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Systematic spatial variation in micro-architecture is observed across the cortex. These micro-
architectural gradients are reflected in neural activity, which can be captured by neurophysiological
time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how
they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively
profile regional neurophysiological dynamics across the human brain by estimating over 6 800 time-
series features from the resting state magnetoencephalography (MEG) signal. We then map regional
time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture,
including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentia-
tion. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power
spectrum density and linear correlation structure of the signal, emphasizing the importance of conven-
tional features of electromagnetic dynamics while identifying additional informative features that have
traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-
localized with multiple micro-architectural features, including genomic gradients, intracortical myelin,
neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this
work opens new avenues for studying the anatomical basis of neural activity.

INTRODUCTION

Signals, in the form of electrical impulses, are perpet-
ually generated, propagated and integrated via multi-
ple types of neurons and neuronal populations [1, 2].
The wiring of the brain guides the propagation of signals
through networks of nested polyfunctional neural cir-
cuits [3, 4]. The resulting fluctuations in membrane po-
tentials and firing rates ultimately manifest as patterned
neurophysiological activity [5–7].

A rich literature demonstrates links between corti-
cal micro-architecture and dynamics. Numerous stud-
ies have investigated the cellular and laminar origins
of cortical rhythms [8–13]. For instance, electro- and
magneto-encephalography (EEG/MEG) signals appear to
be more sensitive to dipoles originating from pyramidal
cells of cortical layers II-III and V [14, 15]. Moreover,
specific time-series features of neuronal electrophysi-
ology depend on neuron type, morphology and local
gene transcription, particularly genes associated with ion
channel regulation [16–18]. However, previous studies
have mostly focused on single or small sets of features-
of-interest, often mapping single micro-architectural fea-
tures to single dynamical features. Starting with the
discovery of 8-12 Hz alpha rhythm in the electroen-
cephalogram [19], conventional time-series analysis in
neuroscience has typically focused on canonical elec-
trophysiological rhythms [20–24]. More recently, there
has also been a growing interest in studying the intrin-
sic timescales that display a hierarchy of temporal pro-
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cessing from fast fluctuating activity in unimodal cortex
to slower encoding of contextual information in trans-
modal cortex [25–34]. How ongoing neurophysiologi-
cal dynamics arise from specific features of neural cir-
cuit micro-architecture remains a key question in neuro-
science [1, 2, 12].

Recent analytic advances have opened new opportu-
nities to perform neurophysiological time-series pheno-
typing by computing comprehensive feature sets that go
beyond power spectral measures, including measures of
signal amplitude distribution, entropy, fractal scaling and
autocorrelation [35–40]. Concomitant advances in imag-
ing technologies and data sharing offer new ways to
measure brain structure with unprecedented detail and
depth [41–43], including gene expression [44], myeli-
nation [45, 46], neurotransmitter receptors [47–54], cy-
toarchitecture [55–57], laminar differentiation [56, 58],
cell type composition [44, 59, 60], metabolism [61, 62]
and evolutionary expansion [63, 64].

Here we comprehensively characterize the dynamical
signature of neurophysiological activity and relate it to
the underlying micro-architecture by integrating multi-
ple, multimodal maps of human cortex. We first derive
cortical spontaneous neurophysiological activity using
source-resolved magnetoencephalography (MEG) from
the Human Connectome Project (HCP; [65]). We then
apply highly comparative time-series analysis (hctsa;
[35, 36]) to estimate a comprehensive set of time-series
features for each brain region (Fig. 1). At the same time,
we construct a micro-architectural atlas of the cortex
that includes maps of microstructure, metabolism, neu-
rotransmitter receptors and transporters, laminar differ-
entiation and cell types (Fig. 2). Finally, we map these
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Figure 1. Feature-based representation of neurophysiological time-series | Highly comparative time-series analysis (hctsa;
[35]) toolbox was used to perform time-series feature extraction on regional MEG time-series. This time-series phenotyping
procedure generated 6 880 time-series features for each region, including measures of autocorrelation, entropy, power spectrum
and amplitude distribution.

extensive micro-architectural and dynamical atlases to
one another using multivariate statistical analysis.

RESULTS

Regional neurophysiological time-series were esti-
mated by applying linearly constrained minimum vari-
ance (LCMV) beamforming to resting state MEG data
from the Human Connectome Project (HCP; [65]) us-
ing Brainstorm software [66](see Methods for details).
Highly comparative time-series analysis (hctsa; [35,
36]) was then applied to regional time-series to esti-
mate 6 880 time-series features for 100 cortical regions
from the Schaefer-100 atlas [67]. The list of time-series
features includes, but is not limited to, statistics de-
rived from the autocorrelation function, power spectrum,
amplitude distribution, and entropy estimates (Fig. 1).
This time-series phenotyping procedure yields a compre-
hensive, data-driven “fingerprint” of regional dynamical
properties of each brain region.

To estimate a comprehensive set of multimodal micro-
architectural features, we used the recently-developed
neuromaps toolbox [43] as well as the BigBrainWarp
toolbox [57], the Allen Human Brain Atlas (AHBA [44])
and the abagen toolbox [68] to transform and com-
pile a set of 45 features, including measures of mi-
crostructure, metabolism, cortical expansion, receptors
and transporters, layer thickness and cell type-specific
gene expression (Fig. 2).

In subsequent analyses, we first assess the topographic
organization of neurophysiological dynamics by quanti-
fying the dominant patterns of variations in resting-state
MEG time-series properties. We then characterize the

signature of neurophysiological dynamics with respect to
micro-architectural attributes across the cortex. Finally,
we perform sensitivity analyses to investigate potential
effects of confounding factors on the findings, such as
signal-to-noise ratio and parcellation resolution (see Sen-
sitivity analysis for details).

Topographic distribution of neurophysiological dynamics

The hctsa time-series phenotyping procedure gener-
ated 6 880 time-series features per brain region. Since
the identified time-series features potentially capture re-
lated dynamical behaviour and contain groups of cor-
related properties, we first sought to identify dominant
macroscopic patterns or gradients of neurophysiological
dynamics [38]. Applying principal component analysis
(PCA) to the group-average region × feature matrix, we
find evidence of a single dominant component that cap-
tures 48.7% of the variance in regional time-series fea-
tures (Fig. 3a). The dominant component or “gradient”
of neurophysiological dynamics (PC1) mainly spans the
posterior parietal cortex and sensory-motor cortices on
one end and the anterior temporal, orbitofrontal and
ventromedial cortices on the other end (Fig. 3a). Fo-
cusing on intrinsic functional networks, we find that the
topographic organization of the dominant neurophysio-
logical dynamics varies along a sensory-fugal axis from
dorsal attention, somatomotor and visual networks to
limbic and default mode networks [69] (Fig. 3a).

