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Background: High Throughput sequencing (HTS) technologies completed by the bioinformatic analysis 11 
of the generated data are becoming an important detection technique for virus diagnostics. They have 12 
the potential to replace or complement the current PCR-based methods thanks to their improved 13 
inclusivity and analytical sensitivity, as well as their overall good repeatability and reproducibility. Cross-14 
contamination is a well-known phenomenon in molecular diagnostics and corresponds to the exchange 15 
of genetic material between samples. Cross-contamination management was a key drawback during the 16 
development of PCR-based detection and is now adequately monitored in routine diagnostics. HTS 17 
technologies are facing similar difficulties due to their very high analytical sensitivity. As a single viral 18 
read could be detected in millions of sequencing reads, it is mandatory to fix a detection threshold that 19 
will be influenced by cross-contamination. Cross-contamination monitoring should therefore be a 20 
priority when detecting viruses by HTS technologies.  21 

Results: We present Cont-ID, a bioinformatic tool designed to check for cross-contamination by 22 
analysing the relative abundance of virus sequencing reads identified in sequence metagenomic datasets 23 
and their duplication between samples. It can be applied when the samples in a sequencing batch have 24 
been processed in parallel in the laboratory and with at least one external alien control. Using 273 real 25 
datasets, including 68 virus species from different hosts (fruit tree, plant, human) and several library 26 
preparation protocols (Ribodepleted total RNA, small RNA and double stranded RNA), we demonstrated 27 
that Cont-ID classifies with high accuracy (91%) viral species detection into (true) infection or (cross) 28 
contamination. This classification raises confidence in the detection and facilitates the downstream 29 
interpretation and confirmation of the results by prioritising the virus detections that should be 30 
confirmed.  31 

 32 

Conclusions: Cross-contamination between samples when detecting viruses using HTS can be monitored 33 
and highlighted by Cont-ID (provided an alien control is present). Cont-ID is based on a flexible 34 
methodology relying on the output of bioinformatics analyses of the sequencing reads and considering the 35 
contamination pattern specific to each batch of samples. The Cont-ID method is adaptable so that each 36 
laboratory can optimise it before its validation and routine use.  37 
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Background 41 

 42 
The advent of high-throughput sequencing (HTS) technologies coupled with the development of powerful 43 
bioinformatics approaches has improved our ability to detect viruses in a non-targeted way from any 44 
sample collected from diverse sources. Noteworthy, detecting viruses by HTS technologies relies on many 45 
steps in the laboratory: sampling, transport and storage, nucleic acid extraction, library preparation, and 46 
sequencing (1). Compared to other molecular tests like (RT)-PCR, these steps are much more numerous 47 
and complex (2). 48 
The analytical sensitivity, e.g. the ability to detect viral species at very low concentration in a sample, has 49 
been demonstrated to be similar to or even better than RT-PCR for animals (3) or plant viruses(4,5)). In 50 
addition, the inclusivity of HTS technologies, e.g. the ability to detect all isolates from a species and all 51 
species whose nucleic acids are present in enough quantity in a nucleic acid extract, is particularly high 52 
compared to any other detection test (2,6). Consequently, the use of HTS technologies is currently 53 
expanding at a rapid pace in research and is also progressively used for the diagnostic of viruses 54 
threatening humans (7), including SARS-Cov-2 (8), livestock (9) or plant health (10).  55 
The broader application of HTS technologies for virus detection, with the simultaneous analysis of tens to 56 
hundreds of samples, is raising a significant challenge that needs to be addressed: the management of 57 
cross-contamination between samples. Scientists and diagnosticians already faced such challenges 58 
decades ago during the development of PCR-based techniques for detecting plants (11,12) or animal 59 
viruses (13,14), and this phenomenon might worsen with the use of HTS for virus detection (2). The higher 60 
complexity of laboratory operations, the intrinsically very high inclusivity, and the very low limit of 61 
detection (few viral reads are enough to detect the virus) of HTS make cross-contamination a more 62 
pressing issue. This is a frequently observed but, until recently, rarely reported observation in many, if not 63 
all, laboratories that have tested these technologies for virus detection. In many cases, these problems are 64 
frequently limited to a low number of reads and are of little consequence. Still, the specifics of the 65 
diagnostics field, with the need to detect viruses that can be at very low titre in the sample, clearly give 66 
more impact to such potential contamination problems (2). The occurrence of contamination is, therefore, 67 
a key element to consider when interpreting the viruses detected in HTS datasets.  68 
The consequences of erroneous detection due to cross-contamination between samples can be 69 
catastrophic, as described for tuberculosis prior to HTS (15) but also using HTS for human and plant viruses 70 
(16,17). 71 
 72 
So, even if the cross-contamination issue of HTS is long known and discussed in the scientific community, 73 
proper methodologies and dedicated algorithms are still missing to address it. Until now, the burden of 74 
detection confirmation relied on the virologist's expertise and the use of laboratory tests to independently 75 
confirm the presence of the virus in the sample, which is a fastidious, costly, and time-consuming task. To 76 
minimise the confirmation burden, arbitrary thresholds (like 5 or 10 reads) (4,18) have been proposed to 77 
consider a detection valid. Still, these thresholds are subjectively fixed based on the sequencing/detection 78 
tools or the scientist's experience. In addition, it has been shown recently that the cross-sample 79 
contamination burden can be very variable between sequencing batches and that an adaptative threshold 80 
is required(5). Therefore, the need for formal bioinformatic pipelines for HTS-based data that consider the 81 
possible cross-contamination is growing (19).  82 
To handle cross-contamination, several laboratory protocol improvements have been implemented over 83 
time: laboratory or reagent decontamination, alternate dual indexes, inter-run washing (20,21) or, more 84 
recently, the use of alien control. An alien control is defined as "a matrix infected by a target (called alien 85 
target) which belongs to the same group as the target organism to be tested in the samples, but that 86 
cannot be present in the samples of interest." (22). It is processed as external control alongside the sample 87 
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to be analysed. It is preferably the same type of matrix as the analysed samples: plant tissue, water … 88 
Ideally, the alien target, in our case a virus, should be at a high concentration in the alien sample as it 89 
allows a better analysis of cross-contamination between samples. Indeed, the probability of detecting any 90 
virus at a low level due to cross-contamination rises if this virus is very abundant in at least one of the 91 
processed samples. A high abundance of the alien virus will therefore allow better monitoring of 92 
contaminations, including for other viruses highly abundant in at least one tested sample. The presence of 93 
sequencing reads from the alien virus in any tested sample can be considered the consequence of 94 
contamination from the alien control to this sample. Such information can be used to monitor the cross-95 
contamination level between samples within the sequencing batch. 96 
Many generalist bioinformatic tools, such as Kraken (23) or BLAST (24) can detect the presence of viruses 97 

in HTS datasets with very high analytical sensitivity, as the detection is possible from a single viral read or 98 

contig. Some of them, like VirHunter (25), VirAnnot (26) or VirusDetect (27), have been specifically 99 

developed for that purpose. Nevertheless, they have not been designed to detect cross-contamination in 100 

the input datasets. Instead, they will detect a virus, whatever its origin: virus infection in the biological 101 

sample or contamination from another sample. The risk of contamination is particularly acute for viruses 102 

in very high abundance in one of the samples sequenced as a few contaminating reads can be detected by 103 

the bioinformatic tools in other samples prepared in parallel. The situation's impact is growing, especially 104 

in the diagnostic field (2), as false positive results due to contamination can lead to inaccurate data 105 

