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Abstract  15 
 16 
Background 17 
 18 
Lower limb proprioception is critical for maintaining stability during gait and may impact how 19 
individuals modify their movements in response to changes in the environment and body state, a 20 
process termed “sensorimotor adaptation”. However, the connection between lower limb 21 
proprioception and sensorimotor adaptation during human gait has not been established. We 22 
suspect this gap is due in part to the lack of reliable, efficient methods to assess global lower limb 23 
proprioception in an ecologically valid context.  24 
 25 
New Method 26 
 27 
We assessed static lower limb proprioception using an alternative forced choice task, 28 
administered twice to determine test-retest reliability. Participants stood on a dual-belt treadmill 29 
which passively moved one limb to stimulus locations selected by a Bayesian adaptive algorithm. 30 
At the stimulus locations, participants judged relative foot positions and the algorithm estimated 31 
the point of subjective equality (PSE) and the uncertainty of lower limb proprioception.  32 
 33 
Results 34 
 35 
Using the Bland-Altman method, combined with Bayesian statistics, we found that both the PSE 36 
and uncertainty estimates had good reliability.  37 
 38 
Comparison with Existing Method(s) 39 
 40 
Current methods assessing static lower limb proprioception do so within a single joint, in non-41 
weight bearing positions, and rely heavily on memory. One exception assessed static lower limb 42 
proprioception in standing but did not measure reliability and contained confounds impacting 43 
participants’ judgments, which we experimentally controlled here.  44 
 45 
Conclusions 46 
 47 
This efficient and reliable method assessing lower limb proprioception will aid future mechanistic 48 
understanding of locomotor adaptation and serve as a useful tool for basic and clinical 49 
researchers studying balance and falls.  50 
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1. Introduction 51 
 52 
Lower limb proprioception is critical for maintaining upright stability and regulating the gait cycle. 53 
The proprioceptive sense is formed through a combination of inputs, mostly from muscle spindles 54 
and Golgi tendon organs, but also cutaneous and joint capsule receptors (Proske and Gandevia, 55 
2012). Here, we are most interested in proprioception as it relates to static lower limb position 56 
sense. Static lower limb position sense contributes to balance and stability as evidenced by 57 
studies showing that impaired static lower limb proprioception is associated with higher fall risk 58 
(Lord et al., 1991; Lord and Ward, 1994; Ribeiro and Oliveira, 2007). In addition to its contributions 59 
to posture and stability, static lower limb proprioception may also impact how individuals implicitly 60 
adapt their gait pattern in response to changes in the environment or body state (e.g., fatigue) 61 
(Bruijn et al., 2012; Bunday and Bronstein, 2009), a learning process termed “sensorimotor 62 
adaptation” (Prokop et al., 1995; Reisman et al., 2005). This link between static proprioception 63 
and sensorimotor adaptation is well established in upper-extremity reaching (Cressman and 64 
Henriques, 2009; Harris, 1963; Henriques and Cressman, 2012; Mattar et al., 2013; Ostry et al., 65 
2010; Simani et al., 2007; Tsay et al., 2022). However, no causal link between proprioception and 66 
locomotor adaptation has been clearly established in humans, which is surprising given how 67 
dependent normal walking is on reliable proprioceptive estimates (Dietz, 2002; Hiebert et al., 68 
1996; Kriellaars et al., 1994; Pearson, 2004; Roden-Reynolds et al., 2015; Whelan et al., 1995). 69 
We suggest that this discrepancy exists because of the way proprioception is measured in the 70 
lower limb. Specifically, most lower limb proprioception assessments are not performed in an 71 
ecologically valid context, and those that are lack established reliability and validity (Sombric et 72 
al., 2019; Vazquez et al., 2015). In order to address these limitations, we have developed a new 73 
psychophysical method for assessing lower limb proprioception. 74 
 75 
We first considered the measurement of lower limb proprioception in a context that most closely 76 
approximates gait. Current methods assessing static lower limb proprioception often do so within 77 
a single joint, in a non-weight bearing position, and rely heavily on remembered positions (Han et 78 
al., 2016; Hillier et al., 2015; Horváth et al., 2022). While these methods have proven useful for 79 
characterizing specific deficits in joint proprioception after orthopedic injury (e.g., Relph et al., 80 
2014), they cannot be readily translated to functional lower extremity movements. This is because 81 
a unified percept of limb location results from the nervous system’s integration of proprioceptive 82 
signals across multiple limb joints (Bosco et al., 2000; Fuentes and Bastian, 2010; Gandevia, 83 
1985; Proske and Gandevia, 2012; Soechting, 1982). The body position in which proprioception 84 
is measured is also important because differences in proprioceptive estimates emerge in weight 85 
bearing vs non-weight bearing positions both in the upper limb (Ansems et al., 2006) and in the 86 
knee joint (Bullock-Saxton et al., 2001; Stillman and McMeeken, 2001). For these reasons, we 87 
measured whole lower limb proprioception while standing as this provides the closest 88 
approximation to gait.  89 
 90 
A comprehensive way of characterizing a sensory system is using a psychophysical assessment 91 
to estimate two of its distinct physiologic characteristics: the point of subjective equality (PSE) 92 
and the uncertainty. The PSE is the stimulus that is perceived as equal to another stimulus, 93 
reflecting the limits of a sensory system to discriminate between two stimuli. In the context of the 94 
current study, the PSE is the location where participants perceive the two lower limbs are 95 
symmetrical. The PSE can also be translated to a measure of proprioceptive accuracy by 96 
calculating the difference between the PSE and actual equality (i.e., a proprioceptive bias). 97 
Uncertainty refers to the variability in responses surrounding the PSE, reflecting the noise within 98 
the sensory system. The PSE (in terms of a proprioceptive bias) and uncertainty seem to play 99 
distinct roles in sensorimotor adaptation (Ruttle et al., 2021; Tsay et al., 2021). While upper 100 
extremity proprioceptive biases shift as a result of sensorimotor adaptation, proprioceptive 101 
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uncertainty at baseline predicts the magnitude of sensorimotor adaptation. The proprioceptive 102 
shift and uncertainty estimates themselves are uncorrelated (Tsay et al., 2021). Thus, it is 103 
important to reliably estimate both the PSE and uncertainty.  104 
 105 
A widely accepted method of estimating both the PSE and uncertainty is to use a two-alternative 106 
forced choice (2AFC) task, where, in the context of the current study, participants judge the 107 
relative positions of their feet when placed at various locations. The response data are then fit 108 
with a psychometric function, where the inflection point (i.e., the probability of a response being 109 
0.5), represents the PSE and the slope of the function is inversely proportional to the uncertainty 110 
(Kingdom and Prins, 2016). We know of two studies that used an AFC task to estimate both PSE 111 
and uncertainty of lower limb proprioception (Vazquez et al., 2015; Waddington and Adams, 112 
1999). However, the Waddington study used active repositioning focused on only ankle inversion 113 
and eversion movements, whereas the Vazquez study did not measure or report the reliability of 114 
