the topaz-picking function in RELION-4.0. Particles
524	were extracted by downsampling to a pixel size of 3.32 Å/px. These particles were
525	subjected to several rounds of 2D and 3D classification. The best class contained
526	569,516 particles, which were then re-extracted at a pixel size of 1.30 Å/px and
527	subjected to 3D refinement. Non-aligned 3D classification using a soft mask covering
528	the proteins and micelles resulted in four map classes. The best class from the 3D
529	classification contained 197,695 particles, which were subjected to 3D refinement,
530	per-particle CTF refinement, and 3D refinement. The resulting 3D model and particle
531	set were resized to 1.11 Å/px and subjected to Bayesian polishing, 3D refinement, and
532	per-particle CTF refinement. Final 3D refinement and post-processing yielded maps
533	with global resolutions of 2.8 Å, according to the FSC = 0.143 criterion. Finally, the
534	local resolution was estimated using RELION-3. The processing strategy is illustrated in
535	Supplementary Fig. 4.
536	For the TA-1887-bound state dataset, 3,395,470 particles were initially selected from
537	4,383 micrographs, using the topaz-picking function in RELION-4. Particles were
538	extracted by downsampling to a pixel size of 3.32 Å/px. These particles were subjected
539	to several rounds of 2D and 3D classification. The best class contained 274,477
540	particles, which were then re-extracted with a pixel size of 1.30 Å/px and subjected to
541	3D refinement. Non-aligned 3D classification using a soft mask covering the proteins
542	and micelles resulted in three map classes. The best class from the 3D classification

543	contained 103,853 particles, which were subjected to 3D refinement, per-particle CTF
544	refinement, and 3D refinement. The resulting 3D model and particle set were resized to
545	1.11 Å/px and subjected to Bayesian polishing, 3D refinement, and per-particle CTF
546	refinement. Final 3D refinement and post-processing yielded maps with global
547	resolutions of 2.9 Å, according to the FSC = 0.143 criterion. Local resolution was
548	estimated using RELION-4. The processing strategy is illustrated in Supplementary Fig.
549	5.
550	For the sotagliflozin-bound state dataset, 5,242,427 particles were initially selected from
551	5,499 micrographs using the topaz-picking function in RELION-4. Particles were
552	extracted by downsampling to a pixel size of 3.32 Å/px. These particles were subjected
553	to several rounds of 2D and 3D classifications. The best class contained 823,369
554	particles, which were then re-extracted with a pixel size of 1.30 Å/px and subjected to
555	3D refinement. Non-aligned 3D classification using a soft mask covering the proteins
556	and micelles resulted in four classes of maps. The two good classes from the 3D
557	classification contained 227,811 particles, which were subjected to 3D refinement. The
558	resulting 3D model and particle set were resized to 1.11 Å/px and subjected to Bayesian
559	polishing, 3D refinement, and further non-aligned 3D classification using a soft mask
560	covering the proteins and micelles. The best class from the 3D classification contained
561	72,773 particles, which were subjected to 3D refinement, per-particle CTF refinement,
562	3D refinement, Bayesian polishing, 3D refinement, and per-particle CTF refinement.
563	The final 3D refinement and post-processing yielded maps with global resolutions of
564	3.1 Å, according to the FSC = 0.143 criterion. Finally, the local resolution was
565	estimated using RELION. The processing strategy is illustrated in Supplementary Fig.
566	6.

567	For the phlorizin-bound state dataset, 3,013,029 particles were initially selected from
568	3,159 micrographs using the Laplacian-of-Gaussian picking function in RELION-3.1 ²³
569	and were used to generate two-dimensional (2D) models for reference-based particle
570	picking. Particles were extracted by downsampling to a pixel size of 3.32 Å/px. These
571	particles were subjected to several rounds of 2D and 3D classification. The best class
572	contained 324,355 particles, which were then re-extracted with a pixel size of 1.66 Å/px
573	and subjected to 3D refinement. The particles were subsequently subjected to micelle
574	subtraction and non-aligned 3D classification using a mask (excluding the micelles),
575	resulting in three map classes. The best class contained 76,485 particles, which were
576	then subjected to 3D refinement and reversion to the original particles. The particle set
577	was resized to 1.30 Å/px, and subjected to Bayesian polishing, 3D refinement, and
578	per-particle CTF refinement before the final 3D refinement and post-processing,
579	yielding a map with a global resolution of 3.3 Å according to the FSC = 0.143 criterion.
580	Finally, the local resolution was estimated using RELION-3. The processing strategy is
581	illustrated in Supplementary Fig. 8.
582	
-00	

583 Model building and validation

584 The models of the phlorizin-bound inward state of hSGLT2–MAP17 were manually

⁵⁸⁵ built, de novo, using the cryo-EM density map tool in COOT, facilitated by an

586 hSGLT2-homology model generated using Alphafold2⁴¹. After manual adjustment, the

⁵⁸⁷ models were subjected to structural refinement via the Servalcat pipeline in

588 REFMAC5⁴² and manual real-space refinement in COOT. The models of the

dapagliflozin-, TA-1887-, sotagliflozin-, and canagliflozin-bound outward states were

590 built using the Alphafold2-derived hSGLT2-homology model as the starting model. The

- ⁵⁹¹ 3D reconstruction and model refinement statistics are summarized in Supplementary
- 592 Data Table 1. All molecular graphics figures were prepared using CueMol
- 593 (http://www.cuemol.org) and UCSF Chimera 43 .
- 594
- 595