interpretation, which can cause tremendous health and trade issues.  106 

According to EDAM ontology (28), tools that address cross-contamination issues should be labelled as 107 
"Sequence contamination filtering". We were looking for tools using EDAM terms and the usual ones (virus 108 
reads contamination, cross-contamination, …). Some tools address similar issues like contamination on 109 
bacterial isolates (ConFindr- (29) or bacterial metagenome (GUNC - (30). They both use methods relying 110 
on operons organisation of genes that are not applicable for viruses. Croco (31) uses an approach mainly 111 
based on bacterial quantitative data. Finally, DecontaMiner (32) can be applied to metagenome data, 112 
including viruses but is based on a combination of detection methods (mainly mapping and Blast) that try 113 
to assign the dark matter (reads from unknown origin) more than formally detecting the cross-114 
contamination material. To our knowledge, there is no tool specifically addressing cross-contamination 115 
during virus detection in metagenome datasets. It means that some risks of false positive results remain 116 
unmonitored for virologists, and the burden of confirmation of detection in case of false positive is still not 117 
addressed. 118 
To solve this issue, we present Cont-ID, a method designed to check sample cross-contamination for 119 
viruses previously identified in metagenomic datasets. It relies on a simple requirement: every sample in 120 
a sequencing batch should have been processed at the same time and followed the same steps in the 121 
laboratory with at least one alien control as external control. Cont-ID uses a voting system to classify every 122 
species prediction on each sample of the sequencing batch into (true) infection or (cross) 123 
contamination. This tool will help the virologist to distinguish virus presence and virus cross-contamination 124 
in HTS data improving the reliability of viral detection and the efficiency of downstream confirmation and 125 
characterisation analyses. It can also help to improve feedback on upstream steps that might be linked to 126 
cross-contamination events. Cont-ID is an open-source python (v3) based script method freely available 127 
here: https://github.com/johrollin/viral_contamination. 128 
 129 
 130 

Methods: 131 

 132 
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Implementation 133 

 134 
In viral metagenomics, detecting multiple viral species in the same sample is frequent, and a virus species 135 
can be seen with different confidence levels in several samples of the same sequencing batch. Therefore, 136 
Cont-ID aims to determine whether a given detected virus in a sample is likely to be a contaminant or not 137 
by comparing it to the results from the other samples of the same sequencing batch, e.g. samples 138 
processed in parallel and following the same laboratory steps.  139 
Cont-ID does not require any development or maintenance of database as it only relies on data generated 140 
by usual bioinformatics tools for HTS dataset analyses and, most specifically, two elements: (i) the 141 
normalised abundance estimation (number of reads assigned to each detected virus species on each 142 
sample) and (ii) the number of identical reads among pairs of samples (deduplication ratio). These input 143 
metrics are easy to obtain as the abundance estimation can be calculated by using any mapping tool like 144 
BWA (33) or a read classifier like Kraken/Bracken (23,34), and the number of identical reads from a virus 145 
between two samples can be obtained by running any deduplication tool like BBduck (35). A tabulated file 146 
containing these numbers associated with the detected virus name and the unique ID for each batch 147 
sample is used as input for Cont-ID, as shown in Figure 2. Each virus predicted on each batch sample is 148 
considered a distinct element and corresponds to a line in the generated table. A separate table is 149 
generated for the alien virus. 150 
Computing the two elements mentioned above into three different metrics for the alien virus and each 151 
detected virus, Cont-ID can predict through three rules if a given viral species detection is likely a cross-152 
contaminant or not in the sequencing batch, as described in Figure 1.  153 
 154 
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 155 

Figure 1: Cross-contamination prediction with Cont-ID. 156 
There are two input files, one for the alien data and one for the samples data. Alien file is used to 157 
calculate control thresholds which are then used along with the sample data to apply rules to a voting 158 
system (step 1). The votes are then counted to decide for each virus on each sample (element) either if it 159 
is a (cross)contamination or an infection (step 2). 160 

The three rules classify as contamination or infection each element according to the pattern of reads 161 
number observed among the samples and the alien control for the alien virus and the considered viral 162 
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species. Rules one and two both use the (normalised) reads abundance estimation, while rule three uses 163 
the assessment of unique (identical) reads. Rules are calculated after normalising the number of reads 164 
per sample and are described more precisely in Figure 2. 165 

 166 

 167 
 168 
Figure 2: Cont-ID rules explanation. 169 
There are two input files, one for the alien data and one for the samples data. Alien file is used to calculate 170 
each alien control metric after normalisation. The sample file is used to calculate each data metric after 171 
normalisation. Each alien control metric is associated with a user (manually) designed adaptability metric 172 
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(X, Y or Z) to compose each rule's threshold. Finally, each Data Metric is compared to the corresponding 173 
threshold in order to obtain the three rules used in Cont-ID. 174 
 175 
The first rule uses the mapping ratio of each virus in each sample (corresponding to an element): the 176 
number of reads of each element is divided by the maximum number of reads of the corresponding virus 177 
in one of the samples. This first rule compares this mapping ratio for the element with the Control 1 metrics 178 
calculated for the alien virus and corresponds to the average number of reads mapped on the alien virus 179 
in the samples for which the alien is a cross-contaminant, with three times the standard deviation of this 180 
average. 181 
The second rule relies on the number of reads of the element in the sample. The rule compares it with 182 
Control 2, corresponding to the number of alien reads identified in the alien control. The third rule is based 183 
on each element's deduplication ratio, which is compared with Control 3. The average deduplication ratio 184 
of the alien virus reads between each tested sample and the alien control. 185 
 186 
We aimed to find the most reliable formula for threshold calculation on each rule while allowing a part of 187 
adaptability according to the biological system used. As the system variability can come from the 188 
laboratory using HTS, the host and type of sample (fruit tree, herbaceous plant, human, animal …), the 189 

type of virus (integrated or non) or the extraction protocol used (dsRNA, total RNA, small RNA...), each 190 
rule includes a third number (represented by X, Y or Z) that is called adaptability metrics (see Figure 2). 191 
The X will impact the first rule that considers the relative proportion of reads of a virus in this sample 192 
compared to the sample with the maximum read of this virus. This threshold is a refinement of the "alien 193 
threshold" described earlier(5). The default value proposed is 2. The Y divides the number of reads from 194 
the alien virus in the alien control for comparing it to the number of reads of each virus in each sample. In 195 
this publication, a default value of 1,000 has been fixed for Y, and it was in the range of the expected 196 
(cross) contamination ratio (number of reads in the truly infected sample versus the number of reads in 197 
contamination one). The Z metric impacts Control 3 and the evaluation of the proportion of identical reads 198 
between different samples. The proportion of identical reads can be influenced by different factors 199 
(mutation rate, respective genome length …). The role of Z is to consider those different factors. A default 200 
value of 1.5 is proposed. 201 
Default values of the three adaptability metrics have been provided in this publication after their 202 
optimisation on the banana datasets and their evaluation of other datasets. Nevertheless, users can 203 
independently modify them during the evaluation or validation of Cont-ID applied to their datasets. A 204 
careful evaluation of the adaptability metrics by the user is recommended to evaluate their impact on the 205 
diagnostic performance of the test. In addition, several sets of adaptability metrics can be run in parallel 206 
for further improvements in diagnostics performance. The value given to the adaptability metrics and 207 
controls resulting is always recorded in an additional log file (see Supplementary File 1 [log_file]). This log 208 
file help to ensure traceability allowing the user to check the pertinence of the chosen numbers and to 209 
adapt them when needed. As each of the three rules has two possible decisions (contamination or 210 
infection), a majority vote will be obtained with two or three votes. The decision of each vote is available 211 
in the generated result to support the result interpretation and let the user decides on the confidence to 212 
give to each individual rule according to the biological system tested. 213 
 In addition, the proper quantitative comparison of sequencing reads datasets relies on normalising the 214 
number of reads per sample, for example, as always done for transcriptomic or microbiome studies. This 215 
assertion is also true for Cont-ID and corresponds to an adaptative parameter. To limit some bias due to 216 
the difference in sequencing depth between samples in the same batch, we also normalise by default to 5 217 
000 000 reads in this publication. Still, it is manually changeable by the user.   218 
Finally, Cont-ID also has another level of flexibility: the script is made to ease the change of rules in the 219 
code that can complete or replace the existing ones. 220 
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 221 