We next investigated the top-loading time-series fea-
tures on the first component, using the univariate cor-
relations between each of the original feature maps
and the PC1 map (i.e., PCA loadings). All correlations
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Figure 2. Multimodal brain maps | neuromaps toolbox [43], BigBrainWarp toolbox [57], the Allen Human Brain Atlas (AHBA
[44]) and the abagen toolbox [68] were used to compile a set of 45 micro-architectural brain maps, including measures of mi-
crostructure, metabolism, cortical expansion, receptors and transporters, layer thickness and cell type-specific gene expression (as-
tro = astrocytes; endo = endothelial cells; micro = microglia; neuron-ex = excitatory neurons; neuron-in = inhibitory neurons;
oligo = oligodendrocytes; and opc = oligodendrocyte precursors) (see Methods for more details). Note that the microstructure
maps include principal gradients of gene expression and neurotransmitter profiles, for which we have also separately included
feature sub-sets (specific receptor maps and cell type specific gene expression). Brainstorm software was used to pre-process the
resting-state MEG data and obtain power maps at six canonical electrophysiological bands (i.e., delta (δ: 2-4 Hz), theta (θ: 5-7
Hz), alpha (α: 8-12 Hz), beta (β: 15-29 Hz), low gamma (lo-γ: 30-59 Hz), and high gamma (hi-γ: 60-90Hz)) [66] (see Methods
for more details). FOOOF algorithm was used to parametrize power spectral density and estimate the intrinsic timescale [21, 30]
(see Methods for more details). Note that log-10 transformed intrinsic timescale map is shown here. Principal component analysis
was used to estimate the principal component of the neurophysiological time-series features obtained from the hctsa toolbox (see
Fig. 3). All obtained brains maps are depicted across the cortex at 95% confidence interval (Schaefer-100 atlas [67]).

were statistically assessed using spatial autocorrelation-
preserving null models (“spin tests” [70, 71]; see Meth-
ods for details). Fig. 3b shows that numerous features are
positively and negatively correlated with PC1; the full list
of features, their correlation coefficients and p-values are
available in the online Supplementary File S1. Inspec-
tion of the top loading features reveals that the major-

ity are statistics derived from the structure of the power
spectrum or closely related measures. Examples include
power in different frequency bands, parameters of vari-
ous model fits to the power spectrum, and related mea-
sures, such as the shape of the autocorrelation function
and measures of fluctuation analysis. Fig. 3b shows how
the power spectrum varies across the cortex, with each
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Figure 3. Topographic distribution of neurophysiological dynamics | (a) Principal component analysis (PCA) was used to
identify linear combinations of MEG time-series features with maximum variance across the cortex. The fist principal component
(PC1) accounts for 48.7% of the total variance in neurophysiological time-series features. The spatial organization of the dominant
time-series features captured by PC1 is depicted across the cortex at 95% confidence interval. The distribution of PC1 brain
score is also depicted for intrinsic functional networks [69]. (b) To examine the feature composition of the time-series features
captured by PC1, feature loadings were estimated as the correlation coefficients between each hctsa time-series feature and PC1
brain score. PC1 loadings are depicted for the time-series features (ordered by their individual loadings). Grey background
indicates non-significant features based on 10 000 spatial autocorrelation-preserving permutation tests (i.e., “spin tests” [70, 71];
FDR-corrected). The top loading features were mainly related to the power spectrum of regional time-series and its structure.
Regional power spectral densities are depicted, with each line representing a brain region. Regions are coloured by their position
in the putative unimodal–transmodal hierarchy [72]. (c) To contextualize the principal component of variation in MEG time-
series features, PC1 brain score was correlated with MEG power maps at 6 canonical frequency bands and intrinsic timescale.
The observed correlations are shown by filled circles and are compared to their corresponding null distributions of correlations
obtained from 10 000 spatial autocorrelation-preserving permutation tests (“spin nulls” depicted as grey box plots). PC1 score is
significantly correlated with intrinsic timescale and hi-gamma power (FDR-corrected). rs denotes the Spearman’s rank correlation
coefficient. Intrinsic networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp =
frontoparietal; dmn = default mode.

line representing a brain region. Regions are coloured
by their position in the putative unimodal–transmodal
hierarchy [72]; the variation visually suggests that uni-
modal regions display more prominent alpha (8-12 Hz)
and beta (15-29 Hz) power peaks. Collectively, these
results demonstrate that the traditional focus of elec-
trophysiological time-series analysis on statistics of the
power spectrum is consistent with the dominant varia-
tions in MEG dynamics captured by the diverse library of
hctsa time-series features.

Given the hierarchical organization of PC1 and its
close relationship with power spectral features, we di-
rectly tested the link between PC1 and conventional

band-limited power spectral measures [21–23], as well
as intrinsic timescale [30]. Fig. 3c shows the correla-
tions between PC1 and delta (2-4 Hz), theta (5-7 Hz),
alpha (8-12 Hz), beta (15-29 Hz), lo-gamma (30-59
Hz) and hi-gamma (60-90Hz) power maps, and intrin-
sic neural timescale [28, 30–34, 73]. We find that PC1
has high spatial correlations with most of those maps
(|r| > 0.36), and significant correlations with intrinsic
timescale (rs = 0.84, pspin = 0.03; FDR-corrected) and
hi-gamma (rs = 0.87, pspin = 0.005; FDR-corrected).
The results were consistent when we used band-limited
power maps that were adjusted for the aperiodic com-
ponent of the power spectrum as opposed to the total
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power [21] (Fig. S1). The fact that PC1 correlates with
intrinsic timescale is consistent with the notion that both
capture broad variations in the power spectrum. Note
that we focused on PC1 because the other components
(PC2 and above) accounted for 10% or less of the vari-
ance in time-series features and they were not signifi-
cantly associated with hctsa time-series features.

Neurophysiological signatures of micro-architecture

How do these regional neurophysiological time-series
features map onto multimodal micro-architectural fea-
tures? To address this question, we implemented a mul-
tivariate partial least squares analysis (PLS; [74, 75])
that integrates multiple multimodal brain maps into the
analysis and seeks to identify linear combinations of
time-series features and linear combinations of micro-
architectural features that optimally covary with one an-
other. Fig. 4a shows that the analysis identifies multi-
ple such combinations, termed latent variables. Statisti-
cal significance of each latent variable was assessed us-
ing spatial autocorrelation-preserving permutation tests
[71, 76]. The first latent variable was statistically signif-
icant, capturing the greatest covariance between time-
series and micro-architectural features (covariance ex-
plained = 75.4%, pspin = 0.011).

Fig. 4b shows the spatial topography of time-series fea-
tures and micro-architectural scores for the first latent
variable. These are the weighted sums of the original in-
put features according to the weighting identified by the
latent variable. The correlation between the score maps
is maximized by the analysis (rs = 0.73, pspin = 0.0059).
We therefore sought to estimate whether the same map-
ping between time-series and micro-architectural fea-
tures can be observed out-of-sample. We adopted
a distance-dependent cross-validation procedure where
“seed” regions were randomly chosen and the 75% most
physically proximal regions were selected as the training
set, while the remaining 25% most physically distal re-
gions were selected as the test set [76] (see Methods for
more details). For each train-test split, we fit a PLS model
to the train set and project the test set onto the weights
(i.e., singular vectors) derived from the train set. The
resulting test set scores are then correlated to estimate
an out-of-sample correlation coefficient. Fig. 4b shows
that micro-architecture and time-series feature scores are
correlated in training set (mean rs = 0.75) and test set
(mean rs = 0.5), demonstrating consistent findings in
out-of-sample analysis.

We next examined the corresponding time-series and
micro-architecture feature loadings and identified the
most contributing features to the spatial patterns cap-
tured by the first latent variable (Fig. 4c,d). The top
loading time-series features were mainly related to mea-
sures of self-correlation or predictability of the MEG sig-
nal. The self-correlation measures mostly reflect the
linear correlation structure of neurophysiological time-
series, particularly long-lag autocorrelations (at lags >

15 time steps, or > 30 ms). A wide range of other
highly weighted time-series features captured other as-
pects of signal predictability, including measures of the
shape of the autocorrelation function (e.g., the time lag
at which the autocorrelation function crosses zero), how
the autocorrelation structure changes after applying sim-
ple local forecasting models (e.g., residuals from fit-
ting linear models to rolling 5-time-step, or 10 ms, win-
dows), scaling properties assessed using fluctuation anal-
ysis (e.g., scaling of signal variance across timescales),
and measures derived from a wavelet decomposition
(e.g., wavelet coefficients at different timescales). The
full list of time-series feature loadings for the first latent
variable is available in the online Supplementary File S2.