596 Acknowledgements

- ⁵⁹⁷ We thank Y. Lee and T. Nishizawa for technical advice on sample preparation; K.
- 598 Yamashita for technical advice on refinement using Servalcat; T. Saijo, T. Takahashi and
- 599 Y. Kamikozawa for technical advice on functional analyses; and M. Shiotani, C.
- 600 Kuriyama, and Y. Yamamoto for fruitful discussions about the inhibitory mechanism.
- 601 We thank the scientific staff of the cryo-EM facility of the University of Tokyo, and
- 602 especially Y. Kise, Y. Sakamaki, T. Kusakizako, H. Yanagisawa, A. Tsutsumi, M.
- 603 Kikkawa, and R. Danev.
- 604 This work was not supported by external funding.
- 605

606 Author contributions

- 607 M.H. designed the entire study. M.H. performed the cryo-EM analyses, with sample
- ⁶⁰⁸ preparation assistance from T.K.; M.H. and T.A. designed and performed the functional
- analyses, with sample preparation assistance from M.H. and T.K. M.H. performed
- model building and model refinement, with assistance from H.K. and K.M. M.H., T.A.,
- N.T., I.M., and O.N. wrote and edited the manuscript, with help from all other authors.

612 M.H., T.A., I.M., and O.N. supervised the study.

614 Materials and correspondence

- 615 Masahiro Hiraizumi, Ikuko Miyaguchi, and Osamu Nureki
- 616

617 **Competing interests:**

- 618 Masahiro Hiraizumi, Tomoya Akashi, Kouta Murasaki, Hiroyuki Kishida, Taichi
- 619 Kumanomidou, Nao Torimoto, and Ikuko Miyaguchi are employees of Mitsubishi
- Tanabe Pharma Corporation. Osamu Nureki is a co-founder of, and scientific advisor to,
- 621 Curreio.
- 622

623 Data and materials availability

- 624 Cryo-EM density maps were deposited in the Electron Microscopy Data Bank under
- accession codes EMD-34673 (canagliflozin-bound state), EMD-34705
- 626 (dapagliflozin-bound state), EMD-34610 (TA-1887-bound state), EMD-34737
- 627 (sotagliflozin-bound state), and EMD-34823 (phlorizin-bound state). Atomic
- 628 coordinates have been deposited in the Protein Data Bank under IDs 8HDH
- 629 (canagliflozin-bound state), 8HEZ (dapagliflozin-bound state), 8HB0 (TA-1887-bound
- 630 state), 8HG7 (sotagliflozin-bound state), and 8HIN (phlorizin-bound state).
- 631 The datasets generated during and/or analysed during the current study are available
- from the corresponding author on reasonable request.
- 633

634 **References**

- Maccari, R. & Ottanà, R. Sodium-Glucose Cotransporter Inhibitors as
 Antidiabetic Drugs: Current Development and Future Perspectives. *J. Med. Chem.* 65,
 10848–10881 (2022).
- 638 2. Wright, E. M., Loo, D. D. F. & Hirayama, B. A. Biology of Human Sodium

639 Glucose Transporters. *Physiol. Rev.* **91**, 733–794 (2011).

640 3. Kanai, Y., Lee, W. S., Brown, D. & Hediger, M. A. The human kidney low 641 affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive 642 mechanism for D-glucose. J. Clin. Invest. 93, 397-404 (1994). Isaji, M. SGLT2 inhibitors: molecular design and potential differences in effect. 643 4. 644 Kidney Int. 79, S14-S19 (2011). Faillie, J.-L. Pharmacological aspects of the safety of gliflozins. Pharmacol. 645 5. 646 Res. 118, 71-81 (2017). Wright, E. M. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360 2, 647 6. 2027-2037 (2021). 648 Lim, V. G. et al. SGLT2 Inhibitor, Canagliflozin, Attenuates Myocardial 649 7. Infarction in the Diabetic and Nondiabetic Heart. JACC Basic Transl. Sci. 4, 15–26 650 (2019). 651 8. Bhattacharya, S. et al. An exhaustive perspective on structural insights of 652 SGLT2 inhibitors: A novel class of antidiabetic agent. Eur. J. Med. Chem. 204, 112523 653 654 (2020).9. Powell, D. R. et al. LX2761, a Sodium/Glucose Cotransporter 1 Inhibitor 655 Restricted to the Intestine, Improves Glycemic Control in Mice. J. Pharmacol. Exp. 656 Ther. 362, 85–97 (2017). 657 10. Powell, D. R. et al. LX4211 Increases Serum Glucagon-Like Peptide 1 and 658 Peptide YY Levels by Reducing Sodium/Glucose Cotransporter 1 (SGLT1)-Mediated 659 Absorption of Intestinal Glucose. J. Pharmacol. Exp. Ther. 345, 250-259 (2013). 660 11. Sands, A. T. et al. Sotagliflozin, a Dual SGLT1 and SGLT2 Inhibitor, as 661 Adjunct Therapy to Insulin in Type 1 Diabetes. Diabetes Care 38, 1181–1188 (2015). 662 del Alamo, D., Meiler, J. & Mchaourab, H. S. Principles of Alternating Access 663 12. in LeuT-fold Transporters: Commonalities and Divergences. J. Mol. Biol. 434, 167746 664 665 (2022).13. 666 Gyimesi, G., Pujol-Giménez, J., Kanai, Y. & Hediger, M. A. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from 667 molecular discovery to clinical application. Pflüg. Arch. - Eur. J. Physiol. 472, 668 669 1177-1206 (2020). Watanabe, A. et al. The mechanism of sodium and substrate release from the 670 14. binding pocket of vSGLT. Nature 468, 988-991 (2010). 671 Faham, S. et al. The Crystal Structure of a Sodium Galactose Transporter 672 15. 673 Reveals Mechanistic Insights into Na⁺/Sugar Symport. Science **321**, 810–814 (2008). 674 16. Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of