Conditions of application for Cont-ID 222 

 223 
Three main conditions are essential to run Cont-ID. First, an alien control should be used, alien control 224 
should contain a high concentration of the alien virus, so reads from that viral species are more prone to 225 
be detected in other samples when cross-contamination occurs from the alien control to the other 226 
samples. Similarly, if another virus is found in the alien control sample, that is also an indication of potential 227 
contamination (although not used so far by Cont-ID). The alien control is bioinformatically processed 228 
exactly as the samples of interest to generate the alien metrics for each sample (in a separate tabulated 229 
file). In the absence of external alien control, it is still possible to analyse sequencing batches if they include 230 
samples from different host species and some detected viruses, preferably at high abundance, are known 231 
to infect only some of the host species. In such a case, the alien file should be filled with the selected virus 232 
as if it was an alien (with the status of alien present/absent in the file). Nevertheless, the threshold set-up 233 
and the results will be less accurate and include fewer samples (the samples corresponding to species that 234 
can be hosts for the virus could not be considered). In addition, a high degree of confidence is needed 235 
regarding the actual infection of the sample selected as alien control by the virus selected as an alien virus. 236 
Cont-ID always requires at least one (cross) contamination in the alien file to be reported; otherwise, the 237 
threshold calculation will fail; in that case, the tool will state it.  238 
 239 
The second application condition is related to the processing of the samples and the alien control. The 240 
alien control and all the other samples in a given batch should have been processed together in parallel 241 
for all the laboratory steps (RNA/DNA extraction, library preparation, sequencing) and bioinformatics 242 
(Reads cleaning, host removing …). This is a good diagnostic practice, but it is even more important here 243 
as the goal is to observe cross-contamination levels. The assumption is that the level seen with the alien 244 
represents what could have happened in samples of interest. Therefore, this assumption depends on 245 
processing all samples and control in parallel. 246 
 247 
The third condition is that, once the user has fixed the adaptability metrics, the analysis should be carried 248 
out batch per batch. The calculation of sample and alien metrics is dynamically done for each batch as 249 
cross-contamination patterns can strongly vary between batches, as recently shown for banana samples 250 
(5).  251 

 252 

 253 

Sequencing reads datasets 254 

 255 

The first datasets (batches A to D) were generated in our laboratory by total RNA sequencing protocol with 256 
ribodepletion applied to RNA extracted from banana plants (belonging to the Musa genus) (5). These data 257 
were generated to compare the test performance criteria of high throughput sequencing with classical 258 
virus testing protocols that include ImmunoCapture (IC)-(RT)-PCR and electron microscopy (36). The alien 259 
control corresponded to wheat plants infected by two species of barley yellow dwarf virus (BYDV-PAS and 260 
BYDV-PAV)(5). In total, four sequencing datasets (called A, B, C, and D) composed respectively of 27, 20, 261 
27 and 25 samples were generated independently. A fifth batch generated during this validation 262 
experiment using diluted samples for evaluating the limit of detection (analytical sensitivity) was not 263 
included in our analysis according to the recent guidelines proposed for statistical analysis of validation 264 
datasets for plant pest detection (22). A total of 10 different viral species were infecting these samples, 265 
including banana mild mosaic virus (BanMMV), banana bract mosaic virus (BBrMV), banana bunchy top 266 
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virus (BBTV), cucumber mosaic virus (CMV), and five species belonging to the banana streak virus (BSV) 267 
species complex. In addition, two other sequencing protocols were applied to some banana plants, small 268 
RNA sequencing (5) starting from the same RNA extract as total RNA sequencing (for 21 samples in a single 269 
batch) and double-stranded RNA (dsRNA) enrichment and sequencing protocol (37) applied from plant 270 
tissue of 13 samples in a single sequencing batch.  271 

 272 

 273 
Table 1: list of datasets used on Cont-ID 274 
 275 
BSV is a species complex (genus: Badnavirus, family: Caulimoviridae) among which five species were 276 

included in our samples: banana streak CA virus (BSCAV), banana Goldfinger virus (BSGFV), banana streak 277 

IM virus (BSIMV), banana streak Mysore virus (BSMYV), and banana streak OL virus (BSOLV). Notably, some 278 

species of this complex have their genome fully or partially integrated into the plant genome as 279 

endogenous viral elements (EVE), most specifically in B genomes originating from M. balbisiana. These 280 

EVE can be transcribed in the plant, and for some BSV species, they can even trigger an infection with viral 281 

particles of BSV in the plant (38). It is well documented that BSGFV, BSIMV and BSOLV are constitutive of 282 

Musa balbisiana (B genome) but can be activated in some conditions (39). In addition, BSMyV is also 283 

integrated into the Musa B genome, although the ability to produce infectious viral particles is not yet 284 

demonstrated. This brings additional complexity as EVE can be transcribed without the presence of a viral 285 

Batch_ID
NB of 

samples
Host type Extraction Method Extraction kit Library kit Sequencing Data link Publication

A (1) 27 Plant (Musa) Total RNA extraction

RNeasy Plus Mini Kit 

(Qiagen, Venlo, 

Netherlands)

Stranded Total RNA library Prep 

Human/Mouse/Rat i l lumine CA, 

United States)  & Ribo-Zero™ 

Plant Leaf Kit (i l lumine CA, 

United States) 

 Il lumina NextSeq 500 2X150
BioProject: PRJNA777477 samples 

starting with (1-XXX)
Wei et al., accepted.

B (2) 20 Plant (Musa) Total RNA extraction

RNeasy Plus Mini Kit 

(Qiagen, Venlo, 

Netherlands)

Stranded Total RNA library Prep 

Human/Mouse/Rat i l lumine CA, 

United States)  & Ribo-Zero™ 

Plant Leaf Kit (i l lumine CA, 

United States) 

 Il lumina NextSeq 500 2X150
BioProject: PRJNA777477 samples 

starting with (2-XXX)
Wei et al., accepted.

C (3) 27 Plant (Musa) Total RNA extraction

RNeasy Plus Mini Kit 

(Qiagen, Venlo, 

Netherlands)

Stranded Total RNA library Prep 

Human/Mouse/Rat i l lumine CA, 

United States)  & Ribo-Zero™ 

Plant Leaf Kit (i l lumine CA, 

United States) & TruSeq® 

Stranded Total RNA Library Prep 

Plant (i l lumine CA, United States)

 Il lumina NextSeq 500 2X150
BioProject: PRJNA777477 samples 

starting with (3-XXX)
Wei et al., accepted.

D (5) 25 Plant (Musa) Total RNA extraction

RNeasy Plus Mini Kit 

(Qiagen, Venlo, 

Netherlands)

TruSeq® Stranded Total RNA 

Library Prep Plant (i l lumine CA, 

United States)

 Il lumina NovaSeq 6000 

2X150

BioProject: PRJNA777477 samples 

starting with (5-XXX)
Wei et al., accepted.

E (6 sRNA) 31 Plant (Musa) Total RNA extraction

RNeasy Plus Mini Kit 

(Qiagen, Venlo, 

Netherlands)

SMARTer smRNA-Seq Kit 

(Clonetech)

 Il lumina NovaSeq 6000 

2X150

BioProject: PRJNA777477 samples 

starting with (1sR-XXXX)
Wei et al., accepted.

F (5 dsRNA) 9 Plant (Musa) Double stranded RNA
see article (Armelle 

Marais)

NEBNext Ultra II DNA library 

prep kit (New England BioLabs, 

US)

 Il lumina NovaSeq 6000 

2X150

BioProject: PRJNA777477 samples 

starting with (5ds-XXX)

Method: Marais et 

al., 2018 

https://doi.org/10.1

007/978-1-4939-

7683-6_4

G 

(Queensland 

university of 

technology)

5 Plant (mix) Total nucleic acid

Maxwell® Rapid 

Sample Concentrator 

instrument using 

SimplyRNA Tissue kit 

(AS1340, Promega)

TruSeq Stranded Total RNA
 Il lumina NovaSeq 6000 

2X150
BioProject: PRJNA752836

Gauthier, M.-E. A.,et 

all  

https://doi.org/10.3

390/BIOLOGY11020

263

H 49 Human
Total nucleic acid + 

amplification

NucliSENS EasyMAG 

platform (bioMérieux, 

Marcy l’Etoile, France)

Nextera XT  (Il lumina, San Diego, 

CA, USA)
 Il lumina NextSeq 500 2X150 bioproject: PRJNA494633

Bal et al., 2018 

https://doi.org/10.1

186/S12879-018-

3446-5

I 25 Human Total nucleic acid

MagNAPure 96 DNA 

and Viral NA Small 

Volume Kit (Roche 

Diagnostics, Almere, 

the Netherlands)

EBNext Ultra Directional RNA 

Library Prep Kit for Il lumina 

(New England Biolabs, Ipswich, 

MA)

Illumina HiSeq 4000 and 

NextSeq 500  depth: 10 

mill ion 2X150

bioproject: PRJNA560243

Boheemen et al., 

2020 

https://doi.org/10.1

016/J.JMOLDX.2019.