their method. Furthermore, in the latter study participants’ responses were heavily impacted by 115 
the direction in which the test limb was moved to the stimulus position, which was either always 116 
forward or always backward depending on group assignment. Ideally, in a static assessment of 117 
lower limb proprioception, the movement of the limbs to stimulus positions should not exert any 118 
influence on participants’ judgments. Therefore, while a method like the one used in the study by 119 
Vazquez and colleagues offers promise, adjustments are needed to improve the validity of 120 
responses, and the reliability of the estimates must be assessed.  121 
 122 
Efficiency is also critical for assessing changes in proprioception in single-session motor learning 123 
studies, when considering factors such as clinical feasibility, and to maintain participant safety, 124 
as standing still for long periods can lead to syncope (Jardine et al., 2018). In the most established 125 
psychophysical method, the method of constant stimuli, participants make the same number of 126 
sensory judgements at each pre-determined stimulus location. However, this method is  inefficient 127 
because some of the stimulus locations provide little information about the PSE or uncertainty 128 
estimates (Kingdom and Prins, 2016; Leek, 2001; Watson and Fitzhugh, 1990). Indeed, Kingdom 129 
and Prins (Kingdom and Prins, 2016, p. 57) suggested that as many as 400 trials are required to 130 
accurately estimate both the PSE and uncertainty. Adaptive psychophysical methods, where the 131 
stimulus locations are selected based on prior responses, were specifically developed to solve 132 
this efficiency problem (Leek, 2001). The Psi algorithm is one such method that uses Bayesian 133 
estimation to calculate PSE and uncertainty values after each trial. It then chooses the next 134 
stimulus that will maximize the information gained for both estimates on the subsequent trial 135 
(Kontsevich and Tyler, 1999). This method results in more efficient and accurate estimates of 136 
both the PSE and slope compared to the method of constant stimuli (King-smith and Rose, 1997; 137 
Kontsevich and Tyler, 1999; Livesey and Livesey, 2016; Turpin et al., 2010). The Psi algorithm is 138 
most frequently used in visual and auditory psychophysics, and we note only one instance where 139 
is was used to estimate (wrist) proprioception (Elangovan et al., 2018).  140 
 141 
Here, we implemented an adapted version of the Psi algorithm and measured its reliability in 142 
assessing lower limb proprioception in an ecologically valid context using a test-retest design. We 143 
first wanted to ensure that participant responses were not confounded by the direction of 144 
movement to each stimulus location, a concern we had based on a prior study (Vazquez et al., 145 
2015). Then, to assess reliability across test sessions, we calculated agreement, defined as the 146 
ability for a test to reproduce the same values when measured at different times, using the Bland-147 
Altman method (Altman and Bland, 1983; Giavarina, 2015). In addition, we used Bayesian 148 
statistics to fully quantify the probability that the method has good agreement, defined as low 149 
evidence of bias in the PSE and uncertainty estimates across the two tests. Combined, we found 150 
that, with the current method, movement direction did not impact participant responses, and good 151 
agreement for both the PSE and uncertainty could be achieved after only 50 trials.  152 
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 153 
2. Materials and methods 154 
 155 
2.1. Participants 156 
 157 
Young healthy participants between the ages of 18 and 35 were recruited from the University of 158 
Delaware community. Participants were excluded if they had any chronic or recent 159 
musculoskeletal or neurologic diagnoses, pain, or impaired sensation. This work was completed 160 
in accordance with the Code of Ethics of the World Medical Association. All participants provided 161 
written informed consent prior to being enrolled into the study. This study was approved by the 162 
University of Delaware Institutional Review Board.  163 
 164 
2.2. Motion capture 165 
 166 
Participants stood on a dual-belt treadmill instrumented with two force plates, one under each belt 167 
(Bertec, Columbus OH). We obtained kinematic data, sampled at 100Hz, using an eight-camera 168 
Vicon MX40 motion capture system with Nexus software (Vicon Motion Systems Inc., London, 169 
UK). Seven retroreflective markers were placed on participants’ shoes and ankles in the following 170 
locations: bilateral heels, bilateral lateral malleoli, bilateral 5th metatarsal head, and the left 1st 171 
metatarsal head. We used custom written MATLAB scripts (version 2022a, MathWorks, Natick, 172 
MA) to control the treadmill belts and obtain live kinematic and kinetic data from Nexus software.  173 
 174 
2.3. AFC task 175 
 176 
We used a two-AFC task to measure lower limb proprioception. To measure test-retest reliability, 177 
each participant performed the test twice on the same day, with a 20-minute break between tests. 178 
For each test, participants stood on a treadmill with vision of their legs occluded with a black 179 
drape, and auditory feedback (sounds of the treadmill belts/motors) occluded with noise 180 
cancelling headphones (Figure 1A). The primary kinematic variable for the test was foot position 181 
difference (in millimeters):  182 
 183 
𝐹𝑜𝑜𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐿𝑒𝑓𝑡	𝑚𝑎𝑟𝑘𝑒𝑟!"#$ − 𝑅𝑖𝑔ℎ𝑡	𝑚𝑎𝑟𝑘𝑒𝑟!"#$																													(1)  184 
 185 
We used the lateral malleoli markers to measure foot position difference. Thus, positive values 186 
indicate the left foot was forward of the right foot, while negative values indicate the left foot was 187 
behind. Since the foot is the end-effector for the lower limb, we assume judgements were made 188 
by combining proprioceptive information across lower limb joints. The right foot served as the 189 
reference foot and did not move throughout the test. The left foot served as the test foot and was 190 
passively moved by the left treadmill belt to the stimulus positions, measured in terms of foot 191 
position difference. After participants performed two practice trials to orient them to the task, their 192 
heels were aligned so that everyone started from the same position relative to the laboratory’s y-193 
axis. Since there may still be differences in the ankle markers along the y-axis in this position, we 194 
corrected for this baseline difference (rounded to the nearest millimeter) for stimulus positions 195 
and PSE estimates. Each test was comprised of 75 trials, and each trial had two parts: 1) 196 
movement to a start position, 2) movement to a stimulus position.  197 
 198 
The treadmill moved the test foot to a start position at a speed selected from a uniform distribution 199 
between 40 and 50 mm/s (Figure 1B, top). We controlled for the potential bias in responses 200 
caused by movement direction by providing pseudorandomized start positions so that the test 201 
foot started in front of the stimulus position 38 times and behind the stimulus 37 times. Therefore, 202 
we assume any bias in responses from always moving to the stimulus from the same direction 203 
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would be washed out, something we confirmed in our formal analysis (see Section 3.1). The 204 
specific start position on a given trial, t, was selected from one of two normal distributions centered 205 
around either -100 or +100 mm of foot position difference depending on the movement direction 206 
for that trial. Both distributions had a standard deviation of 5 mm: 207 
 208 