- 675 Na⁺-glucose symporters. *Nat. Commun.* **9**, 5245 (2018).
- Han, L. *et al.* Structure and mechanism of the SGLT family of glucose
 transporters. *Nature* 601, 274–279 (2022).
- 678 18. Coady, M. J. *et al.* MAP17 Is a Necessary Activator of Renal Na⁺/Glucose
 679 Cotransporter SGLT2. *J. Am. Soc. Nephrol.* 28, 85–93 (2017).
- Niu, Y. *et al.* Structural basis of inhibition of the human SGLT2–MAP17
 glucose transporter. *Nature* 601, 280–284 (2022).
- 682 20. Niu, Y. *et al.* Structural mechanism of SGLT1 inhibitors. *Nat. Commun.* 13,
 683 6440 (2022).
- Kawate, T. & Gouaux, E. Fluorescence-Detection Size-Exclusion
 Chromatography for Precrystallization Screening of Integral Membrane Proteins. *Structure* 14, 673–681 (2006).
- Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S.
 Engineering and characterization of a superfolder green fluorescent protein. *Nat. Biotechnol.* 24, 79–88 (2006).
- 23. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
 determination in RELION-3. *eLife* 7, e42166 (2018).
- Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools
 for automated cryo-EM single-particle analysis in RELION-4.0. *Biochem. J.* 478,
 4169–4185 (2021).
- Wahlgren, W. Y. *et al.* Substrate-bound outward-open structure of a
 Na⁺-coupled sialic acid symporter reveals a new Na⁺ site. *Nat. Commun.* 9, 1753
 (2018).
- Sala-Rabanal, M. *et al.* Bridging the gap between structure and kinetics of
 human SGLT1. *Am. J. Physiol.-Cell Physiol.* **302**, C1293–C1305 (2012).
- Coady, M. J., Wallendorff, B. & Lapointe, J.-Y. Characterization of the
 transport activity of SGLT2/MAP17, the renal low-affinity Na⁺-glucose cotransporter. *Am. J. Physiol.-Ren. Physiol.* **313**, F467–F474 (2017).
- Hirayama, B. A. *et al.* Sodium-Dependent Reorganization of the Sugar-Binding
 Site of SGLT1. *Biochemistry* 46, 13391–13406 (2007).
- 705 29. Kakinuma, H. *et al.* (1
- S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol
- 707 (TS-071) is a Potent, Selective Sodium-Dependent Glucose Cotransporter 2 (SGLT2)
- Inhibitor for Type 2 Diabetes Treatment. J. Med. Chem. 53, 3247–3261 (2010).
- 709 30. Ohtake, Y. et al. Discovery of Tofogliflozin, a Novel C-Arylglucoside with an
- 710 O -Spiroketal Ring System, as a Highly Selective Sodium Glucose Cotransporter 2

- 711 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 55, 7828–7840
- 712 **(2012)**.
- 713 31. Hummel, C. S. *et al.* Structural selectivity of human SGLT inhibitors. *Am. J.*
- 714 *Physiol.-Cell Physiol.* **302**, C373–C382 (2012).
- 715 32. Nomura, S. *et al.* Novel Indole- *N* -glucoside, TA-1887 As a Sodium Glucose
- 716 Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes. ACS Med. Chem. Lett. 5,
 717 51–55 (2014).
- 33. Ožegović, B., McNamara, P. D., Goldmann, D. R. & Segal, S. Binding of [³H]
 phlorizin to rat kidney plasma membranes. *FEBS Lett.* 43, 6–8 (1974).
- Ghezzi, C. *et al.* SGLT2 inhibitors act from the extracellular surface of the cell
 membrane. *Physiol. Rep.* 2, e12058 (2014).
- 35. Hummel, C. S. *et al.* Glucose transport by human renal Na⁺/D-glucose
 cotransporters SGLT1 and SGLT2. *Am. J. Physiol.-Cell Physiol.* 300, C14–C21 (2011).
- 724 36. Quick, M., Loo, D. D. F. & Wright, E. M. Neutralization of a Conserved Amino
- Acid Residue in the Human Na⁺/Glucose Transporter (hSGLT1) Generates a
 Glucose-gated H+ Channel. J. Biol. Chem. 276, 1728–1734 (2001).
- 72737.Nomura, S. et al. Discovery of Canagliflozin, a Novel C -Glucoside with728Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the
- 729 Treatment of Type 2 Diabetes Mellitus. J. Med. Chem. 53, 6355–6360 (2010).
- Axel Kirchhofer *et al.* Modulation of protein properties in living cells using
 nanobodies. *Nat Struct Mol Biol* 17, 133–138 (2010).
- Mastronarde, D. N. Automated electron microscope tomography using robust
 prediction of specimen movements. *J. Struct. Biol.* 152, 36–51 (2005).
- Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation
 from electron micrographs. 18 (2019).
- 41. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold.
- 737 *Nature* **596**, 583–589 (2021).
- 738 42. Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM
- single-particle structure refinement and map calculation using *Servalcat. Acta Crystallogr. Sect. Struct. Biol.* 77, 1282–1291 (2021).
- 741 43. Pettersen, E. F. et al. UCSF Chimera--A visualization system for exploratory
- 742 research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