To illustrate the spatial distribution of highly contribut-
ing time-series features, Fig. 4c shows three top-loading
features that mirror the spatial variation of the first PLS
latent variable. For example, Fig. 4c,left depicts the dis-
tribution of the group-average first zero-crossing point of
the autocorrelation function. The autocorrelation func-
tion of the unimodal cortex (marked with a pink cir-
cle) crosses zero autocorrelation at a lower lag than the
transmodal cortex (marked with a purple circle), sug-
gesting faster autocorrelation decay and longer correla-
tion length in transmodal cortex than in unimodal cor-
tex. Another example is the linear autocorrelation of the
MEG signal at longer time lags. Fig. 4c,left shows auto-
correlation at a lag of 48 ms (24 time steps), demonstrat-
ing lower autocorrelation in unimodal cortex and higher
autocorrelation in transmodal cortex. Finally, we exam-
ined the scaling exponent, α, estimated using detrended
fluctuation analysis as the slope of a linear fit to the
log-log plot of the fluctuations of the detrended signal
across timescales [77, 78]. Fig. 4c,right depicts this scal-
ing exponent across the cortex, which exhibits a similar
spatial pattern as the previous two examples, indicating
lower self-correlation in unimodal cortex (pink circle)
compared to transmodal cortex (purple circle). Other
variations of fluctuation analysis also featured heavily in
the list of top-loading features, including goodness of fit
of the linear fit, fitting of multiple scaling regimes, and
different types of detrending and mathematical formula-
tion of fluctuation size.

Fig. 4d shows the corresponding micro-architectural
loadings. The most contributing micro-architectural fea-
tures to the spatial patterns captured by the first latent
variable are the principal component of gene expres-
sion (gene expression PC1; a potential proxy for cell
type distribution [44, 76, 79]), T1w/T2w ratio (a proxy
for intracortical myelin), principal component of neuro-
transmitter receptors and transporters (neurotransmitter
PC1), and oxygen and glucose metabolism (strong pos-
itive loadings). We also find high contributions (strong
negative loadings) from specific neurotransmitter recep-
tor and transporters, in particular metabotropic sero-
tonergic and dopaminergic receptors, as well as from
cell type-specific gene expression of oligodendrocyte pre-
cursors (opc), which are involved in myelinogenesis
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Figure 4. Neurophysiological signature of micro-architecture | (a) Partial least square (PLS) analysis was used to assess the
multivariate relationship between micro-architectural and time-series features. PLS identified a single significant latent variable
(pspin = 0.011, covariance explained = 75.4%). (b) Spatial patterns of micro-architecture and time-series features scores are
depicted for the first latent variable. The two brain score maps are significantly correlated. To assess the out-of-sample correlation
of brain scores, a distance-dependent cross-validation analysis was used (see Methods). Micro-architecture and time-series feature
scores are consistently correlated in both training set (75% of regions; mean rs = 0.75) and test set (25% of regions; mean
rs = 0.5). rs denotes the Spearman’s rank correlation coefficient; linear regression line is added to the scatter plot for visualization
purposes only. (c) Top loading time-series features were mainly related to measures of self-correlation or predictability of the signal.
Three examples of top loading features are depicted across the cortex. Left: first zero-crossing time point of the autocorrelation
function, tc, and linear autocorrelation at a lag of 48 ms, ac48; right: the scaling exponent of detrended fluctuation analysis, α.
Short segments of raw time-series, autocorrelation functions, and fluctuation analysis plots (log-log plot of detrended fluctuations
at multiple timescales) are also shown for a randomly selected participant at three cortical regions (circles on the brain surface:
pink ≈ 5th percentile, green ≈ 50th percentile, purple ≈ 95th percentile). Time points corresponding to zero-crossing point (tc)
and 48 ms are indicated with grey dashed lines on the autocorrelation function plots. (d) Micro-architectural feature loadings are
shown for each set of brain maps.
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[80–84]. Consistent findings were obtained when we
used univariate analysis to relate regional time-series
features and the top loading micro-architectural maps,
in particular principal component of gene expression
and T1w/T2w ratio, which have previously been exten-
sively studied as archetypical micro-architectural gradi-
ents [30, 41, 79, 85, 86] (Fig. S2). Altogether, this anal-
ysis provides a comprehensive chart or “lookup table” of
how micro-architectural and time-series feature maps are
associated with one another. These results demonstrate
that cortical variation in multiple micro-architectural at-
tributes manifests as a gradient of time-series properties
of neurophysiological activity, particularly the properties
that reflect the long-range self-correlation structure of
the signal.

Sensitivity analysis

To assess the extent to which the results are affected
by potential confounding factors and methodological
choices, we repeated the analyses using alternative ap-
proaches. First, to ensure that the findings are not in-
fluenced by MEG signal-to-noise ratio (SNR), we calcu-
lated SNR at each source location using a noise model
that estimates how sensitive the source-level MEG sig-
nal is to source location and orientation [87, 88]. We
performed two follow-up analyses using the SNR map
(Fig. S3): (1) SNR was first compared with the full
set of MEG time-series features using mass univariate
Pearson correlations. Time-series features that were sig-
nificantly correlated with SNR were removed from the
feature set without correcting for multiple comparisons
(pspin < 0.05; 10 000 spatial autocorrelation-preserving
permutation tests [70, 71]). Note that this is a more
conservative feature selection procedure compared to
conventional multiple comparisons correction, because
fewer features would be removed if correction for mul-
tiple comparisons was applied. PCA was applied to the
remaining set of features (Fig. S3b). The principal com-
ponent of the retained 3 819 features (i.e., PC1 - feature
subset) explained 31.6% of the variance and was signif-
icantly correlated with the original PC1 of the full set
of features (rs = 0.93, pspin = 0.0001), reflecting simi-
lar spatial pattern as the original analysis. (2) SNR was
regressed out from the full set of time-series features us-
ing linear regression analysis. PCA was then applied to
the resulting feature residuals (Fig. S3c). The principal
component of SNR-regressed features (i.e., PC1 - SNR re-
gressed) explained 41.4% of the variance and reflected
the same spatial pattern as the original analysis (rs =
0.70, pspin = 0.0004). Moreover, we assessed the effects
of environmental and instrumental noise on the findings,
where we applied principal component analysis to the
hctsa features obtained from pre-processed empty-room
MEG recordings [23] (see Methods for more details).
PCA weights of the time-series features of the empty-
room MEG recordings were aligned with the PCA weights
of the time-series features of the resting-state MEG

recordings using the Procrustes method ([89]; https:
//github.com/satra/mapalign). The principal compo-
nent of neurophysiological dynamics was then compared
with the principal component of time-series features ob-
tained from empty-room recordings, where no signifi-
cant associations were identified (Fig. S4; rs = −0.17,
pspin = 0.69). These analyses demonstrate that the time-
series features captured by the dominant axis of vari-
ation in neurophysiological dynamics are independent
from measures of MEG signal-to-noise ratio.