𝑆𝑡𝑎𝑟𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[&]	~	<
𝒩(+100, 5),														𝑖𝑓	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛[&] == 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝒩(−100, 5),													𝑖𝑓	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛[&] == 𝑓𝑜𝑟𝑤𝑎𝑟𝑑																																(2)209 

         210 
After a 0-2 second pause at the start position, the test foot was moved to a stimulus position at a 211 
speed selected from a uniform distribution between 10 and 30 mm/s (Figure 1B, bottom). The 212 
stimulus positions were located at 21 possible foot difference locations: every 10 mm interval 213 
between -100 to +100 mm. Most stimulus positions were selected using the Psi algorithm (see 214 
section 2.5). However, we inserted pre-selected stimulus locations to keep participants engaged 215 
in the task. There were two types of pre-selected stimuli: 1) far stimuli (±100 or ±90) inserted 216 
randomly once every 10 trials, and 2) near stimuli (±10, ±20 or ±30 mm from the current PSE 217 
estimate, rounded to the nearest stimulus location) inserted randomly once every 5 trials. No 218 
preselected stimuli were inserted within the first 5 trials.  219 
 220 
Each time the test foot reached its stimulus position, the treadmill stopped, and a prompt appeared 221 
on a monitor in front of the participant: “Do you feel your right or left foot is more forward?” The 222 
participant’s response was recorded by the experimenter using a custom graphical user interface 223 
(GUI) in MATLAB.  224 
 225 
Before the test, participants were instructed to keep their weight equally distributed between both 226 
feet, measured with the force plates under each treadmill belt and displayed for the experimenter. 227 
If participants consistently kept greater than ~60% of their weight through one foot, a verbal 228 
reminder was provided. We implemented short breaks after 25 and 50 trials to prevent fatigue 229 
and blood pooling in the legs. Before the break, current marker positions were recorded from 230 
Nexus software, then the participant was asked to walk around the lab for ~30 seconds. After the 231 
participant stepped back onto the treadmill, we positioned their feet so the ankle markers were 232 
back to the exact location from which they started and then testing continued.    233 
 234 

 235 
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Figure 1. Task setup, representative data, and movement direction analysis. (A) AFC task setup. Participants 236 
stood on the split-belt treadmill with visual feedback of their legs occluded by a black drape and auditory feedback 237 
occluded by noise cancelling headphones. The screen prompted participants to verbally respond to the question “Do 238 
you feel like your right or left foot is more forward?” when the test foot stopped at the stimulus location. (B) Trial 239 
sequence. 1) The test foot was moved to a start position either in front of or behind the stimulus position. Start positions 240 
were sampled from one of two normal distributions, depending on the movement direction assigned for that specific 241 
trial. 2) The test foot was moved to one of 21 possible stimulus positions between -100 and +100 mm. Tick marks 242 
(drawn to scale) represent each possible stimulus location. (C) Individual participant data. We reconstructed the 243 
psychometric functions from the PSE (α) and uncertainty (β) estimates for Test 1 (blue) and Test 2 (red). The dashed 244 
black lines, provided as a reference, represent a PSE of 0 mm. The individual dots represent the participant’s response 245 
data for each test. (D) Movement direction analysis. We measured the mean empirical probability of responding left 246 
when the movement direction to the stimulus position was forward (gray) vs backward (black). Dots represent 247 
individuals. We also used a Bayesian logistic regression model to analyze the unique impact of each movement 248 
direction on participant responses by calculating the difference between the posterior estimates of the movement 249 
direction coefficients (one for forward movement, one for backwards) of every participant, yielding a posterior contrast 250 
distribution (histogram) which we compared to a region of practical equivalence (ROPE). We note that 99.3% of the 251 
posterior distribution is within the ROPE, confirming that responses were not biased by movement direction to the 252 
stimulus position.  253 
 254 
2.4. Psychometric function  255 
 256 
Each participant’s probability of responding that the test foot was more forward at each stimulus 257 
position (x) was represented as a normal cumulative distribution function (cdf) with two 258 
parameters: 259 
 260 
𝜓(𝑥) = 𝑛𝑜𝑟𝑚𝑐𝑑𝑓(𝑥; 𝛼, 𝛽)																																																																																																																																									(3)  261 
 262 
The α parameter, the mean or inflection point of the cdf, represents the PSE, corresponding to 263 
the position that the participant perceives the feet were in the same location along the laboratory’s 264 
y-axis (i.e., where the probability of judging “left” is exactly 0.5). The β parameter, the standard 265 
deviation of the cdf, represents the uncertainty, which reflects the noise within the sensory system 266 
itself. Both are measured in terms of foot position difference. The α and β parameters were 267 
estimated adaptively on each trial using the Psi algorithm. Of note, in our pilot testing the 268 
probability of responding left at -100 and +100 was consistently 0 or 1, respectively. Thus, we did 269 
not include the lapse and guess rate parameters that are sometimes used in psychometric 270 
functions for AFC tasks. 271 
 272 
2.5. Psi Algorithm  273 
 274 
Here we provide a brief description of the Psi algorithm, which is described in detail by Kostovich 275 
and Tyler (1999). There are two primary components of the Psi algorithm: 1) stimulus selection 276 
and 2) parameter estimation. 277 
 278 
2.5.1 Stimulus selection 279 
 280 
Before each trial, the Psi algorithm simulates responses at each possible stimulus location for the 281 
next trial, calculating a simulated joint posterior distribution using Bayes’ rule. The simulated joint 282 
posterior distribution (𝑝$()) contains the probability of every possible combination of α and β 283 
values given the simulated responses and the stimulus location. Information entropy (H), a 284 
measure of the magnitude of uncertainty in a probability distribution, is calculated for each 285 
stimulated posterior distribution:  286 
 287 
𝐻[*] = −N𝑝$()[(]𝑙𝑜𝑔+𝑝$()[(]