744 Figure legends

745	Figure 1. Biochemical and cr	vo-EM studies of the human	SGLT2–MAP17 heterodimer.
. 10			

- a Topological diagram of the hSGLT2–MAP17 heterodimer. Inverted repeats (IRs) are
- represented as light blue and light brown. The Y-shape indicates an N-glycosylation site.
- 748 Disulfide bonds are shown as orange sticks. A signal peptide (SP) and super-folder (sf)
- GFP were fused to the N-terminus of hSGLT2. The dotted line indicates the site of
- ⁷⁵⁰ protease activity. **b** Chemical structures of the substrates and a representative gliflozin. **c**,
- FSEC profiles of various types of GFP-tagged hSGLT2 without MAP17. Arrows
- ⁷⁵² indicate elution positions of the hSGLT2–MAP17 heterodimer and free GFP (GFP). d
- α -MG uptake in hSGLT2 and MAP17 expressing cells in the absence (white) or
- presence (orange) of 500 nM canagliflozin. Each column represents mean \pm SEM (n = 4,
- biological replicates). e Canagliflozin (30 nM) binding assay for the hSGLT2- and
- MAP17-expressing cell membrane fraction. Each column represents mean \pm SEM (n =
- 757 3, technical replicates). **f**, Overall structure of the human SGLT2-MAP17 complex.
- 758 Cryo-EM maps (top) and ribbon models (bottom). The same color scheme was used
- throughout the manuscript, except for Fig. 4.
- 760
- Figure 2. SGLT2-inhibitor-binding site of the outward-facing conformation.
- 762 **a**, Cross-sections of the electrostatic surface potentials at the SGLT2 inhibitor-binding
- site. The potentials were displayed as a color gradient from red (negative) to blue
- ⁷⁶⁴ (positive). **b**, Interactions between canagliflozin and hSGLT2. Canagliflozin and its
- ⁷⁶⁵ interacting residues are shown as sticks. The hydrogen bonds are indicated by the
- black dashed lines. c, Conformation change from outward-opening (color) to
- ⁷⁶⁷ inward-opening (grey) around the Na2 binding site. View from the lateral side of the

768	plasma membrane	(left) and from the c	ytoplasmic side	(right). d ,

769	Concentration-dependent binding evaluation of canagliflozin in the presence and
770	absence of Na ⁺ . Each point represents the mean \pm SEM (n = 3, technical replicates).
771	e-h, Chemical structures of inhibitors and their interactions with hSGLT2:
772	sotagliflozin (e), TA-1887 (f), and dapagliflozin (g) in this study, and of empagliflozin
773	(h) (previously reported; 19).
774	
775	Figure 3. Phlorizin binding site of the inward-open conformation.
776	a, The inward-open conformation of the hSGLT2–MAP17 complex. Cryo-EM maps
777	(left) and ribbon models (right). b , Chemical structures of phlorizin and phloretin. c ,
778	Interactions between phlorizin and hSGLT2. d, Concentration-dependent binding of
779	phlorizin to the wild-type hSGLT2. Each point represents the mean \pm SEM (n = 3,
780	technical replicates). e, Concentration-dependent binding of phlorizin in wild-type and
781	mutant hSGLT2. Each point represents the mean \pm SEM (n = 3, technical replicates). f ,
782	Eadie-Hofstee plot analysis of phlorizin binding in wild-type and mutant hSGLT2. Each
783	point represents the mean \pm SEM (n = 3, technical replicates). g ,
784	Concentration-dependent binding of phloretin in wild-type and mutant hSGLT2. Each
785	point represents the mean \pm SEM (n = 3, technical replicates). h , Uptake assay of α -MG
786	in wild-type and mutant hSGLT2. Each column represents mean \pm SEM (n = 4,
787	biological replicates). i, Inhibitory effect of phlorizin on α -MG uptake by wild-type and
788	mutant hSGLT2. Each point represents the mean \pm SEM (n = 4, biological replicates).
789	

Figure 4. Comparison of the outward-facing and inward-open conformations of

791 hSGLT2.

- 792 **a**, The outward-facing (colored) and inward-open (transparent) structures when their
- ⁷⁹³ bundle domains (TM1, -2, -6, and -7; red) are superimposed. MAP17 (grey) and TM13
- (light orange) overlap well between the conformations, but the hash domain (TM3, -4,
- -8, -9; blue), gate helices (TM5, -10; green), TM0, -11 and -12 (light orange) are in the
- inward-opening conformation. **b**, The outward-facing conformation of the
- ⁷⁹⁷ hSGLT2–MAP17 complex with canagliflozin viewed from the exoplasm (left), side
- 798 (center), and cytoplasm (right). c, Substrate sugar-binding site and external vestibule of
- the outward-facing conformation from the exoplasm. **d**, The inward-open conformation
- of the hSGLT2–MAP17 complex with phlorizin viewed from the exoplasm (left), side
- 801 (center), and cytoplasm (right). e, Substrate sugar-binding site and external vestibule of
- 802 the inward-open conformation from the exoplasm.
- 803
- Figure 5. Proposed SGLT2 transport and inhibition mechanism.