10.007

J 55 Human Total nucleic acid
TRlzol LS reagent 

(Invitrogen, USA)

 SMARTer® Stranded Total RNA-

Seq Kit v2 - Pico Input 

Mammalian (Takara Bio, USA) 

and the Trio RNA-Seq kit (NuGEN 

Technologies, USA)

Il lumina HiSeq 2X150 bioproject: PRJNA540900 

Li, et al., 2020 

https://doi.org/10.1

038/s41598-020-

60992-6
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particle. It has been recently demonstrated that the detection of BSV transcripts by HTS tests must be 286 

confirmed by an independent test such as immunocapture (IC)-PCR for confirming the presence of viral 287 

particles (5).  288 

The other datasets used in this work came from publicly available datasets listed in Table 1 and were 289 
already included in peer-review publications. They were selected because they fit two criteria: (i) having 290 
all virus presence checked in all the samples and (ii) having a virus species that could act like an alien 291 
control for the input file. First, another set generated to detect viruses from diverse plant samples by high 292 
throughput sequencing of total RNA extraction was kindly provided by Queensland University of 293 
Technology  (17), corresponding to a total of 19 plant viruses and viroid in 5 samples. In addition, the 294 
datasets generated from human samples came from published data from 3 different sources, with a total 295 
of 129 samples containing 39 viral species (40–42). These three human datasets allowed us to test Cont-296 
ID with a large diversity of viruses, with different extraction and sequencing methods listed in 297 
Supplementary File 2.  298 
  299 
In total, ten sequencing batches, including 273 samples and the presence of 68 viral species, were used to 300 
test the potential impact of a different host, extraction, and sequencing method on Cont-ID performances. 301 
All the data generated are available with the link and procedure applied to obtain them described in Table 302 
1; the indexing status of each virus in each sample is also available in Supplementary File 2. 303 

 304 

Bioinformatic analyses 305 

 306 

Quality control and mapping of sequencing reads 307 

 308 

For all datasets, read quality control (quality trimming, reads deduplication) was performed using a 309 
standard procedure described elsewhere (5). The cleaned reads were then mapped to a custom-built 310 
database (DB) containing all complete genome sequences from previously detected viruses in the datasets. 311 
For banana samples, all the complete genome sequences of the viruses were downloaded from NCBI nt 312 
database on (12/12/2020) to serve as mapping DB. While the BYDV reference (KU170668 – for the alien 313 
control) was selected as it was the closest sequence from our isolate. More information on the 314 
composition of each mapping DB is available elsewhere (5). 315 

The reads were mapped on the custom DB using Geneious mapper (Prime 2020.0.5, Biomatters). First, the 316 
profile parameters "Low sensitivity / Fastest" were selected (with 20% mismatch and a maximum of 3 317 
nucleotides gap allowed). To improve the results by aligning reads to each other in addition to the 318 
reference sequence, the fine-tuning for mapping was set to "Iterate 2 times". The "multiple best matches" 319 
option was set to "Randomly" (no multiple best matches between two different viruses were observed in 320 
any sample processed). In the coming result section, we will refer to these parameters as "relax". A second 321 
mapping referred to later on as "strict" was carried out using the same parameters except for the 322 
mismatch allowance that was lower than 10%. Only the second mapping was carried out for small RNA 323 
(20% mismatch is too much for small RNA). Indeed, using mismatches up to 20% should allow better 324 
inclusivity of the analysis by mapping reads from isolates that can be genetically distant from the reference 325 
sequences, especially if few reference genomes are available in the literature. Mapping with a strict 326 
parameter was done to use small RNA and confirm this hypothesis. The tolerance of mismatches of 20% 327 
is also close to many ICTV demarcation criteria to distinguish two different species (although these criteria 328 
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are often considered for only one or a few genes and might vary between families). Another test with 329 
more relaxed parameters would increase the risk of adding non-specific reads (e.i. not generated from the 330 
viral genomes) and was not considered.  331 

 332 

Deduplication of identical reads between samples 333 

 334 

To investigate cross-contamination between samples, additional deduplication of identical reads between 335 
samples was performed using dedupe V38.37 (from BBMap) embedded in Geneious (Prime 2020.0.5, 336 
Biomatters) and with the parameters kmer seed length, maximum edit, and maximum substitutions set as 337 
"31", "0", and "0", respectively. For each virus and sample, the mapped reads from each tested sample 338 
and the sample with the highest number of mapped reads in the batch were grouped into a single pool 339 
(using "Group sequences into a list" in Geneious) and deduplicated. The deduplication percentage equalled 340 
the number of reads removed as duplicates divided by the lower number of reads between the two tested 341 
samples. The deduplication percentage was not calculated on samples if less than 5 reads were mapped 342 
to target viruses. For those samples, the rule (number three) automatically votes contamination. While for 343 
the samples with the highest number of reads for a given virus, the deduplication ratio was set as reference 344 
(i.e. "RF"), and the vote for rule three is infection.  345 

Confusion matrix and performance criteria calculation 346 

 347 
We used a confusion matrix for each batch's results to have standard metrics for comparing batches and 348 
samples. We compared the tool prediction for each element to the indexing status of the dataset 349 
assimilating infection as a positive result and contamination as a negative result, as explained in Table 2. 350 

A 351 

Cont-ID confusion matrix 
Prediction 

Infection (Positive) Contamination (Negative) 

Indexing status 
Infection  True Positive (TP) False Negative (FN) 

Contamination False Positive (FP) True Negative (TN) 

B 352 

Diagnostic sensitivity (DSE) TP/(TP+FN) 

Diagnostic specificity (DSP) TN/(TN+FP) 

False omission rate (FOR) FN/(FN+TN) 

False discovery rate (FDR) FP/(FP+TP) 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Table 2: (A) Confusion matrix based on Cont-ID results. (B) The formula is used to calculate tool 353 

performance criteria. 354 

 355 
Based on the confusion matrix, we have four possibilities after a prediction: False Positive (FP) when the 356 
tool wrongly predicted an infection, True Positive (TP) when the tool correctly predicted an infection, 357 
False Negative (FN) when the tool wrongly predicted contamination and True Negative (TN) when the 358 
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tool correctly predicted contamination. In addition, we calculated several performance criteria 359 
commonly used in diagnostics to evaluate our tool. To calculate those performance criteria 360 
automatically, we used an automated script available on the same GitHub 361 

(https://github.com/johrollin/Cont_ID/tree/master/further_analysis).  362 

 363 

Results 364 

 365 
We used Cont-ID on ten metagenomic datasets, including a total of 273 samples, as a proof of concept 366 
(see details in method). These datasets covered a broad range of use for Cont-ID as they were generated 367 
from plant or human samples according to three library preparation protocols (total RNA, small RNA and 368 
double stranded RNA).  369 

 370 

Set up adaptability metrics datasets on the banana datasets  371 

 372 
When applying for the first time Cont-ID on banana datasets generated from reference samples with 373 
known viral status, the first objective was to determine the most appropriate values for the adaptability 374 
metrics (X, Y and Z), allowing to minimise both FP (over-prediction of infection) and FN (over-prediction of 375 
contamination). This was particularly complex as raising the value of an adaptability metric could lead to 376 
an over-prediction of either contamination or infection by the rule, while lowering it had the opposite 377 
effect.  378 