(

																																																																																																																																	(4) 288 
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 289 
The stimulus position that minimizes the information entropy is selected for the subsequent trial 290 
as it provides the most certainty and thus the greatest gain in information for the α and β estimates 291 
from the current trial to the next (Shannon, 1948). That is, the stimulus position that will 292 
theoretically aid in maximally efficient parameter estimation is selected on each trial. 293 
 294 
2.5.2 Parameter estimation 295 
 296 
Once the participant makes their selection at the stimulus location, the Psi algorithm uses Bayes’ 297 
rule to estimate the most likely α and β values given the prior and the current response (r): 298 

 299 

𝑝[&](𝜆|𝑥, 𝑟) = 	
𝑝[&](𝜆)𝑝(𝑟|𝜆, 𝑥)

∑ T𝑝[&](𝜆)𝑝(𝑟|𝜆, 𝑥)U,
																																																																																																																						(5) 300 

 301 
The prior, 𝑝[&](𝜆), is a joint probability distribution representing the initial guess of α and β values. 302 
The prior for the first trial was the same for all participants. We assumed that the most likely α 303 
was 0 with a wide standard deviation: 𝛼~𝑁(0,20). Similarly, we assumed a reasonably wide prior 304 
distribution for β, with an expected value of 20: 𝛽~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(20). On subsequent trials, the 305 
posterior for trial t became the prior for trial t+1 (𝑝[&-.](𝜆) = 𝑝[&](𝜆|𝑥, 𝑟)). The likelihood in equation 306 
5, 𝑝(𝑟|𝜆, 𝑥), is the probability of the participant’s response given each parameter value at the 307 
stimulus position. As suggested by Kostovich and Tyler, we created a pair of lookup tables to 308 
improve computational efficiency, one for each response, which served as indexable likelihoods 309 
for each stimulus: 310 
 311 
𝑝(𝑟 = "𝑙𝑒𝑓𝑡"|𝜆, 𝑥) = 𝜓																																																																																																																																												(6𝑎)  312 
𝑝(𝑟 = "𝑟𝑖𝑔ℎ𝑡"|𝜆, 𝑥) = 1 − 𝜓																																																																																																																																		(6𝑏)  313 
 314 
The individual α and β estimates were calculated by marginalizing over the joint posterior 315 
distribution (equation 5) and taking the mean of each marginalized distribution (Emerson, 1986). 316 
We used the final α and β estimates after the last (75th) trial for our agreement analyses.  317 
 318 
2.7. Statistical analysis  319 
 320 
We used a Bayesian approach to make statistical inferences for the validity of responses and the 321 
agreement of PSE and uncertainty estimates. This approach enabled us to calculate the full 322 
posterior probability distribution of model parameters, providing a complete picture that quantifies 323 
our uncertainty. Thus, it naturally emphasizes estimation over binary decision rules in accordance 324 
with recommendations made by the American Statistical Association and others (Kruschke, 2013; 325 
Kruschke and Liddell, 2018; Wasserstein and Lazar, 2016). 326 
 327 
For each analysis, we started by defining a statistical model that was consistent with our question 328 
and the data structure. Next, we calculated the posterior probability of all parameter values in the 329 
statistical model using Bayes’ rule, combining our prior assumptions regarding parameter values 330 
(i.e., the prior) with evidence from our data (i.e., the likelihood). We selected the distribution for 331 
each parameter’s prior as reasonably wide and uninformative, using its maximum entropy 332 
distribution (McElreath, 2016). We used the Pymc4 (version 4.3) library (Salvatier et al., 2016) in 333 
Python (version 3.11) to perform Markov Chain Monte Carlo (MCMC) sampling to estimate the 334 
posterior probability distributions. We drew 10,000 samples from the posterior in each of 4 chains 335 
(i.e., 40,000 total samples), using 2,000 tuning samples in each chain. We performed diagnostics 336 
for each model, ensuring parameter values were consistent across chains and checking posterior 337 
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estimates for possible errors (Kruschke, 2014; McElreath, 2016). We provide the full models and 338 
code, including detailed information about the priors and diagnostics, online at 339 
(https://osf.io/g8nx4/). We made inferences based on the posterior distribution of the model 340 
parameters, reporting the 95% high density interval (HDI), defined as the narrowest span of 341 
credible values that contains 95% of the posterior distribution (Kruschke, 2014). In cases in which 342 
we wanted to quantify support for the “null” hypothesis, we also calculated the percent of credible 343 
parameter values that fell within a region of practical equivalence (ROPE; Kruschke, 2014).  344 
 345 
First, we ensured that responses were not confounded by movement direction, a concern based 346 
on a prior study (Vazquez et al., 2015). We modeled each participant’s response data using a 347 
Bayesian logistic regression. Since the response data on each trial (t) were binary, we modeled 348 
them as a Bernoulli distribution where the probability of responding “left” (𝑝/01&) was impacted by 349 
the stimulus location (𝑋2&()3/3$), the movement direction (𝛽4#50	7(809&(#:), and the participant 350 
(𝛼;<8&(9("<:&): 351 
 352 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒[&]~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖]𝑝/01&[&]^																																																																																																																									(7𝑎) 353 
𝑙𝑜𝑔𝑖𝑡]𝑝/01&[&]^ = 𝛼;<8&(9("<:&[(] + 𝛽4#507(809&(#:[=] + 𝛽2&()3/3$𝑋2&()3/3$[&]																																													(7𝑏)  354 
 355 
We included data from both tests for each participant in this model. Stimulus position was coded 356 
as a continuous variable. Movement direction and participant were coded as indexing variables, 357 
meaning separate 𝛼;<8&(9("<:& posteriors were computed for each participant (𝑖; 13 total alphas), 358 
representing each participant’s bias to judge “left” independent of movement direction or stimulus 359 
position, and two separate group level 𝛽4#50	7(809&(#: posteriors were computed for each 360 
movement direction (𝑗; forward and backward; 2 total 𝛽4#50	7(809&(#: parameters) to the stimulus 361 
position. We reasoned that if moving forward or backward had no influence on responses, the 362 
two posterior distributions for  𝛽4#50	7(809&(#: should be identical. We therefore calculated the 363 
difference in probability between the 𝛽4#50	7(809&(#:	posterior distributions, setting a ROPE for this 364 
contrast between -0.1 and 0.1 in terms of probability.  365 
 366 
To assess test-retest agreement, we used the Bland-Altman method (Altman and Bland, 1983; 367 
Giavarina, 2015). The Bland-Altman method is recommended to assess agreement because it 368 
specifically tests for biases across the range of “true” scores of a given variable, where a proxy 369 
for the true score is the mean of an individual’s score on Test 1 and Test 2 (Bland and Altman, 370 
1986). The method involves 3 analyses: 1) calculating the mean bias between the two estimates, 371 
2) calculating the bias across “true” values, and 3) determining the limits of agreement, calculated 372 