805 The bundle domain is anchored to the membrane with MAP17, and the rest of the

transporter undergoes a conformational change according to an alternating-access

807 mechanism. Upon sodium binding, the transporter opens outward to allow a substrate or

- ⁸⁰⁸ inhibitors to bind. Upon substrate binding, the inner gate opens and sodium and glucose
- are released into the cell. After sodium and glucose are released, the transporter forms
- an inward-open structure and phlorizin and phloretin bind to this structure, inhibiting
- 811 glucose transport.

812

814 Supplementary Figure 1. Biochemical characterization of the hSGLT2–MAP17

- 815 complex.
- (a) Representative size-exclusion chromatography profile of hSGLT2–MAP17. (b)
- 817 SDS-PAGE analysis of the hSGLT2–MAP17 peak fractions via size-exclusion
- chromatography (SEC) purification. (c) SGLT2 inhibitors (25 nM) binding to the crude
- 819 membrane expressing hSGLT2 and MAP17. (d) FSEC profiles for various mutations of
- sfGFP-tagged hSGLT2 with MAP17. The arrows indicate the elution positions of the
- hSGLT2–MAP17 heterodimer and the free GFP (GFP). (e) Canagliflozin binding to the
- 822 crude membrane expressing wild-type hSGLT2 and mutants. Crude membranes were
- incubated with 30 nM canagliflozin and binding was measured by LC-MS/MS. Data are
- shown as mean \pm SEM (n = 3). (f) Time-course of hSGLT2-mediated α -MG uptake.
- α -MG uptake (500 μ M) by hSGLT2-expressing cells and mock cells was examined.
- Each point represents mean \pm SEM (n = 3). (g) Chromatograms of α -MG in the lysates
- s27 of untreated mock cells (No treatment), mock cells incubated with α -MG (Mock), and
- hSGLT2- and MAP17-expressing cells incubated with α -MG (hSGLT2).
- 829
- 830 Supplementary Figure 2. Sequence alignment of SGLT.
- 831 Sequence alignment of hSGLT2 (UniProt: P31639), mSGLT2 (UniProt: Q92317),
- 832 hSGLT1 (UniProt: P13866), Vibrio parahaemolyticus SGLT (UniProt: P96169), and
- 833 Proteus mirabilis HI4320 sialic acid symporter (UniProt: B4EZY7), performed using
- 834 Clustal Omega. Conserved transmembrane helices of hSGLT2 are indicated above the
- sequences. The similarly conserved residues are indicated by red letters. The residues at

836	the conserved	l Na2 and Na	3 sites of SGLT	are highlighted	with nink	circles abox	le or
000		i inaz anu ina.		aic memenicu		\mathcal{L}	UUU

837 white circles below the alignment, respectively.

838

839 Supplementary Figure 3. Data processing of the canagliflozin-bound state.

(a) Representative cryo-EM image of the hSGLT2–MAP17 complex in the presence of

canagliflozin. (b) Data processing workflow of single-particle image-processing and

local-resolution analysis. Particles were separated into three groups via non-aligned 3D

classification, with the mask (without micelles) shown in yellow. (c) Cross-validation

FSC curves for map-to-model fitting. (d) Angular distributions of the final

845 reconstruction.

846

847 Supplementary Figure 4. Data processing of the dapagliflozin-bound state.

848 (a) Representative cryo-EM image of the hSGLT2–MAP17 complex in the presence of

dapagliflozin. (b) Data processing workflow of single-particle image-processing and

850 local-resolution analysis. Particles were separated into four groups by non-aligned 3D

classification, with the mask (without micelles) shown in transparent white. (c)

852 Cross-validation FSC curves for map-to-model fitting. (d) Angular distributions of the

853 final reconstruction.

854

Supplementary Figure 5. Data processing of the TA-1887-bound state.

(a) Representative cryo-EM image of the hSGLT2–MAP17 complex in the presence of

TA-1887. (b) Data processing workflow of single-particle image-processing and

858 local-resolution analysis. Particles were separated into three groups via non-align 3D

859	classification.	with the n	nask coverir	ng the pi	roteins and	micelle	shown in	transparent

- 860 white. (c) Cross-validation FSC curves for map-to-model fitting. (d) Angular
- 861 distributions of the final reconstruction.
- 862
- 863 Supplementary Figure 6. Data processing of the sotagliflozin-bound state.
- (a) Representative cryo-EM image of the hSGLT2–MAP17 complex in the presence of
- sotagliflozin. (b) Data processing workflow of single-particle image-processing and
- 866 local-resolution analysis. Particles were separated into three groups via two rounds of
- non-aligned 3D classification, with the mask covering the proteins and micelles shown
- in transparent white. (c) Cross-validation FSC curves for map-to-model fitting. (d)
- 869 Angular distributions of the final reconstruction.
- 870
- Supplementary Figure 7. The outward-opening model of hSGLT2–MAP17 in the
- 872 density maps.
- 873 The cryo-EM density and atomic model of each segment of the outward-opening model
- hSGLT2–MAP17, inhibitors, and glycosylation sites, contoured to 3.0σ , 4.0σ , and 2.0σ

 σ , respectively. Red spheres: water molecules around the inhibitors.