  379 

 380 
Figure 3: Cont-ID prediction when using the two default cases 381 
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 382 
During the set-up of the method, we looked for the most adapted set of values to balance our rule 383 
prediction on Musa datasets A, B and C. We tested several ranges of values aiming at limiting both wrong 384 
predictions (FP and FN). The optimised single set of values maintaining FP and FN low in the three datasets 385 
was not found. Indeed, variability was observed between batches, as any set limiting FP and FN in one or 386 
several batches was not optimal for the other batch(es). 387 
Indeed, the uneven proportion and pattern of cross-contaminations observed in different sequencing 388 
batches made it very difficult to decide on a unique set of values. Instead, it seemed more efficient to 389 
apply two different sets of values (called "case 1" and "case 2" further on) that favoured the prediction of 390 
either true infection (TP - case 1) or true contamination (TN - case 2) from the same datasets. The 391 
combination of the prediction from both cases would give additional information for interpretation. We 392 
proposed values that gave the best performance criteria on our training datasets on bananas, and the 393 
purpose of the diagnostic test was to minimise the risk of false negatives (priority 1) while keeping the 394 
confirmation burden manageable (priority 2). Importantly, those sets of values can be manually adapted 395 
by the user to improve one or several performance criteria of the test, to better fit the purpose of the HTS 396 
tests carried out and its associated risks (risk of false positive or false negative) or to limit the "grey zone" 397 
of inconclusive results (see under). 398 
Therefore, we propose to run Cont-ID with two sets of adaptability metrics every time to compare the 399 
results. Therefore, a high level of confidence is reached for the elements with identical predictions 400 
between both cases. The combination can also highlight elements for which the prediction changed; they 401 
correspond to the "grey zone" with metrics of abundance and/or duplication close to thresholds. In such 402 
cases, the automated prediction might not be accurate. At this stage, it is mandatory to carry on additional 403 
verification, such as checking the confidence (2 or 3 votes) for each prediction or comparing the threshold 404 
numbers (also provided in the result) with the sample metrics. Cont-ID provides the list of votes for each 405 
rule in each case to facilitate this additional verification. Then according to the additional information and 406 
the test's purpose, the user can decide on the status (infection or contamination) or keep it inconclusive 407 
but decide to test the virus presence independently by another test. For the presentation of the result, 408 
the result is mentioned as "inconclusive" when both cases disagree. 409 

 410 

Evaluation of the method accuracy on banana samples 411 

 412 
Based on the results obtained with the two sets of adaptability metrics, the tool predictions were 413 
compared with the biological status of each reference banana sample (batches A, B, C and D 414 
Supplementary File 2), allowing us to predict the cross-contamination on the four tested batches with an 415 
average accuracy of 90%, excluding 23% of elements classified as "inconclusive" (see table 3A). 416 

 417 

    
A - Relax mapping B - Strict mapping 

Batch A B C D A B C D 

Sequencing method TotalRNA TotalRNA 

  

Total element tested 105 93 143 128 76 65 93 68 

Expected 
Infection/Contamination 

28/77 14/79 34/109 19/109 28/48 14/51 34/59 17/51 

Case 1 

3 votes accuracy 91% 87% 86% 90% 100% 92% 94% 87% 

2 votes accuracy 60% 60% 45% 80% 69% 62% 46% 69% 

overall accuracy 73% 67% 66% 85% 78% 68% 62% 75% 

Case 2 3 votes accuracy 99% 95% 100% 96% 95% 92% 100% 94% 
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2 votes accuracy 58% 69% 87% 67% 70% 59% 64% 44% 

overall accuracy 85% 85% 93% 91% 83% 78% 80% 82% 

Cases 
combination 

accuracy % 88% 82% 94% 95% 82% 78% 81% 90% 

inconclusive % 23% 20% 33% 16% 5% 17% 32% 28% 

correct 
prediction 

71 61 90 103 59 42 51 44 

wrong 
prediction 

10  13  6  5  13  12  12  5  

inconclusive 
(occurrence) 

24  19  47  20  4 11 30 19 

 418 
Table 3: Percentage of the accuracy of case 1 and case 2 analysed alone or in combination on banana 419 
samples sequenced by ribodepleted totalRNA sequencing. Each case is presented with the proportion of 420 
correct or wrong predictions according to the number of votes obtained (2 or 3). The percentage is given 421 
by three votes confidence count only the result with three votes while the overall accuracy aggregates the 422 
2 and 3 vote results. When combining results from both cases, the percentage of inconclusive results and 423 
the number of correct or wrong predictions are stated. Two different mapping parameters were tested, 424 
allowing respectively 20% of mismatches (part A) or 10% of mismatches (part B) 425 
 426 

 The predictions with the three votes using default mapping parameters ("relax mapping") are very 427 

trustworthy as the accuracy is higher than 86% and 95% for cases 1 and 2, respectively. These promising 428 
results are obtained on the fraction of the elements representing 25-50% and 48-84% for case 1 and case 429 

2, respectively. The remaining elements are classified with two votes (more information is available in 430 
Supplementary File 3). The prediction accuracy with two votes is much lower, whatever the case. So, 431 
knowing the number of votes obtained by each element is crucial when the results need to be interpreted 432 
(and this number is always given in the report generated by Cont-ID). For case 1, most elements were 433 
predicted with two votes meaning that one of the (three) rules had the opposite prediction, which might 434 
explain why the accuracy was lower. While for case 2, the majority of the elements were predicted with 435 
three votes. The explanation is probably in the "expected Infection/contamination" row in Table 3A: for 436 
all batches, there is more contamination than infection (from 28 infections for 77 contaminations – batch 437 
A to only 19 infections for 109 contaminations - batch D). As stated above in the text and Figure 3, Case 2 438 
is designed to favour contamination detection at the expense of infections occurring at a low 439 
concentration that tend to be considered contamination (FN). Nevertheless, as a direct consequence, true 440 
contamination (TN) detection is high (see confusion_matrix in Supplementary File 3).  441 
Overall, case 2 presented a higher accuracy (85-91% relax mapping) than case 1 (66-85%), while the 442 
combination of the two cases reached a similar one (82-95 % relax mapping). Those good results from 443 
combination accuracy mean that very few predictions are wrong (5 – 13) in both cases, but 16-33% of 444 
elements are not counted in the accuracy percentage because they are inconclusive. The combination's 445 
importance relies on maintaining a high accuracy while highlighting the inconclusive prediction to prioritise 446 
them for manual expertise.   447 