Finally, to ensure that the findings are independent
from the parcellation resolution, we repeated the anal-
yses using a higher resolution parcellation (Schaefer-
400 atlas with 400 cortical regions [67]). The results
were consistent with the original analysis (Fig. S5 and
Fig. S6). The first principal component (PC1) accounted
for 48.6% of the variance and displayed a similar spa-
tial organization as the one originally obtained for the
Schaefer-100 atlas (Fig. S5a). As before, the top load-
ing time-series features were mainly related to the char-
acteristics of the power spectral density (Fig. S5b,c).
The full list of features, their loadings and p-values are
available in the online Supplementary File S3. More-
over, PLS analysis identified a single significant latent
variable (pspin = 0.0083) that accounted for 75.7% of
the covariance (Fig. S6a). Micro-architecture and time-
series feature scores displayed similar spatial patterns to
the ones obtained for the Schaefer-100 atlas (Fig. S6b).
The corresponding feature loadings were also consistent
with the original findings (micro-architectural loadings
in Fig. S6c and time-series feature loadings in the online
Supplementary File S4.)

DISCUSSION

In the present study, we use time-series phenotyping
analysis to comprehensively chart the dynamic finger-
print of neurophysiological activity from the resting-state
MEG signal. We then map the resulting dynamical at-
las to a multimodal micro-architectural atlas to iden-
tify the neurophysiological signatures of cortical micro-
architecture. We demonstrate that cortical variation in
neurophysiological time-series properties mainly reflects
power spectral density and is closely associated with in-
trinsic timescale and self-correlation structure of the sig-
nal. Moreover, the spatial organization of neurophysio-
logical dynamics follows gradients of micro-architecture,
such as neurotransmitter receptor and transporters, gene
expression and T1w/T2w ratios, and reflects cortical
metabolic demands.

Numerous studies have previously investigated neu-
ral oscillations and their relationship with neural com-
munication patterns in the brain [8, 10, 11, 90]. Pre-
vious reports also suggest that neural oscillations in-
fluence behaviour and cognition [90–94] and are in-
volved in multiple neurological diseases and disorders
[93, 95]. Neural oscillations manifest as the variations
of power amplitude of neurophysiological signal in the
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frequency domain [10, 21, 96, 97]. Power spectral
characteristics of the neurophysiological signal, such as
mean power amplitude in canonical frequency bands,
have previously been used to investigate the underlying
mechanisms of large-scale brain activity and to better
understand the individual differences in brain function
[22, 23, 31, 94, 98, 99]. Other time-series properties
that are related to the power spectral density have also
been used to study neural dynamics, including measures
of intrinsic timescale and self-affinity or self-similarity of
the signal (e.g., autocorrelation and fluctuation analysis)
[25, 30, 77, 78, 100–102].

Applying a data-driven time-series feature extrac-
tion analysis, we find that the topographic organiza-
tion of neurophysiological time-series signature follows
a sensory-fugal axis, separating somatomotor, occipi-
tal and parietal cortices from anterior temporal, or-
bitofrontal and ventromedial cortices. This dynamic fin-
gerprint of neurophysiological activity is mainly charac-
terized by linear correlation structure of MEG signal cap-
tured by hctsa time-series features. The linear corre-
lation structure manifests in both power spectral proper-
ties and the autocorrelation function. This dominant spa-
tial variation of time-series features also resembles the
spatial distribution of intrinsic timescale, another mea-
sure related to the characteristics of power spectral den-
sity [28, 30, 33]. Altogether, while the findings highlight
under-represented time-series features, they emphasize
the importance of conventional methods in characteriz-
ing neurophysiological activity and the key role of linear
correlation structure in MEG dynamics.

Earlier reports found that regional neural dynamics,
including measures of power spectrum and intrinsic
timescale, reflect the underlying circuit properties and
cortical micro-architecture [25, 28, 30]. The relationship
between neural dynamics and cortical micro-architecture
is often examined using a single, or a few microstruc-
tural features. Recent advances in data collection and
integration and the increasing number of data sharing
initiatives have provided a unique opportunity to com-
prehensively study cortical circuit properties and micro-
architecture using a wide range of multimodal datasets
[43, 44, 47, 56, 57, 65, 103]. Here we use such datasets
and compile multiple micro-architectural maps, includ-
ing measures of microstructure, metabolism, cortical ex-
pansion, receptors and transporters, layer thickness and
cell type-specific gene expressions, to chart the multi-
variate associations between neurophysiological dynam-
ics and cortical micro-architecture.

Our findings build on previous reports by showing that
neurophysiological dynamics follow the underlying cy-
toarchitectonic and microstructural gradients. In particu-
lar, our findings confirm that MEG intrinsic dynamics are
associated with the heterogeneous distribution of gene
expression and myelination [30, 85] and neurotransmit-
ter receptors and transporters [47]. In addition, we link
the dynamic signature of ongoing neurophysiological ac-
tivity with multiple metabolic attributes [62, 104]; for

instance, we find that regions with greater oxygen and
glucose metabolism tend to display lower temporal au-
tocorrelation and therefore more variable moment-to-
moment intrinsic activity. This is consistent with previ-
ously reported high metabolic rates of oxygen and glu-
cose consumption in the sensory cortex [61]. We also
find a prominent association with cell type-specific gene
expression of oligodendrocyte precursors (opc), poten-
tially reflecting the contribution of these cells to myelin
generation by giving rise to myelinating oligodendro-
cytes during development [80–84] and to myelin regu-
lation and metabolic support of myelinated axons in the
adult neural circuits [83, 84, 105]. Finally, we find that
the dominant dynamic signature of neural activity co-
varies with the granular cortical layer IV, consistent with
the idea that layer IV receives prominent subcortical (in-
cluding thalamic) feedforward projections [106, 107].
Collectively, our findings build on the emerging liter-
ature on how heterogeneous micro-architectural prop-
erties along with macroscale network embedding (e.g.,
cortico-cortical connectivity and subcortical projections)
jointly shape regional neural dynamics [38–40, 108–
111].

The present findings must be interpreted with respect
to several methodological considerations. First, we used
MEG data from a subset of individuals with no famil-
ial relationships from the HCP dataset. Although all
the presented analyses are performed using the group-
level data, future work with larger sample sizes can pro-
vide more generalizable outcomes [112, 113]. Larger
sample sizes will also help go beyond associative anal-
ysis and allow for predictive analysis of neural dynam-
ics and micro-architecture in unseen datasets. Second,
MEG is susceptible to low SNR and has variable sen-
sitivity to neural activity from different regions (i.e.,
sources). Thus, electrophysiological recordings with
higher spatial resolution, such as intracranial electroen-
cephalography (iEEG and ECoG), may provide more
precise measures of neural dynamics that can be ex-
amined with respect to cortical micro-architecture. Fi-
nally, despite the fact that we attempt to use a near-
comprehensive list of time-series properties and multi-
ple micro-architectural features, neither the time-series
features nor the micro-architectural maps are exhaustive
sets of measures. Moreover, micro-architectural features
are group-average maps that are compiled from different
datasets. Multimodal datasets from the same individuals
are required to perform individual-level comparisons be-
tween the dynamical and micro-architectural atlases.

Altogether, using a data-driven approach, the present
findings show that neurophysiological signatures of
cortical micro-architecture are hierarchically organized
across the cortex, reflecting the underlying circuit prop-
erties. These findings highlight the importance of con-
ventional measures for studying the characteristics of
neurophysiological activity, while also identifying less-
commonly used time-series features that covary with cor-
tical micro-architecture. Collectively, this work opens
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new avenues for studying the anatomical basis of neu-
rophysiological activity.