876

877 Supplementary Figure 8. Data processing of the phlorizin-bound state.

(a) Representative cryo-EM image of the hSGLT2–MAP17 complex in the presence of

- 879 phlorizin. (b) Data processing workflow of single-particle image-processing and
- local-resolution analysis. Particles were separated into three groups by non-aligned 3D
- classification, with the mask covering the proteins (without micelles) shown in yellow.
- (c) Cross-validation FSC curves for map-to-model fitting. (d) Angular distributions of

the final reconstruction.

884

885	Supplementary	Figure 9.	Inward-open	model of hS	SGLT2-MAP1	7 in the	density m	aps.

- 886 The cryo-EM density and atomic models of each segment of the inward-open model of
- hSGLT2–MAP17, phlorizin, and glycosylation sites, contoured to 2.9 σ , 2.7 σ , and 2.7 σ ,

888 respectively.

889

- 890 Supplementary Figure 10. MAP17 and SGLT2 interaction site.
- 891 The density of the lipid molecule (orange) is observed between MAP17 and SGLT2.

892

- 893 Supplementary Figure 11. Sodium ion-binding sites of SGLT2
- (a) The sodium ion-binding Na2 sites of dapagliflozin, canagliflozin, TA-1887, and
- sotagliflozin are shown. (b) Sites in SGLT2 corresponding to Na3 sites where the other
- sodium ion binds in SGLT1. No electron density corresponding to a sodium ion can be
- 897 observed. (c, d) The sodium ion-binding Na2 sites, and the sites corresponding to Na3
- sites of the phlorizin-bound inward-open conformation. The phlorizin binding site is
- near the Na2 and Na3 sites.
- 900

```
901 Supplementary Figure 12. Comparison of the inward conformation of other SGLT
```

902 structures.

- 903 Structural comparison of sites corresponding to the intracellular phlorizin-binding sites
- 904 of SGLT2. From left to right, inward-occluded conformation of hSGLT1,
- ⁹⁰⁵ inward-occluded conformation of vSGLT, and inward-open conformation of vSGLT.
- 906 The structures

907 are viewed from the membrane side.

908

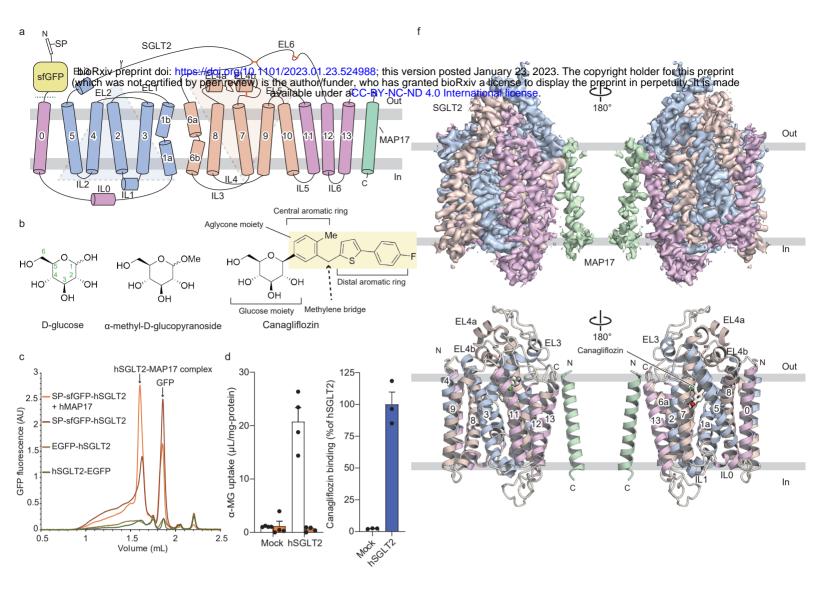
- 909 Supplementary Data Table 1.
- 910 Data collection, processing, model refinement, and validation. Clash scores, rotamer
- 911 outliers, and Ramachandran plots were calculated using the Servalcat pipeline.

912

- 913 Supplementary Data Table 2.
- 914 Kinetic parameters of canagliflozin binding in the membrane fraction of
- ⁹¹⁵ hSGLT2-expressing and MAP17-expressing cells, in the presence or absence of Na⁺.