 448 

The mapping parameters impacted the input files and the Cont-ID 449 

performance 450 

 451 
In Table 3, we explored the impact on the prediction of two levels of mismatch tolerance (20% and 10%) 452 
when mapping the sequencing reads on the viral genome DB. The goal was to explore if changing a 453 
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parameter from the primary bioinformatics step delivering the input files of Cont-ID could have an impact 454 
on the prediction. Strict mapping tends to lower the total number of elements tested due to a decrease in 455 
the number of samples for which we have very few reads mapped to a candidate virus. Cont-ID has more 456 
samples to process with a relaxed mapping, which should be better for threshold calculation. Logically, the 457 
elements lost by the strict mapping parameter should be predicted as "contamination" and present a 458 
relatively low number of reads. Indeed, those elements are most likely more distant reads (between 20 459 
and 10 % mismatch with the reference genome) mapped on the virus. They could correspond to non-viral 460 
reads wrongly mapped in datasets from samples tested negative by classical indexing. For example, for 461 
batch B, on the 23 differential mapping results, the number of reads mapped ranged from 1 to 10. Of those 462 
23 elements, 21 are classified as "contamination" the two remaining are labelled inconclusive. In batch C, 463 
there are 50 differential elements between the two parameters, with 37 correct (13 from BSV), 11 464 
inconclusive (10 from BSV) and 2 wrong (2 from BSV) classified elements. In total, 25 elements (on the 50 465 
- batch C) are from the non-integrated virus, of which 24 are labelled contamination (one inconclusive). 466 
The separation between integrated and non-integrated viruses is explained in Table 4 and another 467 
publication (5). 468 
Using the relaxed mapping parameter seems beneficial for prediction as the accuracy is better (82-95% 469 
relax, 78-90% strict). Moreover, thanks to the combination strategy, we can focus on the proportion of 470 
inconclusive; it is uneven with an important increase, 5% (strict) to 23% (relax) for batch A, while in batch 471 
D, it decreases from 28% to 16 %. However, when we look closely at the accuracy improvement, most 472 
comes from differential elements (present only with relax) that are 'obvious' contamination with few 473 
reads. So, most of the accuracy improvement did not come from very informative elements, except in 474 
some rare occurrences where it helped classify well elements in relax parameters that were inconclusive 475 
with strict or classified inconclusive elements in relax that were wrong with strict parameters. As an 476 
example, in batch C, on the 24 elements for BanMMV, BBRMV, BBTV and CMV common in both conditions 477 
(relax and strict), elements prediction is improved (from inconclusive [strict] to correct [relax]) for three of 478 
them (sample 3B1, 3B2 and 3B14 with BanMMV). 479 
There is, therefore, a slight improvement with relaxed mapping parameters, and we set these parameters 480 
by default to generate the input files. Indeed, with the relaxed parameters, the number of reads for each 481 
element (including alien) increases along the rise of the number of elements in the batch. This means that 482 
we change the rule's threshold (see Figure 2), which is critical for the threshold calculation in a way that 483 
seems more representative of reality than strict mapping. In these batches, some element metrics are very 484 
close to the threshold used for the rules and slightly changing those metrics or the alien metrics (the alien 485 
control metrics are obviously changed by the mapping parameters) can modify the prediction.  486 
 As we did not know the divergence of the virus genomes between different samples and the reference 487 
genomes, it seemed more logical to use relaxed mapping parameters by default. According to the virus 488 
system the user is working on and the ICTV demarcation criteria that go with it, these parameters should 489 
or could be adapted.   490 

 491 

The virus biology can impact Cont-ID performance: the case of virus 492 

integration in the host genome 493 

 494 

    

A- Non-integrated 

Virus 
B- Integrated Virus (BSV) 

Batch A B C D A B C D 

Sequencing method TotalRNA TotalRNA 
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Relax 
mapping 

Total element tested 40 31 51 55 65 62 92 73 

Expected 

Infection/Contamination 
19/21 9/22 22/29 10/45 9/56 5/57 12/80 9/64 

Case 1 

3 votes accuracy 100% 91% 96% 100% 82% 83% 68% 54% 

2 votes accuracy 94% 70% 75% 100% 47% 56% 43% 78% 

overall accuracy 98% 77% 94% 100% 58% 61% 50% 74% 

Case 2 

3 votes accuracy 100% 85% 100% 100% 97% 100% 100% 93% 

2 votes accuracy 50% 91% 82% 67% 62% 58% 89% 67% 

overall accuracy 88% 87% 92% 96% 83% 84% 93% 88% 

Cases 
combination 

accuracy % 100% 88% 96% 100% 79% 79% 92% 91% 

inconclusive % 15% 16% 6% 4% 28% 23% 48% 25% 

correct 
prediction 

34 23 46 53 37 38 44 50 

wrong prediction 0 3 2 0 10 10 4 5 

inconclusive 
(occurrence) 

6 5 3 2 18 14 44 18 

 495 
Table 4: Percentage of the accuracy of case 1 and case 2 analysed alone or in combination on banana 496 
samples sequenced by ribodepleted totalRNA sequencing with relaxed mapping parameters. Each case is 497 
presented with the proportion of correct or wrong predictions according to the number of votes obtained 498 
(2 or 3). The percentage given by three votes confidence count only the result with three votes while the 499 
overall accuracy aggregates the 2 and 3 vote results. When combining results from both cases, the 500 
percentage of inconclusive results and the number of correct or wrong predictions are stated. Two types of 501 
viruses were tested, Non-integrated virus (part A) or integrated virus (part B). 502 
 503 
To highlight the potential impact of the virus biology on the results of Cont-ID, the analysis of banana 504 
batches was split between integrated and non-integrated viruses. Indeed, several species of BSV are 505 
integrated into its host genome, which complicates the reliable detection of BSV infection from sequencing 506 
datasets. Consequently, it has been recommended to confirm any detection of BSV reads by an 507 
independent PCR test combined with immunocapture of viral particles (5).  508 
Table 4 shows better accuracy and a lower proportion of inconclusive results for non-integrated viruses 509 
compared to BSV. More elements with contamination status are obtained when looking for BSV than non-510 
integrated viral species. This over-representation of contaminants might be caused by the transcription of 511 
integrated sequences of BSV even without viral particles, which will raise the number of detected reads. 512 
These are two points that reduced the efficiency of our method on BSV and, by extension, might also 513 
concern any other viral species integrated into the host genome and able to produce transcripts.  514 
The global accuracy is lower for BSV species (79-92%) compared to the other viruses (88-100%), even if 515 
the maximum accuracy obtained with batch C (92%) was high. In addition, the proportion of inconclusive 516 
results should also be considered, and this proportion was much higher for BSV (23-45%) than for the other 517 
viruses (4-16%). So, the overall performance of Cont-ID is lower when applied on BSV and did not solve 518 
the issues of appropriate detection in sequencing data of viral infection from viruses integrated into the 519 
plant genome. Consequently, BSGFV, BSIMV, BSMYV, and BSOLV, which correspond to different but closely 520 
related species of Banana streak virus (BSV) integrated into the Musa genome, were excluded from the 521 
calculation of performance criteria for the banana datasets. BSCAV was also excluded (despite not being 522 
integrated) because of its similarity with other BSV species.  523 
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 524 

Performance of Cont-ID on diverse datasets 525 

The performance of Cont-ID using the two cases was further evaluated while diversifying the hosts (fruit 526 
trees, grasses, humans) and the sequencing protocols (total RNA, small RNA, dsRNA). 527 
 528 

 529 
 530 
Table 5:  531 
Percentage of the accuracy of case 1 and case 2 analysed alone or in combination from sequencing with 532 
relaxed mapping parameters (except for small RNA). Each case is presented with the proportion of correct 533 
or wrong predictions according to the number of votes obtained (2 or 3). The percentage given by three 534 
votes confidence count only the result with three votes while the overall accuracy aggregates the 2 and 3 535 
vote results. When combining results from both cases, the percentage of inconclusive results and the 536 
number of correct or wrong predictions are stated. Several virus datasets were tested, banana samples 537 
(only non-BSV viruses are considered), a mix of plants, and human datasets. 538 
 539 
Table 5 shows the method's accuracy on all datasets with relaxed mapping parameters (except for small 540 
RNA, see method). Overall, the accuracy of Cont-ID was 94%, with 15% of inconclusive results. The sRNA 541 
dataset provides a poor accuracy (50%) with 20% inconclusive; this can be explained by the (almost) 542 
absence of contamination (Expected Infection/Contamination 19/1) by the low level of reads found (see 543 

Supplementary Files 2 & 3 for more information). Apart from small RNA, the worst accuracy (88%) has 544 
been obtained from the batch B sequencing dataset of banana. Noteworthy, this protocol was 545 
independently evaluated for virus testing in banana, but its performance for virus detection was much 546 
lower than total RNA sequencing (5). The accuracy calculated from the single batch of dsRNA, with only 9 547 
samples and 12 elements, was 100%. Even if not enough representative dataset was used for dsRNA, the 548 
method accuracy seems not too far from what we obtained in Total RNA, indicating that, Cont-ID is 549 
independent of the extraction method. On Total RNA, for banana samples, the accuracy ranged from 88% 550 
to 100%, with 4% to 15% of inconclusive results. The accuracy of the plant mix (G) was also very high (98%), 551 
with 8% of inconclusive results. On human datasets, the accuracy remained high (92-93%), but the 552 