METHODS

Dataset: Human Connectome Project (HCP)

Resting state magnetoencephalography (MEG) data
from a sample of healthy young adults (n = 33; age
range 22–35 years) with no familial relationships were
obtained from Human Connectome Project (HCP; S900
release [65]). The data includes resting state scans of ap-
proximately 6 minutes long (sampling rate = 2034.5 Hz;
anti-aliasing low-pass filter at 400 Hz) and empty-room
recordings for all participants. 3T structural magnetic
resonance imaging (MRI) data and MEG anatomical data
(i.e., cortical sheet with 8 004 vertices and transforma-
tion matrix required for co-registration of MEG sensors
and MRI scans) of all participants were also obtained for
MEG pre-processing.

Resting state magnetoencephalography (MEG)

Resting state MEG data was analyzed us-
ing Brainstorm software, which is documented
and freely available for download online un-
der the GNU general public license ([66];
http://neuroimage.usc.edu/brainstorm). For each
individual, MEG sensor recordings were registered to
their structural MRI scan using the anatomical trans-
formation matrix provided by HCP for co-registration,
following the procedure described in Brainstorm online
tutorials for the HCP dataset (https://neuroimage.usc.
edu/brainstorm/Tutorials/HCP-MEG). The data were
downsampled to 1/4 of the original sampling rate (i.e
509 Hz) to facilitate processing. The pre-processing was
performed by applying notch filters at 60, 120, 180,
240, and 300 Hz, and was followed by a high-pass filter
at 0.3 Hz to remove slow-wave and DC-offset artifacts.
Bad channels were marked based on the information
obtained through the data management platform of HCP
(ConnectomeDB; https://db.humanconnectome.org/).
The artifacts (including heartbeats, eye blinks, saccades,
muscle movements, and noisy segments) were then
removed from the recordings using automatic proce-
dures as proposed by Brainstorm. More specifically,
electrocardiogram (ECG) and electrooculogram (EOG)
recordings were used to detect heartbeats and blinks,
respectively. We then used Signal-Space Projections
(SSP) to automatically remove the detected artifacts. We
also used SSP to remove saccades and muscle activity as
low-frequency (1-7 Hz) and high-frequency (40-240 Hz)
components, respectively.

The pre-processed sensor-level data was then used to
obtain a source estimation on HCP’s fsLR4k cortical sur-
face for each participant (i.e., 8 004 vertices). Head mod-
els were computed using overlapping spheres and the
data and noise covariance matrices were estimated from

the resting state MEG and noise recordings. Linearly con-
strained minimum variance (LCMV) beamforming from
Brainstorm was then used to obtain the source activity
for each participant. We performed data covariance reg-
ularization to avoid the instability of data covariance ma-
trix inversion due to the smallest eigenvalues of its eigen-
spectrum. Data covariance regularization was performed
using the “median eigenvalue” method from Brainstorm
[66], such that the eigenvalues of the eigenspectrum of
data covariance matrix that were smaller than the me-
dian eigenvalue were replaced with the median eigen-
value itself. The estimated source variance was also nor-
malized by the noise covariance matrix to reduce the ef-
fect of variable source depth. Source orientations were
constrained to be normal to the cortical surface at each of
the 8 004 vertex locations on the fsLR4k surface. Source-
level time-series were parcellated into 100 regions us-
ing the Schaefer-100 atlas [67] for each participant, such
that a given parcel’s time series was estimated as the first
principal component of its constituting sources’ time se-
ries. Finally, we estimated source-level signal-to-noise
ratio (SNR) as follows [87, 88]:

SNR = 10log10

(
a2

N

N∑
k=1

b2k
s2k

)
(1)

where a is the source amplitude (i.e., typical strength
of a dipole, which is 10 nAm [114]), N is the number
of sensors, bk is the signal at sensor k estimated by the
forward model for a source with unit amplitude, and s2k
is the noise variance at sensor k. Group-average source-
level SNR was parcellated using the Schaefer-100 atlas.

To estimate a measure of environmental and instru-
mental noise, empty-room MEG recordings of all indi-
viduals were obtained from HCP and were pre-processed
using an identical procedure to the resting-state record-
ings. The pre-processed source-level time-series obtained
from empty-room recordings were parcellated and sub-
jected to time-series feature extraction analysis to esti-
mate time-series features from noise data for each partic-
ipant (see “Time-series feature extraction using hctsa”).

Power spectral analysis

Welch’s method was used to estimate power spectrum
density (PSD) from the source-level time-series for each
individual, using overlapping windows of length 4 sec-
onds with 50% overlap. Average power at each fre-
quency band was then calculated for each vertex (i.e.,
source). Source-level power data were parcellated into
100 regions using the Schaefer-100 atlas [67] at six
canonical electrophysiological bands (i.e., delta (δ: 2-4
Hz), theta (θ: 5-7 Hz), alpha (α: 8-12 Hz), beta (β: 15-
29 Hz), low gamma (lo-γ: 30-59 Hz), and high gamma
(hi-γ: 60-90Hz)). We contributed the group-average
vertex-level power maps on the fsLR4k surface to the
publicly available neuromaps toolbox [43].
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Intrinsic timescale

The regional intrinsic timescale was estimated using
spectral parameterization with the FOOOF (fitting oscilla-
tions & one over f) toolbox [21]. Specifically, the source-
level power spectral density were used to extract the neu-
ral timescale at each vertex and for each individual using
the procedure described by Gao et al. [30]. The FOOOF
algorithm decomposes the power spectra into periodic
(oscillatory) and aperiodic (1/f -like) components by fit-
ting the power spectral density in the log-log space [21]
(Fig. S1). The algorithm identifies the oscillatory peaks
(periodic component), the “knee parameter” k that con-
trols for the bend in the aperiodic component and the
aperiodic “exponent” χ [21, 30]. The knee parameter k is
then used to calculate the “knee frequency” as fk = k1/χ,
which is the frequency where a knee or a bend occurs in
the power spectrum density [30]. Finally, the intrinsic
timescale τ is estimated as [30]:

τ =
1

2πfk
(2)

We used the FOOOF algorithm to fit the power spectral
density with “knee” aperiodic mode over the frequency
range of 1-60 Hz. Note that since the first notch filter
was applied at 60 Hz during the pre-processing analy-
sis, we did not fit the model above 60 Hz. Following
the guidelines from the FOOOF algorithm and Donoghue
et al. [21], the rest of the parameters were defined as:
peak width limits (peak_width_limits) = 1-6 Hz; max-
imum number of peaks (max_n_peaks) = 6; minimum
peak height (min_peak_height) = 0.1; and peak thresh-
old (peak_threshold) = 2. Intrinsic timescale τ was esti-
mated at each vertex for each individual and was parcel-
lated using the Schaefer-100 atlas [67]. We contributed
the group-average vertex-level intrinsic timescale map
on the fsLR4k surface to the publicly available neuromaps
toolbox [43].