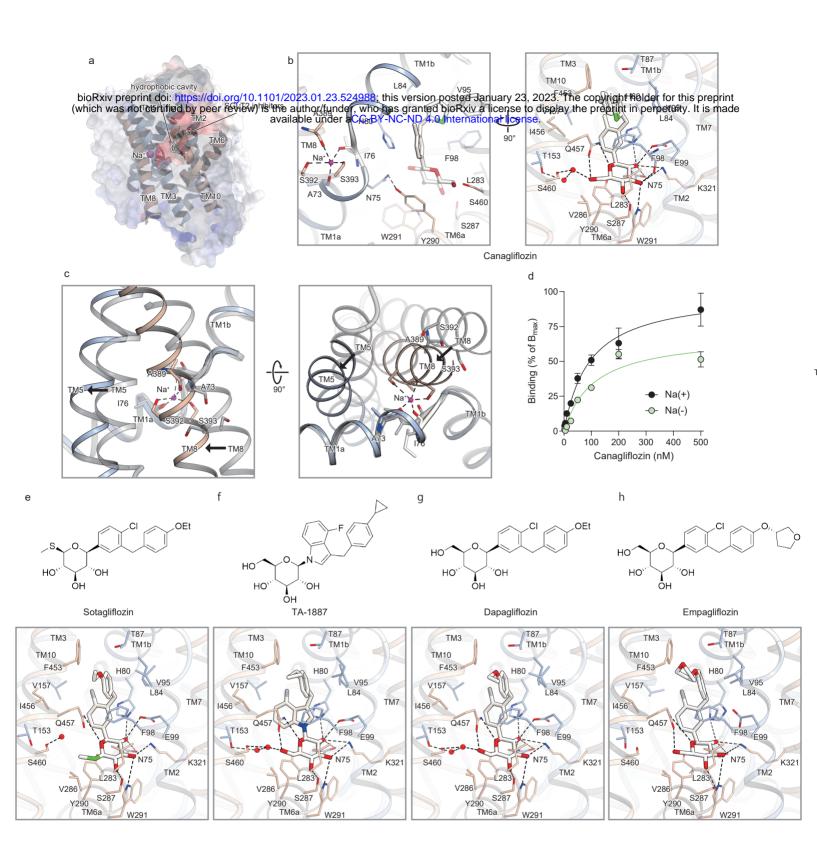
916

- 917 Supplementary Data Table 3.
- 918 Kinetic parameters of phlorizin and phloretin binding in the membrane fraction of
- 919 wild-type cells or cells expressing mutated hSGLT2 and MAP17.

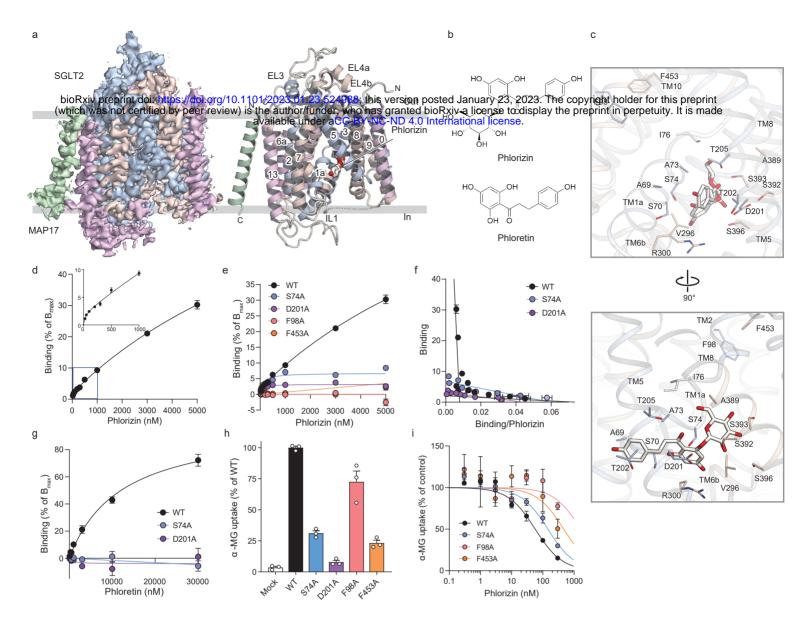

920

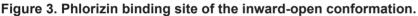
- 921 Supplementary Data Table 4.
- 922 IC50 values of phlorizin in α -MG uptake by wild-type and mutant hSGLT2.

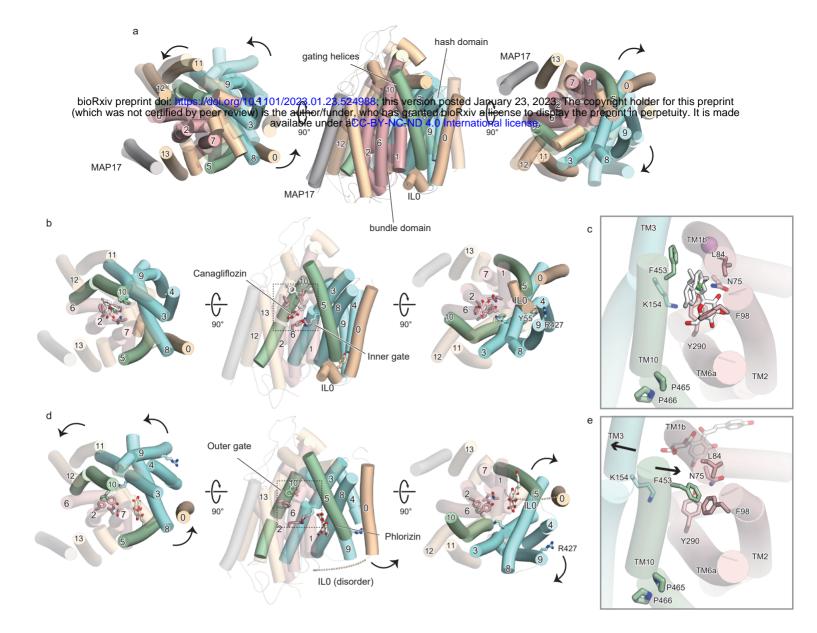
923


924 Supplementary Movie 1.

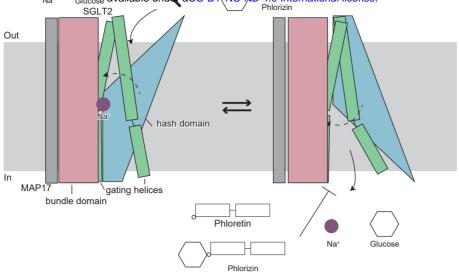
- 925 Movement of SGLT2 during sugar uptake, as predicted from the cryo-EM structures.
- ⁹²⁶ The bundle domain (TM1, -2, -6, -7; red) functions as the axis together with MAP17
- 927 (gray). TM13 (light orange), the hash domains (TM3, -4, -8, -9; blue), and the gate
- helices TM5 and TM10 (green) and TM0, TM11, and -12 (light orange) move
- significantly, transporting the sugar to the intracellular side.