as the mean of the difference in estimates ±1.96 times the standard deviation of the difference in 373 
estimate. To test for biases in steps 1 and 2 we applied Bayesian inference instead of the 374 
frequentist methods typically used in the Bland-Altman method. We determined if there was a 375 
mean bias by estimating the distribution of differences between Test 1 and Test 2 for the PSE 376 
and uncertainty estimates separately. We modeled these contrasts as a normal distribution, 377 
estimating the most likely μ and σ values that could have generated each individual’s (𝑖) estimated 378 
difference from Test 1 to Test 2: 379 
 380 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[(]~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)																																																																																																																							(8) 381 
 382 
We focused our inference on the posterior distribution for μ, which, if no bias was present, should 383 
be close to zero. We therefore set a ROPE between -5 and 5 mm. We determined if there was a 384 
bias across the range of “true” values of PSE and uncertainty using a Bayesian regression 385 
analysis. The outcome variable, differences between Test 1 and Test 2 estimates for each 386 
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participant (𝑌[(]), was modeled as a normal distribution with the mean (μ) being predicted by the 387 
“true” PSE/uncertainty value (𝑋&830): 388 
 389 
𝑌[(]~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇[(], 𝜎)																																																																																																																																																(9𝑎) 390 
𝜇[(] = 𝑏	 + 	𝑚	𝑋&830[(]																																																																																																																																															(9𝑏) 391 
 392 
Here, a bias will manifest as an intercept (𝑏) and slope (𝑚) with magnitudes greater than 0. 393 
Therefore, we set a ROPE for the intercept between -5 and 5 mm and a ROPE for the slope 394 
between -0.1 and 0.1, which would translate to a 1 mm change in bias for a 10 mm change in 395 
“true” score. We defined good agreement as little to no evidence of a mean bias or a bias across 396 
true scores. Specifically, 90% of the posterior distributions calculated in the Bland-Altman analysis 397 
should not fall outside the ROPEs. We also performed a secondary analysis to determine if perfect 398 
agreement was at least plausible by characterizing the relationship between Test 1 and Test 2 for 399 
both the PSE and uncertainty estimates. Perfect agreement would result in a slope of 1 and an 400 
intercept of 0. We again used a Bayesian regression model, except the estimate on Test 2 was 401 
the outcome variable (𝑌>0$&	+)	and the estimate on Test 1 was the predictor variable (𝑋>0$&	.): 402 
 403 
𝑌>0$&	+[(]~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇[(], 𝜎)																																																																																																																																				(10𝑎) 404 
𝜇[(] = 𝑏	 + 	𝑚	𝑋>0$&	.[(]																																																																																																																																										(10𝑏) 405 
 406 
Here the HDIs for 𝑚	characterize the relationship between Test 1 and 2.  407 
 408 
3. Results and discussion  409 
 410 
3.1. Movement direction did not influence participant responses 411 
 412 
Thirteen participants (8 female, 5 male) completed the study. Data for one representative 413 
participant are displayed in Figure 1C. The psychometric functions (solid curves) were produced 414 
from the PSE (α) and uncertainty (β) estimates after the 75th trial and superimposed onto the 415 
empirical data (dots). For both tests, PSE values were positively biased (Test 1 mean [95% HDI] 416 
= 12.0 mm [3.3 20.6]; Test 2 = 15.3 mm [5.3 25.2]) and uncertainty measures (i.e., SDs) were just 417 
under 20mm (Test 1 = 18.2 mm [14.4 21.8]; Test 2 = 17.5 mm [13.5 21.4]). Our first concern, 418 
based on a prior study (Vazquez et al., 2015),  was to ensure that we controlled for the potential 419 
confound that movement direction may have had on responses. While the empirical probability of 420 
responding left when moving backward and forward (Figure 1D, left) appear similar, we also 421 
determined the individual impact of movement direction on responses using a Bayesian logistic 422 
regression. If movement direction did play a major role in responses, the difference in probabilities 423 
for 𝛽4#50	7(809&(#:	[?#8@<87] vs 𝛽4#50	7(809&(#:	[A<9B@<87] would be large, making the contrast largely 424 
different from 0. However, we found that the movement direction contrast was practically equal to 425 
0 (Figure 1D, right; posterior mean [95% HDI], contrast = 0.04 [-0.01, 0.09], 99.3% in the ROPE). 426 
Thus, randomizing the start positions prevented biased responses. 427 
 428 
3.2. Bland-Altman analysis revealed good agreement for both PSE and uncertainty estimates 429 
 430 
We used the Bland-Altman method to assess agreement (Figure 2A). First, we calculated the 431 
limits of agreement for PSE and uncertainty estimates (-22.3 to 15.5 mm and -10.1 to 11.6 mm, 432 
respectively; dotted lines in Figure 2A). Limits of agreement for both were relatively narrow 433 
considering the scale of the measurement, and the PSE limits were consistent with the range of 434 
values observed in previous work (Vazquez et al., 2015) which used 33 more trials than the 435 
current method. Next, we characterized the mean bias between Test 1 and Test 2 for PSE and 436 
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uncertainty estimates (histograms in Figure 2A). Both biases were very close to 0. The average 437 
bias for PSE was -3.3mm [-9.0, 2.8] (72.4% in ROPE). In other words, while the PSE was 438 
nominally lower on Test 2 than Test 1, we can be fairly confident that there is little-to-no bias for 439 
PSE measurements. With regard to uncertainty estimates, there was effectively no bias as the 440 
95% HDI was fully within the ROPE (0.7mm [-2.8, 4.1], 98.8% in ROPE).  441 
 442 
Next, we tested for evidence of a bias across different “true” PSE and uncertainty estimates, 443 
where the true estimate is represented by the mean of an individual’s estimates on Test 1 and 444 
Test 2 (i.e., the x-axis in the Bland-Altman plot), using a Bayesian linear regression model (solid 445 
regression line and shading in Figure 2A). For PSE, there was a small negative slope, although 446 
the most credible estimates surrounded a slope estimate of zero (-0.15 [-0.56, 0.28], 29.6% in 447 
ROPE), and the intercept was unbiased (-1.3 [-9.5 6.9], 76.0% in ROPE). These results indicate 448 
that participants with larger PSE values tend have increased bias between test 1 and 2. However, 449 
even when considering the largest mean PSE of ~40mm, this only produces a bias of -6mm. 450 
Therefore, we interpret this bias as negligible. For uncertainty estimates, the most probable 451 
regression was very similar to a line with 0 slope and 0 intercept (slope = -0.08 [-0.69, 0.58], 452 
24.5% in ROPE; intercept = 2.0 [-9.8, 13.8], 58.4% in ROPE). Combined, both Bland-Altman 453 
results show that estimated PSE and uncertainty values remain largely consistent across test-454 
retest sessions and across the range values, a sign of good agreement for this method.   455 
  456 