In addition to the aperiodic component used to calcu-
late the intrinsic timescale, the FOOOF spectral parame-
terization algorithm also provides the extracted peak pa-
rameters of the periodic component at each vertex for
each participant. We used the oscillatory peak parame-
ters to estimate band-limited power maps that were ad-
justed for the aperiodic component as opposed to the to-
tal power maps estimated above [21] (see Power spectral
analysis). We defined the power band limits as delta (2-
4 Hz), theta (5-7 Hz), alpha (8-14 Hz), and beta (15-
30 Hz), based on the distribution of peak center frequen-
cies across all vertices and participants (Fig. S1b). Given
the lack of clear oscillatory peaks in high frequencies
(above 40 Hz), the FOOOF algorithm struggles with de-
tecting consistent peaks in gamma frequencies and above
[21, 22]. Thus, we did not analyze band-limited power
in gamma frequencies using spectral parameterization.
For each of the 4 predefined power bands, we estimated
an “oscillation score” following the procedure described

by Donoghue et al. [21]. Specifically, for each partic-
ipant and frequency band, we identified the extracted
peak at each vertex. If more than one peak was detected
at a given vertex, the peak with maximum power was se-
lected. The average peak power was then calculated at
each vertex and frequency band across participants. The
group-average peak power map was then normalized for
each frequency band, such that the average power at
each vertex was divided by the maximum average power
across all vertices. Separately, we calculated a vertex-
level probability map for each frequency band as the per-
centage of participants with at least one detected peak at
a given vertex at that frequency band. Finally, the band-
limited “oscillation score” maps were obtained by mul-
tiplying the normalized group-average power maps with
their corresponding probability maps for each frequency
band. The oscillation score maps were parcellated using
the Schaefer-100 atlas [67] (Fig. S1a).

Time-series feature extraction using hctsa

We used the highly comparative time-series analysis
toolbox, hctsa [35, 36], to perform a massive feature
extraction of the pre-processed time-series for each brain
region for each participant. The hctsa package extracted
over 7 000 local time-series features using a wide range
of time-series analysis methods [35, 36]. The extracted
features include, but are not limited to, measures of data
distribution, temporal dependency and correlation prop-
erties, entropy and variability, parameters of time-series
model fit, and nonlinear properties of a given time-series
[35, 37].

The hctsa feature extraction analysis was performed
on the parcellated MEG time-series for each participant.
Given that applying hctsa on the full time-series is com-
putationally expensive, we used 80 seconds of data for
feature extraction after dropping the first 30 seconds.
Previous reports suggest that relatively short segments
of about 30 to 120 seconds of resting-state data are suf-
ficient to estimate robust properties of intrinsic brain
activity [22]. Nevertheless, to ensure that we can ro-
bustly estimate time-series features from 80 seconds of
data, we calculated a subset of hctsa features using
the catch-22 toolbox [115] on subsequent segments
of time-series with varying length for each participant.
Specifically, we extracted time-series features from short
segments of data ranging from 5 to 125 seconds in in-
crements of 5 seconds. To identify the time-series length
required to estimate robust and stable features, we cal-
culated the Pearson correlation coefficient between fea-
tures of two subsequent segments (e.g., features esti-
mated from 10 and 5 seconds of data). The correlation
coefficient between the estimated features started to sta-
bilize at time-series segments of around 30 seconds, con-
sistent with previous reports [22] (Fig. S7). Following
the feature extraction procedure from time-series seg-
ments of 80 seconds, the outputs of the operations that
produced errors were removed and the remaining fea-
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tures (6 880 features) were normalized across nodes us-
ing an outlier-robust sigmoidal transform for each partic-
ipant separately. A group-average region × feature ma-
trix was generated from the normalized individual-level
features. We also applied hctsa analysis to the parcel-
lated empty-room recordings (80 seconds) to estimate
time-series features from noise data using an identical
procedure to resting-state data, identifying 6 148 fea-
tures per region per participant. The time-series features
were normalized across brain regions for each partici-
pant. A group-average empty-room feature set was ob-
tained and used for further analysis.

Micro-architectural features from neuromaps

We used the neuromaps toolbox (https://github.
com/netneurolab/neuromaps) [43] to obtain micro-
architectural and neurotransmitter receptor and trans-
porter maps in the maps’ native spaces. Details about all
maps and their data sources are available in [43]. Briefly,
all data that were originally available in any surface
space were transformed to the fsLR32k surface space us-
ing linear interpolation to resample data and were par-
cellated into 100 cortical regions using the Schaefer-100
atlas in fsLR32k space [67]. All volumetric data were re-
tained in their native MNI152 volumetric space and were
parcellated into 100 cortical regions using the volumetric
Schaefer atlas in MNI152 space [67]. Micro-architectural
maps included T1w/T2w as a proxy measure of cor-
tical myelin [116], cortical thickness [116], principal
component of gene expression [44, 68], principal com-
ponent of neurotransmitter receptors and transporters
[47], synapse density (using [11C]UCB-J PET tracer that
binds to the synaptic vesicle glycoprotein 2A (SV2A))
[55, 117–128], metabolism (i.e., cerebral blood flow and
volume, oxygen and glucose metabolism, glycolytic in-
dex) [61], evolutionary and developmental expansion
[63], allometric scaling from Philadelphia Neurodevel-
opmental Cohort (PNC) and National Institutes of Health
(NIH) [64]. Neurotransmitter maps included 18 differ-
ent neurotransmitter receptors and transporters across
9 different neurotransmitter systems, namely serotonin
(5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT), his-
tamine (H3), dopamine (D1, D2, DAT), norepinephrine
(NET), acetylcholine (α4β2, M1, VAChT), cannabinoid
(CB1), opioid (MOR), glutamate (mGluR5), and GABA
(GABAa/bz) [47].

BigBrain histological data

Layer thickness data for the 6 cortical layers (I-VI)
were obtained from the BigBrain atlas, which is a volu-
metric, high-resolution (20×20×20µm) histological atlas
of a post-mortem human brain (65-year-old male) [56–
58]. In the BigBrain atlas, sections of the post mortem
brain are stained for cell bodies using Merker staining
technique [129]. These sections are then imaged and
used to reconstruct a volumetric histological atlas of the

human brain that reflects neuronal density and soma
size and captures the regional differentiation of cytoar-
chitecture [56–58, 103, 130]. The approximate corti-
cal layer thickness data obtained from the BigBrainWarp
toolbox [57], were originally generated using a convolu-
tional neural network that automatically segments the
cortical layers from the pial to white surfaces [58]. Full
description of how the cortical layer thickness was ap-
proximated is available elsewhere [58]. The cortical
layer thickness data for the 6 cortical layers were ob-
tained on the fsaverage surface (164k vertices) from the
BigBrainWarp toolbox [57] and were parcellated into
100 cortical regions using the Schaefer-100 atlas [67].

Cell type-specific gene expression

Regional microarray expression data were obtained
from 6 post-mortem brains (1 female, ages 24–57,
42.5 ± 13.4) provided by the Allen Human Brain At-
las (AHBA, https://human.brain-map.org; [44]). Data
were processed with the abagen toolbox (version 0.1.3-
doc; https://github.com/rmarkello/abagen; [68]) using
the Schaefer-100 volumetric atlas in MNI space [67].

First, microarray probes were reannotated using data
provided by [131]; probes not matched to a valid Entrez
ID were discarded. Next, probes were filtered based on
their expression intensity relative to background noise
[132], such that probes with intensity less than the back-
ground in ≥ 50.00% of samples across donors were
discarded. When multiple probes indexed the expres-
sion of the same gene, we selected and used the probe
with the most consistent pattern of regional variation
across donors (i.e., differential stability; [133]), calcu-
lated with:

∆S(p) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

ρ[Bi(p), Bj(p)] (3)

where ρ is Spearman’s rank correlation of the expression
of a single probe, p, across regions in two donors Bi and
Bj , and N is the total number of donors. Here, regions
correspond to the structural designations provided in the
ontology from the AHBA.