Figure 1. Biochemical and cryo-EM studies of the human SGLT2-MAP17 heterodimer.


a Topological diagram of the hSGLT2–MAP17 heterodimer. Inverted repeats (IRs) are represented as light blue and light brown. The Y-shape indicates an N-glycosylation site. Disulfide bonds are shown as orange sticks. A signal peptide (SP) and super-folder (sf) GFP were fused to the N-terminus of hSGLT2. The dotted line indicates the site of protease activity. b Chemical structures of the substrates and a representative gliflozin. c, FSEC profiles of various types of GFP-tagged hSGLT2 without MAP17. Arrows indicate elution positions of the hSGLT2–MAP17 heterodimer and free GFP (GFP). d α -MG uptake in hSGLT2 and MAP17 expressing cells in the absence (white) or presence (orange) of 500 nM canagliflozin. Each column represents mean ± SEM (n = 4, biological replicates). e Canagliflozin (30 nM) binding assay for the hSGLT2- and MAP17-expressing cell membrane fraction. Each column represents mean ± SEM (n = 3, technical replicates). f, Overall structure of the human SGLT2-MAP17 complex. Cryo-EM maps (top) and ribbon models (bottom). The same color scheme was used throughout the manuscript, except for Fig. 4.


Figure 2. SGLT2-inhibitor-binding site of the outward-facing conformation.

a, Cross-sections of the electrostatic surface potentials at the SGLT2 inhibitor-binding site. The potentials were displayed as a color gradient from red (negative) to blue (positive). b, Interactions between canagliflozin and hSGLT2. Canagliflozin and its interacting residues are shown as sticks. The hydrogen bonds are indicated by the black dashed lines. c, Conformation change from outward-opening (color) to inward-opening (grey) around the Na2 binding site. View from the lateral side of the plasma membrane (left) and from the cytoplasmic side (right). d, Concentration-dependent binding evaluation of canagliflozin in the presence and absence of Na+. Each point represents the mean \pm SEM (n = 3, technical replicates). e–h, Chemical structures of inhibitors and their interactions with hSGLT2: sotagliflozin (e), TA-1887 (f), and dapagliflozin (g) in this study, and of empagliflozin (h) (previously reported; ¹⁹).



a, The inward-open conformation of the hSGLT2–MAP17 complex. Cryo-EM maps (left) and ribbon models (right). b, Chemical structures of phlorizin and phloretin. c, Interactions between phlorizin and hSGLT2. d, Concentration-dependent binding of phlorizin to the wild-type hSGLT2. Each point represents the mean \pm SEM (n = 3, technical replicates). e, Concentration-dependent binding of phlorizin in wild-type and mutant hSGLT2. Each point represents the mean \pm SEM (n = 3, technical replicates). f, Eadie-Hofstee plot analysis of phlorizin binding in wild-type and mutant hSGLT2. Each point represents the mean \pm SEM (n = 3, technical replicates). g, Concentration-dependent binding of phloretin in wild-type and mutant hSGLT2. Each point represents the mean \pm SEM (n = 3, technical replicates). h, Uptake assay of α -MG in wild-type and mutant hSGLT2. Each column represents mean \pm SEM (n = 4, biological replicates). i, Inhibitory effect of phlorizin on α -MG uptake by wild-type and mutant hSGLT2. Each point represents the mean \pm SEM (n = 4, biological replicates).

Figure 4. Comparison of the outward-facing and inward-open conformations of hSGLT2.

a, The outward-facing (colored) and inward-open (transparent) structures when their bundle domains (TM1, -2, -6, and -7; red) are superimposed. MAP17 (grey) and TM13 (light orange) overlap well between the conformations, but the hash domain (TM3, -4, -8, -9; blue), gate helices (TM5, -10; green), TM0, -11 and -12 (light orange) are in the inward-opening conformation. b, The outward-facing conformation of the hSGLT2–MAP17 complex with canagliflozin viewed from the exoplasm (left), side (center), and cytoplasm (right). c, Substrate sugar-binding site and external vestibule of the outward-facing conformation from the exoplasm. d, The inward-open conformation of the hSGLT2–MAP17 complex with viewed from the exoplasm (left), side (center), and cytoplasm. d, The inward-open conformation of the hSGLT2–MAP17 complex with phlorizin viewed from the exoplasm (left), side (center), and cytoplasm (right). e, Substrate sugar-binding site and external vestibule of the inward-open conformation from the exoplasm.

Figure 5. Proposed SGLT2 transport and inhibition mechanism.

The bundle domain is anchored to the membrane with MAP17, and the rest of the transporter undergoes a conformational change according to an alternating-access mechanism. Upon sodium binding, the transporter opens outward to allow a substrate or inhibitors to bind. Upon substrate binding, the inner gate opens and sodium and glucose are released into the cell. After sodium and glucose are released, the transporter forms an inward-open structure and phlorizin and phloretin bind to this structure, inhibiting glucose transport.