 457 
Figure 2: Point of subjective equality (PSE) and uncertainty estimates have good agreement. (A) Bland-Altman 458 
plot for the PSE (α; top) and uncertainty (β; bottom) estimates. The mean of Test 1 and Test 2 for each individual is 459 
plotted on the x-axis and the difference between the two tests is plotted on the y-axis. Thus, each dot represents one 460 
individual. The limits of agreement are plotted as the dotted lines, and the posterior distributions for the mean biases 461 
are plotted on the right sides as histograms. The most probable regression line is the solid line with the shading 462 
representing the 95% high density interval (HDI), with the black dashed line at 0 as a reference (B) Regression model 463 
for PSE and uncertainty. Estimates for Test 2 are plotted against estimates for Test 1 for each individual (dots) with the 464 
unity line (black dashed line) provided as a reference for perfect agreement. The most probable regression line is the 465 
solid line with the shading representing the 95% HDI. 466 
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As a secondary analysis, we characterized the relationship between estimates on Test 1 and Test 467 
2 to determine if something close to perfect agreement (slope=1, intercept=0) was at least 468 
plausible, again using a Bayesian linear regression model. Whereas the Bland-Altman analysis 469 
uses information from the two tests to estimate a “true” score (the x-axes in Fig 2A), the regression 470 
analysis measures the difference between the two tests without sharing information across tests. 471 
Figure 2B shows the most credible regression lines for PSE (top) and uncertainty (bottom) 472 
estimates, with the shading representing the 95% HDI. While there were credible slope values 473 
that fell both above and below one (slope = 0.92 [0.49, 1.38], intercept = 4.2 [-3.7, 12.4]), the 474 
single best PSE estimate (maximum a posteriori) between Tests 1 and 2 was very nearly one. 475 
The uncertainty estimates indicated that this parameter is less likely to perfectly reproduce the 476 
scores on Test 1 and Test 2 (slope = 0.65 [0.09, 1.19], intercept = 5.6 [-5.1, 15.8]). Interestingly, 477 
the results of this secondary analysis seemingly conflict with the Bland-Altman analysis. However, 478 
we see them as complementary: While the average bias is low and consistent across scores, the 479 
uncertainty values are less likely to be exactly reproduced from Test 1 to Test 2 compared to the 480 
PSE values. This might be interpreted as a reduction in uncertainty from Test 1 to Test 2 indicating 481 
a practice effect, however, individuals with lower uncertainty on Test 1 demonstrated increased 482 
uncertainty on Test 2. Consistent with reports in other psychophysical assessments, measures of 483 
uncertainty are more difficult to recover compared to PSE (King-smith and Rose, 1997; 484 
Kontsevich and Tyler, 1999; Turpin et al., 2010). Together, the results of this secondary analysis 485 
suggest that, while there is evidence of variability across test sessions, it is well within an 486 
acceptable range for psychophysical assessment. Indeed, the 95% HDI for PSE and uncertainty 487 
estimates both included what we would expect if the tests had perfect agreement. 488 
 489 
As further evidence of good agreement in our method, and to make direct comparisons with other 490 
studies, we also calculated intraclass correlation coefficients (ICC2,1), another commonly used 491 
metric of agreement (Berchtold, 2016; Kottner et al., 2011; McGraw and Wong, 1996). The ICC 492 
values for PSE (ICC2,1 [95% CI] = 0.80 [0.48, 0.93]) and uncertainty (0.61 [0.05, 0.85]) indicate 493 
good agreement (Portney and Watkins, 2009). These values fall within ranges of other 494 
psychophysics studies using the Psi algorithm and the method of constants, as those studies 495 
report ICCs for PSE estimates that range between 0.48 to 0.96 for the Psi algorithm (Schilling et 496 
al., 2017; Silva et al., 2020), and between 0.77 to 0.88 for the method of constants (Nicholson et 497 
al., 1997). Our method also compares favorably to other proprioception-specific assessments with 498 
ICCs ranging from 0.11 to 0.95 for measures of proprioceptive accuracy (Antcliff et al., 2021; Arvin 499 
et al., 2015; Deshpande et al., 2003; Gorst et al., 2020; Hillier et al., 2015; Rinderknecht et al., 500 
2018), and from 0.0 to 0.64 for measures of proprioceptive variability (Juul-Kristensen et al., 2008; 501 
Rahlf et al., 2019; Strong et al., 2021). The fact that the current method has good agreement for 502 
both proprioceptive PSE and uncertainty opens the door for future studies to assess the 503 
importance of uncertainty to lower limb function.  504 
 505 
3.3. Agreement was similar after 50 trials 506 
 507 
One of our primary goals for this method was to maximize efficiency. Participants took an average 508 
of 20±1 minutes to complete testing (including the two short walking breaks). The simplest way 509 
to reduce this time would be to reduce the number of trials, however, there is a risk that reducing 510 
the number of trials would also reduce the agreement of the PSE and uncertainty estimates. Since 511 
the Psi algorithm estimates PSE and uncertainty after every trial, we can assess agreement after 512 
any trial during the test. As a post-hoc analysis, we chose to assess agreement after 50 trials as 513 
the test time at this point would have been between 10-15 minutes. We found that all our 514 
measures of agreement were similar after 50 and 75 trials (Table 1). In contrast, examining 515 
agreement after 25 trials revealed a substantial reduction in agreement. Therefore, decreasing 516 
the number of trials to 50 would significantly reduce the time of the test without sacrificing 517 
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agreement, providing a reasonable timeframe for a test to be placed in the middle of a motor 518 
learning paradigm or to be used for a balance and falls risk assessment.   519 
 520 
Table 1: Agreement comparison after 50 and 75 trials 521 
 Limits of 