The MNI coordinates of tissue samples were updated
to those generated via non-linear registration using the
Advanced Normalization Tools (ANTs; https://github.
com/chrisfilo/alleninf). To increase spatial coverage, tis-
sue samples were mirrored bilaterally across the left and
right hemispheres [134]. Samples were assigned to brain
regions in the provided atlas if their MNI coordinates
were within 2 mm of a given parcel. If a brain region
was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the
nearest tissue sample from the donor in order to gener-
ate a dense, interpolated expression map. The average
of these expression values was taken across all voxels in
the region, weighted by the distance between each voxel
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and the sample mapped to it, in order to obtain an esti-
mate of the parcellated expression values for the missing
region. All tissue samples not assigned to a brain region
in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing
tissue sample expression values across genes using a ro-
bust sigmoid function [35]:

xnorm =
1

1 + exp(− (x−⟨x⟩)
IQRx

)
(4)

where ⟨x⟩ is the median and IQRx is the normalized in-
terquartile range of the expression of a single tissue sam-
ple across genes. Normalized expression values were
then rescaled to the unit interval:

xscaled =
xnorm −min(xnorm)

max(xnorm)−min(xnorm)
(5)

Gene expression values were then normalized across
tissue samples using an identical procedure. Samples
assigned to the same brain region were averaged sepa-
rately for each donor and then across donors, yielding a
regional expression matrix of 15,633 genes.

Finally, cell type-specific gene expression maps were
calculated using gene sets identified by a cell type decon-
volution analysis [59, 60, 76]. Detailed description of the
analysis is available at [59]. Briefly, cell-specific gene sets
were compiled across 5 single-cell and single-nucleus
RNA sequencing studies of adult human post-mortem
cortical samples [135–140]. Gene expression maps of
the compiled study-specific cell types were obtained from
AHBA. Unsupervised hierarchical clustering analysis was
used to identify 7 canonical cell classes that included as-
trocytes (astro), endothelial cells (endo), microglia (mi-
cro), excitatory neurons (neuron-ex), inhibitory neurons
(neuron-in), oligodendrocytes (oligo) and oligodendro-
cyte precursors (opc) [59]. We used the resulting gene
sets to obtain average cell type-specific expression maps
for each of these 7 cell classes from the regional expres-
sion matrix of 15 633 genes.

Partial Least Squares (PLS)

Partial least squares (PLS) analysis was used to inves-
tigate the relationship between resting-state MEG time-
series features and micro-architecture maps. PLS is a
multivariate statistical technique that identifies mutually
orthogonal, weighted linear combinations of the origi-
nal variables in the two datasets that maximally covary
with each other, namely the latent variables [74, 75].
In the present analysis, one dataset is the hctsa feature
matrix (i.e., Xn×t) with n = 100 rows as brain regions
and t = 6880 columns as time-series features. The other
dataset is the compiled set of micro-architectural maps
(i.e., Yn×m) with n = 100 rows (brain regions) and
m = 45 columns (micro-architecture maps). To identify

the latent variables, both data matrices were normalized
column-wise (i.e., z-scored) and a singular value decom-
position was applied to the correlation matrix R = X

′
Y

as follows:

R = X
′
Y = USV′ (6)

where Ut×m and Vm×m are orthonormal matrices of left
and right singular vectors and Sm×m is the diagonal ma-
trix of singular values. Each column of U and V matrices
corresponds to a latent variable. Each element of the di-
agonal of S is the corresponding singular value. The sin-
gular values are proportional to the covariance explained
by latent variable and can be used to calculate effect sizes
as ηi = s2i /

∑J
j=1 s

2
j where ηi is the effect size for the

i-th latent variable (LVi), si is the corresponding singu-
lar value, and J is the total number of singular values
(here J = m). The left and right singular vectors U and
V demonstrate the extent to which the time-series fea-
tures and micro-architectural maps contribute to latent
variables, respectively. Time-series features with positive
weights covary with micro-architectural maps with pos-
itive weights, while negatively weighted time-series fea-
tures and micro-architectural maps covary together. Sin-
gular vectors can be used to estimate brain scores that
demonstrate the extent to which each brain region ex-
presses the weighted patterns identified by latent vari-
ables. Brain scores for time-series features and micro-
architectural maps are calculated by projecting the orig-
inal data onto the PLS-derived weights (i.e., U and V):

Brain scores for time-series features = XU

Brain scores for micro-architecture = YV

Loadings for time-series features and micro-
architectural maps are then computed as the Pearson
correlation coefficient between the original data matri-
ces and their corresponding brain scores. For example,
time-series feature loadings are the correlation coeffi-
cients between the original hctsa time-series feature
vectors and PLS-derived brain scores for time-series
features.

The statistical significance of latent variables was as-
sessed using 10 000 permutation tests, where the origi-
nal data was randomized using spatial autocorrelation-
preserving nulls (see “Null model” for more details). The
PLS analysis was repeated for each permutation, result-
ing in a null distribution of singular values. The signifi-
cance of the original singular values were then assessed
against the permuted null distributions (Fig. 4a). The
reliability of PLS loadings was estimated using bootstrap
resampling [141], where rows of the original data matri-
ces X and Y are randomly resampled with replacement
10 000 times. The PLS analysis was then repeated for
each resampled data, generating a sampling distribution
for each time-series feature and micro-architectural map
(i.e., generating 10 000 bootstrap-resampled loadings).
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The bootstrap-resampled loading distributions are then
used to estimate 95% confidence intervals for loadings
(e.g., see Fig. 4d).

Finally, given that PLS-derived brain scores are by de-
sign highly correlated, we used a distance-dependent
cross-validation analysis to assess the out-of-sample cor-
relations between brain scores [76]. Specifically, 75% of
the closest brain regions in Euclidean distance to a ran-
dom “seed” region were selected as training set, while
the 25% remaining distant regions were selected as test
set. We then re-ran the PLS analysis on the training set
(i.e., 75% of regions) and used the resulting weights
(i.e., singular values) to estimated brain scores for test
set. The out-of-sample correlation was then calculated
as the Spearman’s rank correlation coefficient between
test set brain scores of time-series features and micro-
architectural maps. We repeated this analysis 99 times,
such that each time a random brain region was selected
as the seed region, yielding distributions of training set
brain scores correlations and test set (out-of-sample) cor-
relations (Fig. 4b). Note that 99 is the maximum number
of train-test splits here given that brain maps consist of
100 regions.

Null model

To make inferences about the topographic correlations
between any two brain maps, we implement a null model
that systematically disrupts the relationship between two
topographic maps but preserves their spatial autocorrela-
tion [70, 71, 142]. We used the Schaefer-100 atlas in the
HCP’s fsLR32k grayordinate space [65, 67]. The spheri-
cal projection of the fsLR32k surface was used to define
spatial coordinates for each parcel by selecting the vertex
closest to the center-of-mass of each parcel [143–145].
The resulting spatial coordinates were used to generate
null models by applying randomly-sampled rotations and
reassigning node values based on the closest resulting

parcel (10 000 repetitions). The rotation was applied to
one hemisphere and then mirrored to the other hemi-
sphere. Where appropriate, the results were corrected
for multiple comparisons by controlling the false discov-
ery rate (FDR correction [146]).

Code and data availability

Code used to conduct the reported analyses is
available on GitHub (https://github.com/netneurolab/
shafiei_megdynamics). Data used in this study were
obtained from the Human Connectome Project (HCP)
database (available at https://db.humanconnectome.
org/).
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[142] Váša F, Mišić B. Null models in network neuroscience.
Nature Reviews Neuroscience. 2022;.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525101doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525101
http://creativecommons.org/licenses/by/4.0/


18

[143] Vázquez-Rodríguez B, Suárez LE, Markello RD, Shafiei
G, Paquola C, Hagmann P, et al. Gradients of structure–
function tethering across neocortex. Proc Natl Acad Sci
USA. 2019;116(42):21219–21227.