A B C D E F G H I J

Plant Mix 

(Gauthier 

et al., 

2022)

 Human 

(Bal et 

al 2018)

 Human 

(Boheemen 

et al 2019)

 Human 

(Li et al 

2020)

SmallRNA dsRNA Average

40 31 51 55 20 12 51 112 62 206 64

19/21 9/22 22/29 10/45 19/1 5/7 18/33 37/75 25/37 50/156

100% 91% 96% 100% 100% 100% 100% 96% 100% 90% 97%

94% 70% 75% 100% 36% 67% 86% 71% 54% 63% 72%

98% 77% 94% 100% 55% 92% 92% 87% 73% 77% 84%

100% 85% 100% 100% 33% 100% 97% 92% 92% 95% 89%

50% 91% 82% 67% 63% 50% 92% 68% 84% 78% 72%

88% 87% 92% 96% 45% 92% 96% 86% 89% 87% 86%

100% 88% 96% 100% 50% 100% 98% 93% 93% 92% 91%

15% 16% 6% 4% 20% 17% 8% 15% 29% 24% 15%

34 23 46 53 8 10 46 88 41 144 49,3

0 3 2 0 8 0 1 7 3 12 3,6

6 5 3 2 4 2 4 17 18 50 14,4

TotalRNA

correct prediction

overall accuracy

Batch

Origin Banana (own sequencing)

Sequencing method TotalRNA

inconclusive %

inconclusive 

(occurrence)

wrong prediction

Expected 

Infection/Contamination

Cases 

combination 

accuracy

Total element tested

Case 1

3 votes accuracy

2 votes accuracy

overall accuracy

Case 2

3 votes accuracy

2 votes accuracy
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inconclusive results reached up to 15 - 29%. Overall, the application of Cont-ID on human datasets reached 553 
similar performance in accuracy; the slightly worse inconclusive metrics can be explained by the fact that 554 
the adaptability metrics might not be the best ones for the human dataset and underlined the importance 555 
given at Cont-ID for the flexible adaptation of metrics and parameters. 556 
For most of the datasets, case 1 performed worse than case 2, probably due to the design of the case 557 
metrics (see Figure 2), where case 1 values were determined to favour infection. The expected 558 
infection/contamination ratio showed that for all the datasets but E (small RNA), there was a lot more 559 
contamination than infection; therefore, case 1 overpredicted infection, lowering its accuracy. In the E 560 
dataset, case 1 (55%) performed better than case 2 (45%) as expected; it is also the case for the human 561 
dataset H (97% case 1, 96% case 2), even if the ratio (37/75) leans toward contamination. 562 
 563 
Those results indicated that Cont-ID performed well in classifying cross-contamination in very different 564 
virus-host systems, even if some adjustments may be needed in some cases in the future. The different 565 
levels of flexibility of Cont-ID made such adjustments possible. To provide an example of analysis, all the 566 
information regarding batch C from the input file to the analysis file (including raw results) is available in 567 
Supplementary File 3. 568 
 569 

Discussion 570 

 571 
Despite significant efforts to limit cross-contamination (dual indexes, inter-run washing …), this still 572 
represent a concern and the appropriate distinction between low-level infection, and cross-sample 573 
contamination is crucial for the large-scale development of HTS technologies as a diagnostic test. 574 
Furthermore, it should be adequately managed because identifying and monitoring the cross-575 
contaminations improves the detection results' reliability. In other words, it can help to find the source of 576 
contamination in the laboratory, take appropriate measures to minimise it, and raise confidence in the 577 
detected viruses. 578 
This publication improved a preliminary work on determining an adaptative contamination threshold for 579 
the detection of plant viruses (5), which uses the maximal number of alien virus reads contaminating a 580 
sample as the threshold of detection for each sequencing batch. So, instead of using a fixed number for 581 
the contamination threshold as done in the literature, the threshold is adapted to the level of 582 
contamination monitored in the batch thanks to the alien control. The former publication used a single 583 
threshold corresponding to the maximum number of alien virus reads in a sample. Some limitations of this 584 
previous threshold, for example, overestimating contamination when viral reads are in low number for a 585 
virus, underlined the need for improvements. This was achieved with Cont-ID through the definition of 586 
multiple formal rules, the automation of calculation and the ability to adapt the thresholds and rules by 587 
the user. The tool's prediction relies on basic and usual information generated by bioinformatics analysis 588 
of sequencing data (mapping and duplication numbers) and the use of external alien control. The criteria 589 
based on reads (relative) abundance of each virus in each sample and the (approximation of) number of 590 
identical reads for a virus between samples performed well while being relatively easy to generate. Our 591 
objective with this tool was to show that exploring data generated by standard bioinformatic procedures 592 
can facilitate the identification of cross-contamination between samples. 593 
Cont-ID discriminated virus infection and cross-contamination between samples with a global accuracy of 594 
91 % (median=95%) on the diverse range of datasets included in its evaluation. The diversity of situations 595 
included viral species belonging to diverse viral families with cellular hosts belonging to plant or animal 596 
kingdoms and three different library preparation protocols. Importantly, the default values of adaptability 597 
metrics determined from banana dataset predicted cross-contamination with high accuracy (96%, on 598 
banana excluding small RNA) and remain high even on human datasets (94%). To further help the user in 599 
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the analysis, we provide the detailed votes prediction in the result file (see Supplementary File 3). This is, 600 
therefore, a solid basis for the diagnostician to check the level of confidence in the generated results. 601 
Indeed, each prediction made by the method uses at least two rules to determine the classification of the 602 
element for each case. A prediction with three votes is more confident than with two votes. But all 603 
predictions with two votes do not provide the same confidence as it depends on which rules predicted 604 
what. Of our three rules, two rely more or less directly on abundance estimation, which means that when 605 
that metric is not obtainable in a reliable way, the tools' predictions will be impacted, and predictions with 606 
those rules might be less confident. On the other hand, rule three (deduplication ratio) is less effective 607 
when the read numbers are low. Depending on the scenario, the user should consider the relative 608 
confidence of each rule when trying to confirm Cont-ID prediction. This underlines again the importance 609 
of proper interpretation of the obtained results based on the virus biology 610 
 611 
The prediction quality depends on the input data quality, meaning that the deduplication and mapping 612 
parameters are essential and should be carefully considered while evaluating their impact on the results. 613 
For example, some deduplication tools remove reads if a (small) read is contained in another (larger)  read; 614 
having that option active or not will significantly impact the deduplication ratio. As shown in the results, 615 
mismatch parameters are very impactful for the mapping. Considerations like ICTV demarcation criteria 616 
or what parameters the biologist would use to reconstruct the whole viral genome are helpful in deciding 617 
the ones to use for Cont-ID input. In that regard, testing and expertise in bioinformatics analysis are heavily 618 
beneficial. Here, the 20% mismatch parameter performed well; it might be different in other datasets (viral 619 
composition) configurations or when working with databases containing many reference genomes. 620 
Indeed, independently of the mismatch parameters used, using more genome references for each 621 
expected species could also improve the ability to detect sequences from distant isolates by better 622 
covering the genetic diversity of the virus. 623 
The biology of the virus should also be considered, as shown by the results obtained with viruses with 624 
functionally integrated genomes in the host, like BSV species. Our conclusion is that they should be 625 
considered independently from the non-integrated viruses. It was challenging to extract a reliable metric 626 
for BSV as the differentiation between reads from integrated genomes and reads from viral particles is 627 
impossible. Indeed, the biology of viruses integrated into the host genome differs from non-integrated 628 
viruses, as viral genome transcription can happen without viral particle production. We have not tested 629 
our method on species with different biological behaviour like viroids or phages. But optimisation of the 630 
adaptative metrics might likely be required in order the use Cont-ID with high accuracy. Viroid genomes 631 
are generally smaller than viruses, while the phage genome tends to be much larger and has specific 632 
biological features. For example, a different level of identical reads and abundance (calculation based on 633 
reads number) could be obtained between the different scales of genome size. 634 