agreement 
(mm) 

Bland Altman 
Mean Bias (mm; % 

in ROPE) 
Bland Altman Bias 

Regression (mm; % in ROPE) 
Test 1 vs Test 2 

Regression 
ICC2,1 

[95% CI] 
PSE (α) 
50 trials -22.3 to 15.7 -3.2 [-9.2 2.6] (73.5%) Slope = -0.17 [-0.61 0.29] (26.2%) 

Intercept = -1.1 [-9.3 7.1] (77.0%) 
Slope= 0.91 [0.45 1.40]  
Intercept = 4.1 [-3.9 12.0] 

0.78  
[0.43, 0.92] 

75 trials -22.3 to 15.5 -3.3 [-9.0 2.8] (72.4%) Slope = -0.15 [-0.56 0.28] (29.6%) 
Intercept = -1.3 [-9.5 6.9] (76.0%) 

Slope= 0.92 [0.49 1.38]  
Intercept = 4.2 [-3.7 12.4] 

0.80   
[0.48, 0.93] 

Uncertainty (β) 
50 trials -9.3 to 10.2 0.5 [-2.7 3.5] (99.5%) Slope = 0.03 [-0.65 0.69] (24.3%) 

Intercept = 0.0 [-12.5 12.2] (60.0%) 
Slope= 0.57 [0.03 1.09]  
Intercept = 7.4 [-2.8 17.4] 

0.58 
[0.05, 0.85] 

75 trials -10.1 to 11.6 0.7 [-2.8 4.1] (98.8%) Slope = -0.08 [-0.69 0.58] (24.5%)   
Intercept = 2.0 [-9.8 13.8] (58.4%) 

Slope= 0.65 [0.09 1.19]  
Intercept = 5.6 [-5.6 15.8] 

0.61  
[0.05, 0.86] 

	522 
3.4. Limitations and future directions  523 
 524 
Despite the efficiency and good agreement of this method, we also recognize some of its 525 
limitations. For instance, one way to increase ecological validity when measuring proprioception 526 
would be to assess three-dimensional position sense as opposed to measuring proprioception in 527 
only the sagittal plane as we have done here. However, we believe our results should at least 528 
generalize to locomotor adaptation on the split-belt, given that, in this context, adaptation is often 529 
measured in sagittal plane kinematics like step length (Reisman et al., 2005). Another potential 530 
limitation is that during standing, although participants’ limbs were passively moved by the 531 
motorized treadmill, it is impossible to avoid some subtle movements and associated muscle 532 
activity. While no overt movements were observed during testing, in theory, any voluntary muscle 533 
activity might provide additional information about where the limb is located due to an efference 534 
copy of the motor command (Wolpert et al., 1995). However, in our case, such a compromise was 535 
unavoidable, as the primary goal of this study was to develop an assessment of lower limb position 536 
sense in a context that most closely resembles gait.  537 
 538 
In addition to measuring proprioception in standing, we assessed position sense of the whole 539 
lower limb by asking individuals to focus on the end effector (foot position) when making their 540 
judgements. Interestingly, there are few static lower extremity proprioception studies that ask 541 
individuals to focus on end effector position (but see Sigmundsson et al., 2000; Vazquez et al., 542 
2015), despite the functional significance of foot position to successful gait (e.g., stepping over 543 
curbs, trail running, etc.). Conversely, upper extremity studies frequently assess whole limb 544 
proprioception by having participants make judgments regarding end effector position (hand or 545 
finger (Jones et al., 2010; Vindras et al., 1998). These methods have characterized the precision 546 
of limb position sense (van Beers et al., 1998), the relationship between static proprioception and 547 
voluntary reaching movements (Jones et al., 2010), and the importance of static proprioception 548 
to sensorimotor adaptation (Clayton et al., 2014; Cressman and Henriques, 2010; Simani et al., 549 
2007; Tsay et al., 2021; van Beers et al., 2002). Unfortunately, similar lines of research are absent 550 
in locomotion, despite the critical role of proprioception in walking (Hiebert et al., 1996; Kriellaars 551 
et al., 1994; Pearson, 2004; Roden-Reynolds et al., 2015; Whelan et al., 1995). We speculate 552 
this is due at least in part to the previous absence of reliable and efficient methods of assessing 553 
lower limb proprioception in an upright, functional, and multi-joint context. We hope the current 554 
method opens the door to increasing understanding of the relationship between lower limb 555 
proprioception and locomotor adaptation in young, neurotypical adults as well as in older and 556 
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neurologic populations, for whom changes in proprioception may have a significant impact on 557 
their ability to adapt gait patterns (Bruijn et al., 2012; Bunday and Bronstein, 2009; Lam and 558 
Pearson, 2002; Pearson, 2000; Santuz et al., 2022).   559 
 560 
Efficient and reliable, whole lower limb proprioceptive measurements during standing should be 561 
useful for non-adaptation studies as well. For example, proprioception is an important part of 562 
multifactorial falls assessments (Lord et al., 1991), but the proprioception test previously 563 
recommended involves active toe position matching in a non-weight bearing position. The current 564 
method offers a more ecologically valid lower limb proprioception test since it is much closer in 565 
context to when falls most often occur: during weight bearing activities like walking and transfers 566 
(Talbot et al., 2005). Furthermore, since most lower limb proprioception tests only measure 567 
proprioceptive accuracy or bias (Han et al., 2016; Hillier et al., 2015; Horváth et al., 2022), it is 568 
unknown how proprioceptive uncertainty may relate to falls, something that can now be 569 
empirically assessed using the current method.   570 
 571 
As there are very few studies reporting PSE and uncertainty values for the lower limbs, we were 572 
interested in comparing our values to those reported in upper extremity studies. We found that 573 
the average uncertainty estimates in the present study were quite similar to values found in upper 574 
extremity proprioception studies (Jones et al., 2010), with both falling just under 2 cm. Additionally, 575 
we found that PSE estimates here were biased, a finding consistent with intrinsic biases in 576 
perceived hand/arm position (Fuentes and Bastian, 2010; Ingram et al., 2019; Jones et al., 2010; 577 
van Beers et al., 1996). We note that the bias reported in the present study is not related to 578 
footedness, nor due to moving only the left limb, as we randomized the test limb during pilot 579 
testing and found no difference in PSE values when the left versus the right limbs were moved. 580 
Importantly, biased estimates in upper extremity studies have been linked to biases in reaching 581 
direction (Jones et al., 2010; Vindras et al., 1998), suggesting that future work in the lower 582 
extremities may benefit from examining whether PSE biases are related to step length or other 583 
gait-related movements.  584 
 585 
4. Conclusion 586 
 587 
We developed and tested the reliability of a lower limb proprioception assessment in a gait-588 
specific context. This method is efficient, requiring only 50 trials to reliably estimate both the PSE 589 
and uncertainty of lower limb proprioception. We believe this method will aid future mechanistic 590 
understanding of locomotor adaptation and serve as a useful tool for basic and clinical 591 
researchers studying balance and falls. 592 
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Table 1: Agreement comparison after 50 and 75 trials 853 
 Limits of 