[144] Shafiei G, Markello RD, Makowski C, Talpalaru A,
Kirschner M, Devenyi GA, et al. Spatial patterning of tis-
sue volume loss in schizophrenia reflects brain network
architecture. Biol Psychiat. 2020;.

[145] Vazquez-Rodriguez B, Liu ZQ, Hagmann P, Misic B. Sig-
nal propagation via cortical hierarchies. Net Neurosci.
2020;.

[146] Benjamini Y, Hochberg Y. Controlling the false discov-
ery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B
(Methodological). 1995;57(1):289–300.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525101doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525101
http://creativecommons.org/licenses/by/4.0/


19

Figure S1. Spectral parameterization of neurophysiological activity | Spectral parameterization FOOOF toolbox was used to
extract periodic and aperiodic components of the MEG power spectrum [21]. (a) The identified oscillatory peaks of the periodic
component were used to estimate band-limited “oscillation score” maps at delta (2-4 Hz), theta (5-7 Hz), alpha (8-14 Hz), and
beta (15-30 Hz) frequency bands. The oscillation scores reflect the average power at each region and frequency band, weighted
by the probability of observing an oscillation peak at that region and band [21]. The aperiodic exponent and “knee” parameter
(controls for the bend in the aperiodic component) were used to estimate intrinsic timescale (see Methods for details). Note that
log-10 transformed intrinsic timescale map is depicted here for a more clear visualization. (b) Distribution of center frequencies of
the identified periodic peaks are depicted across all vertices and participants. Visual inspection of the distribution shows clusters
of peaks around the frequency bands shown in panel (a). (c) PC1 score map of hctsa time-series features was compared with
the aperiodic-adjusted power maps and intrinsic timescale. Consistent with the results obtained with the total power maps at the
canonical frequencies (Fig. 3), PC1 is significantly associated with the intrinsic timescale (FDR-corrected; 10 000 autocorrelation-
preserving spin nulls). rs denotes the Spearman’s rank correlation coefficient.
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Figure S2. Univariate analysis of neurophysiological time-series features | Spearman’s rank correlation coefficients (rs)
were used to investigate the univariate associations between hctsa time-series features of neurophysiological signal and two
commonly-used micro-architectural maps: (a) T1w/Tw2 ratio as a proxy measure of myelination, and (b) principal component
of gene expression. The resulting correlations were compared with null distributions of correlations obtained from 10 000 spatial
autocorrelation-preserving nulls. Grey background indicates non-significant time-series features (FDR corrected). Examples of
high loading time-series features are shown for each micro-architectural map. The group-average first zero-crossing time point of
the autocorrelation function, tc, is shown for T1w/T2w ratio. The group-average linear autocorrelation at a time lag of 48 ms,
ac48, is shown for principal component of gene expression. The autocorrelation function and short segments of raw time-series
are also shown for a randomly selected participant at three different regions (circles on the brain surface: pink ≈ 5th percentile,
green ≈ 50th percentile, purple ≈ 95th percentile). Full lists of features, their correlation coefficients and p-values are available for
T1w/T2w ratio and gene expression in the online Supplementary Files S5,6.
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Figure S3. Signal-to-noise ratio (SNR) | (a) Source-level MEG signal-to-noise ratio (SNR) was estimated. Parcellated, group-
average SNR map is depicted across the cortex. MEG SNR was compared with the principal component of neurophysiological
dynamics (PC1 - original). (b) SNR was compared with full set of neurophysiological time-series features (i.e., 6 880 features)
using univariate correlations. Features that were significantly correlated with SNR were removed without correcting for multiple
comparisons (pspin < 0.05, 10 000 spatial autocorrelation-preserving permutation tests) and PCA was repeated using the remaining
3 819 features. The principal component of the retained feature subset (PC1 - feature subset) explained 31.6% of the variance
and was significantly correlated with the original PC1 from the full set of features. (c) SNR was linearly regressed out from the
full set of time-series features. PCA was applied to the feature residuals. The principal component of SNR-regressed time-series
features (PC1 - SNR regressed) explained 41.4% of the variance and was significantly correlated with the original PC1. rs denotes
the Spearman’s rank correlation coefficient; linear regression lines are added to the scatter plots for visualization purposes only.

Figure S4. Empty-room recordings | PCA was applied to time-series features obtained from pre-processed empty-room MEG
recordings. Following the Procrustes alignment of the resulting PCA weights with the PCA weights of the resting-state MEG
recordings, the first principal components were compared between the two. The principal component of the empty-room time-
series features (PC1 - empty room; variance explained = 41%) was not significantly correlated with the original PC1. rs denotes
the Spearman’s rank correlation coefficient; linear regression line is added to the scatter plot for visualization purposes only.
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Figure S5. Topographic distribution of neurophysiological dynamics for Schaefer-400 | (a) Principal component analysis
(PCA) was applied to MEG time-series features at a higher resolution parcellation (i.e., Schaefer-400 atlas). The first principal
component accounted for 48.6% of the variance. The spatial organization of features captured by PC1 is depicted across the
cortex, displaying a consistent pattern with the original PCA results obtained for the Schaefer-100 atlas (Fig. 3). (b) Top loading
features contributing to PC1 were identified using Pearson correlation coefficients between PC1 pattern and all time-series features.
Grey background indicates non-significant features based on 10 000 spatial autocorrelation-preserving permutation tests (FDR
corrected). Consistent with the original analysis, the top loading features were mainly related to power spectral density. Regional
power spectral densities are depicted, where each line represents a brain region. Regions are coloured by their position in the
putative unimodal–transmodal hierarchy [72]. The full list of features, their loadings and p-values are available in the online
Supplementary File S3. (c) PC1 pattern was directly correlated with MEG power maps at 6 canonical frequency bands and
intrinsic timescales. Consistent with the original findings, PC1 score was significantly correlated with hi-gamma power and intrinsic
timescale (FDR-corrected). rs denotes the Spearman’s rank correlation coefficient.
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Figure S6. Partial least squares (PLS) analysis for Schaefer-400 | PLS analysis was used to assess the multivariate relationship
between micro-architectural and time-series features for the Schaefer-400 atlas. The results were consistent with the original
findings for the Schaefer-100 atlas (Fig. 4). (a) PLS identified a single significant latent variable (pspin = 0.0083, covariance
explained = 75.7%). (b) Spatial patterns of micro-architecture and time-series features scores are depicted for the first latent
variable. The two brain score maps were significantly correlated, demonstrating similar patterns to the ones obtained for Schaefer-
100 atlas (Fig. 4b). (c) Micro-architectural feature loadings were also consistent with the original findings (Fig. 4d). Full list of
time-series feature loadings are included in the online Supplementary File S4. Consistent with the original analysis, the top loading
features were mainly related to the linear correlation structure of the signal. rs denotes the Spearman’s rank correlation coefficient.
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Figure S7. Stability of time-series features | To identify the time-series length required to robustly estimate the time-series
features, we calculated a subset of hctsa features using the catch-22 toolbox [115] on subsequent segments of time-series with
varying length for each participant. We extracted time-series features from short segments of data ranging from 5 to 125 seconds
in increments of 5 seconds. To identify the optimal time-series length required to estimate robust and stable features, we calculated
the Pearson correlation coefficient r between features of two subsequent segments (e.g., features estimated from 10 and 5 seconds
of data). The group-average correlation coefficient between the estimated features started to stabilize at time-series segments
of around 30 seconds, consistent with previous reports [22] (left). To compare the stability analysis of catch-22 features with
full hctsa features, the correlation coefficients between subsequent segments of time-series are shown for a randomly selected
participant (right).
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