For these reasons, Cont-ID allows the evaluation of other values for adaptability metrics (X, Y, Z) by each 635 
user to adapt the tool and optimise its diagnostic performance depending on the biological matrix, the 636 
protocol and the purpose of the test. Independently, the user can also adapt the metrics to reach the 637 
appropriate balance between FN and FP by deciding if, for the purpose of the test and the available 638 
resource for confirming detection, it is preferable to be overpredicting contamination to be confident that 639 
all the virus detection remaining are true infection or the opposite (overpredicting infection to be sure not 640 
to miss any). 641 

In our tests, the analysis of the wrong predictions showed that none of the proposed rules (and 642 
adaptability metrics values) allowed us to reach satisfactory accuracy with a proper balance between FN 643 
and FP (see Supplementary File 1). We have observed that using two sets of adaptability metrics (one to 644 
favour contamination and the other, infection prediction) gave a higher accuracy. In a real scenario (with 645 
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infection status not known for the samples), it is difficult to know if HTS virus detection (at low 646 
concentration) is in the majority due to true infection or cross-contamination. The two-case strategy 647 
allows the biologist to predict both scenarios with at least one case accurately. Indeed,  if the expected 648 
ratio of infection/contamination is unknown, the relative performance of cases 1 or 2 will be unknown, 649 
so it seems preferable to use the combination results instead of the individual.  650 

If both cases agree, the assumption is that the prediction is correct. Nevertheless, combining the results 651 
will provide a list of interesting inconclusive results. Each inconclusive result means that the two cases 652 
delivered opposite predictions. Therefore, the scientist should address those results when analysing 653 
Cont-ID prediction by checking the number of rules for each prediction, for example, knowing if 2 or 3 654 
rules agreed and checking the results of each rule :  How close to the threshold was the read 655 
abundance/ratio and/or the duplication rate? Spotting the few errors that may occur requires excellent 656 
manual expertise as the usual manual verification methods may also indicate the wrong decision (if there 657 
are many reads from cross-contamination, the mapping results can be wrongly positive while the and/or 658 
the (RT)-PCR  can also be wrongly positive if the contamination occurred at an early stage and the (RT)-659 
PCR was carried out on the same nucleic acids extract). Other information about the virus-plant 660 
interaction should be considered, like virus-species-cultivar compatibility or geographical virus 661 
distribution (see investigation on unexpected viruses (5)). 662 

 663 
Cont-ID also presents some limitations that need to be discussed. First, the number of identical reads 664 
estimation comes from the deduplication procedure, which is an approximation, and that can be a problem 665 
because it can consider the non-specific reads (reads that are not coming from cross-contamination but 666 
that are identical to another sample from a common area of the genome) as identical to the probable 667 
source of contamination by mistake. Indeed, this can be the case if, for example, two samples are infected 668 
by the same virus isolate at very different concentrations. The presence of duplicated reads might suggest 669 
contamination instead of a low-level infection. The risk of such an extreme situation is limited using two 670 
other rules, although interpreting the data will require good expertise in virus genomic variability and 671 
detailed information on the sample origins and virus prevalence and diversity.  672 
In addition, the duplication metric assumes that contamination (if any) comes from the sample with the 673 
highest number of reads. This theory seems logical since the more reads in a sample, the higher the 674 
probability of detecting a few reads from it contaminating other samples (potential of contamination). 675 
Nevertheless, it can create a bias when a virus is highly abundant in two (or more) samples and detected 676 
with a low frequency in others. In that case, it is difficult to determine the true origin of cross-677 
contamination. Such a case could be a fundamental limit of our current method. If several samples with a 678 
very high abundance of reads are present in a batch, as developed here, Cont-ID should be applied as many 679 
times as the number of highly abundant samples. Ideally, Cont-ID should include the read duplication 680 
comparison of each sample to all other samples for a virus, but this can raise additional issues (like 681 
contamination from several origins at the same time), and, at this stage, it was not implemented.  682 
We must also keep in mind that the relative quantity of genetic material between samples might change 683 
because the biologist normalises the quantity of DNA/RNA at two steps of the process: before starting 684 
library preparation and during the pooling of the prepared libraries. Meaning that the differential in 685 
genomic material concentration (potential of contamination of a sample) is resettled. If cross-686 
contamination happens before that step, it can cause less accurate predictions from Cont-ID. This bias in 687 
the estimation of abundance is another limitation of our method.  688 
Using an (alien) control helps to know the expected level of contamination but is also impacted by the limit 689 
of detection inherent to the standard bioinformatic procedures. Indeed, working with very few reads for 690 
some viruses makes some analyses impossible when below their detection limit. For example, the 691 
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calculation of the duplication rate below a minimal number of reads (in this study, we chose 5) of a virus 692 
did not make sense. The limit of calculation of the input metrics is another limitation of Cont-ID. 693 
 694 
Cont-ID accuracy was high, but additional improvements can probably be explored. For example, by 695 
exploiting the ability of other metrics generated during bio-informatic analyses (like RKPM, genome 696 
coverage percentage, relative coverage depth repartition, …) to help detect contamination. In fact, some 697 
of these metrics with several thresholds were tested for Cont-ID before selecting the three rules described 698 
in Figure 2 that provided the highest accuracy (in both contamination and infection determination). 699 
Importantly, values leading to a perfect scenario were not identified, and a two-cases classification system 700 
was set up (more information in Supplementary File 1).  701 
Nevertheless, adding more metrics will also complexify the decision system. If more metrics are considered 702 
for cross-contamination prediction, other implementations (decision tree, machine learning …) might be 703 
envisioned to replace the current voting system. On the other hand, the detection in the alien control of 704 
sequencing reads of other viruses detected in the tested samples is also the consequence of contamination 705 
from one of the tested samples toward the alien control. This information is not used now but could also 706 
be considered for future improvements as it requires less complex to implement. In addition, it might allow 707 
refinement of Cont-ID, potentially introducing an adaptation of threshold per virus instead of a single 708 
threshold for all samples from the sequencing batch. The idea is that two viruses present in the same batch 709 
may have different relative abundance behaviour in the samples, so setting up a limit that can adapt for 710 
each virus should improve the tool's ability to distinguish real infection from cross-contamination. Finally, 711 
working with the combination of all/some viruses profile instead of each individually for contamination 712 
check (similarly to what is used in metabarcoding of bacteria) can also be considered. Indeed, when a 713 
sample contaminates another, it is expected that all the viruses (highly frequent) from the contaminating 714 
sample can be found in the contaminated samples. Monitoring the virus detection profile of samples can 715 
provide additional information for cross-contamination (and ease the quest for contamination origin). 716 
Even if there is still improvement to be made, Cont-ID has already delivered an excellent ability to consider 717 
the level of contamination genuinely present in the batch. 718 
 719 
In conclusion, detection of cross-contamination is complex; in the age of sequencing, the contaminant 720 
issue is increasingly important; therefore, Cont-ID will facilitate the interpretation of results by the 721 
virologist/diagnostician and reduces the confirmation burden. We demonstrated that simple metrics like 722 
relative abundance estimation and redundancies of genetic material (reads duplicates) could help monitor 723 
contamination occurring in the laboratory. The method accurately distinguished cross-contamination from 724 
infection in very diverse HTS viral datasets. Our standard parameters allowed very good accuracy (median 725 
= 95%); in addition, Cont-ID has several levels of flexibility and can be adapted by each user to take into 726 
account the specificities of the detection test (purpose of the test, type of samples, viruses to be detected, 727 
laboratory work, available resources….). We believe this is the first significant step toward increasing the 728 
monitoring and management of sample cross-contamination when using HTS technologies for virus 729 
detection.  730 

 731 

 732 

Availability and requirements:  733 

 734 
Project name: Cont-ID 735 
 736 
Project home page: https://github.com/johrollin/Cont_ID 737 
 738 
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Operating system(s): Platform independent 739 
 740 
Programming language: Python (v3.7) 741 
 742 
Other requirements: pandas; NumPy 743 
 744 
License: GNU GPL-3.0 745 
 746 
Any restrictions to use by non-academics: none 747 
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