agreement 
(mm) 

Bland Altman 
Mean Bias (mm; % 

in ROPE) 
Bland Altman Bias 

Regression (mm; % in ROPE) 
Test 1 vs Test 2 

Regression 
ICC2,1 

[95% CI] 
PSE (α) 
50 trials -22.3 to 15.7 -3.2 [-9.2 2.6] (73.5%) Slope = -0.17 [-0.61 0.29] (26.2%) 

Intercept = -1.1 [-9.3 7.1] (77.0%) 
Slope= 0.91 [0.45 1.40]  
Intercept = 4.1 [-3.9 12.0] 

0.78  
[0.43, 0.92] 

75 trials -22.3 to 15.5 -3.3 [-9.0 2.8] (72.4%) Slope = -0.15 [-0.56 0.28] (29.6%) 
Intercept = -1.3 [-9.5 6.9] (76.0%) 

Slope= 0.92 [0.49 1.38]  
Intercept = 4.2 [-3.7 12.4] 

0.80   
[0.48, 0.93] 

Uncertainty (β) 
50 trials -9.3 to 10.2 0.5 [-2.7 3.5] (99.5%) Slope = 0.03 [-0.65 0.69] (24.3%) 

Intercept = 0.0 [-12.5 12.2] (60.0%) 
Slope= 0.57 [0.03 1.09]  
Intercept = 7.4 [-2.8 17.4] 

0.58 
[0.05, 0.85] 

75 trials -10.1 to 11.6 0.7 [-2.8 4.1] (98.8%) Slope = -0.08 [-0.69 0.58] (24.5%)   
Intercept = 2.0 [-9.8 13.8] (58.4%) 

Slope= 0.65 [0.09 1.19]  
Intercept = 5.6 [-5.6 15.8] 

0.61  
[0.05, 0.86] 
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Figure Captions  855 
 856 
Figure 3. Task setup, representative data, and movement direction analysis. (A) AFC task setup. 857 
Participants stood on the split-belt treadmill with visual feedback of their legs occluded by a black 858 
drape and auditory feedback occluded by noise cancelling headphones. The screen prompted 859 
participants to verbally respond to the question “Do you feel like your right or left foot is more forward?” 860 
when the test foot stopped at the stimulus location. (B) Trial sequence. 1) The test foot was moved to 861 
a start position either in front of or behind the stimulus position. Start positions were sampled from one 862 
of two normal distributions, depending on the movement direction assigned for that specific trial. 2) 863 
The test foot was moved to one of 21 possible stimulus positions between -100 and +100 mm. Tick 864 
marks (drawn to scale) represent each possible stimulus location. (C) Individual participant data. We 865 
reconstructed the psychometric functions from the PSE (α) and uncertainty (β) estimates for Test 1 866 
(blue) and Test 2 (red). The dashed black lines, provided as a reference, represent a PSE of 0 mm. 867 
The individual dots represent the participant’s response data for each test. (D) Movement direction 868 
analysis. We measured the mean empirical probability of responding left when the movement direction 869 
to the stimulus position was forward (gray) vs backward (black). Dots represent individuals. We also 870 
used a Bayesian logistic regression model to analyze the unique impact of each movement direction 871 
on participant responses by calculating the difference between the posterior estimates of the 872 
movement direction coefficients (one for forward movement, one for backwards) of every participant, 873 
yielding a posterior contrast distribution (histogram) which we compared to a region of practical 874 
equivalence (ROPE). We note that 99.3% of the posterior distribution is within the ROPE, confirming 875 
that responses were not biased by movement direction to the stimulus position.  876 
 877 
Figure 4: Point of subjective equality (PSE) and uncertainty estimates have good 878 
agreement. (A) Bland-Altman plot for the PSE (α; top) and uncertainty (β; bottom) estimates. The 879 
mean of Test 1 and Test 2 for each individual is plotted on the x-axis and the difference between 880 
the two tests is plotted on the y-axis. Thus, each dot represents one individual. The limits of 881 
agreement are plotted as the dotted lines, and the posterior distributions for the mean biases are 882 
plotted on the right sides as histograms. The most probable regression line is the solid line with 883 
the shading representing the 95% high density interval (HDI), with the black dashed line at 0 as 884 
a reference (B) Regression model for PSE and uncertainty. Estimates for Test 2 are plotted 885 
against estimates for Test 1 for each individual (dots) with the unity line (black dashed line) 886 
provided as a reference for perfect agreement. The most probable regression line is the solid line 887 
with the shading representing the 95% HDI. 888 
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