Epigenetic signature of human immune aging: the GESTALT study

Roshni Roy¹, Pei-Lun Kuo², Julián Candia², Dimitra Sarantopoulou¹, Ceereena Ubaida-Mohien², Dena Hernandez³, Mary Kaileh¹, Sampath Arepalli³, Amit Singh¹, Arsun Bektas², Jaekwan Kim¹, Ann Zenobia Moore², Toshiko Tanaka², Julia McKelvey⁴, Linda Zukley⁴, Cuong Nguyen⁵, Tonya Wallace⁵, Christopher Dunn⁵, William Wood⁶, Yulan Piao⁶, Christopher Coletta⁶, Supriyo De⁶, Jyoti Misra Sen⁷, Nan-ping Weng¹, Ranjan Sen¹, Luigi Ferrucci^{3*}

> ¹ Laboratory of Molecular Biology and Immunology ² Translational Gerontology Branch ³ Laboratory of Neurogenetics ⁴ Clinical Research Core ⁵ Flow Cytometry Unit ⁶ Laboratory of Genetics & Genomics ⁷ Laboratory of Clinical Investigation National Institute on Aging, Baltimore, MD

* - Corresponding and lead author (correspondence- ferruccilu@grc.nia.nih.gov)

ABSTRACT

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood borne immune cell types (naïve B, naïve CD4⁺ and CD8⁺ T cells, granulocytes, monocytes and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousand of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In-silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1 β) and REST transcription factor motifs respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to transcription factor motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

Keywords- DNA methylation, immune cells, aging, ARNT, REST, hypoxia

INTRODUCTION

Human aging is associated with site-specific changes of DNA methylation. Summary measures of DNA methylation called "epigenetic clocks" are extensively used in aging research to estimate biological aging(1-3). Epigenetic clocks closely approximate chronological age and beyond age, predict adverse health conditions, including frailty (4), Alzheimer's disease (5) and mortality(6, 7).

Research suggest that changes in DNA methylation with aging are regulated by specific mechanisms rather than by a stochastic drift (8). For example, a loss-of-function mutation in the H3K36 histone methyltransferase has been associated with epigenetic aging in mice (9). In humans, polymorphisms in the telomerase gene (TERT) (10) and age-dependent gain of methylation in the Polycomb repressive complex 2 have been related to accelerated aging(11). However, so far, no sound hypothesis exists that explains the association of DNA methylation with aging and pathology.

A main obstacle in understanding mechanisms driving age-associated changes of DNA methylation is that most human studies were performed in mixed blood cell types. The few studies that investigated select immune circulating cells failed to propose a unifying biological hypothesis explaining predictable changes of DNA methylation with aging(12-18).

We analyzed age-associated methylation in 6 purified blood-borne cell types sorted from peripheral mononuclear cells (PBMCs) from individuals of different ages. To minimize the confounding of age-associated pre-clinical and clinical diseases, participants were ascertained to be healthy by trained health professionals according to strict clinical

criteria. We looked for CpGs differentially methylated with aging in the same direction in multiple cell types. Next, in each cell type, we conducted enrichment analyses of genes close to age-associated CpGs. Finally, we looked for chromatin accessibility markers and transcription factor binding sites close to the same age-associated CpGs. Our findings suggest that changes in methylation with aging are related to fluctuation of energetic metabolism during the life course.

RESULTS

Age-associated methylation in individual cell types

A principal component analysis on normalized DNA methylation (Figure 1A and Supplementary Table 1) showed that clustering by cell types was stronger than by age (PC2 showed cell types-based clustering- 11.3 %) (Supplementary Fig. 1A).

Age-associated CpGs were identified through sex-adjusted beta regression models (FDR corrected p-value <0.05). Number of hypo- or hypermethylated sites varied considerably between cell types (Figure 1B) with highest numbers in CD4⁺ T cells (Supplementary Fig. 1B and Supplementary Table 2). Using a different approach of comparing between young (\leq 35 years, 25th percentile) and old (\geq 70 years, 75th percentile) individuals, we observed >90% overlap with beta regression-derived hypomethylated sites and 70-95% overlap with hypermethylated sites in all cell types except CD8⁺ T cells (9-14% overlap) (Supplementary Fig. 1C). Having fewer old donors with CD8⁺T cells may have contributed to differences (Supplementary Table 1).

Similar to other studies, we found that a significant proportion of age-hypomethylated CpGs were in the intergenic and open-sea (>4kb from CpG island) regions while age-

hypermethylated CpGs were in promoters and CpG islands (Chi sq test p<0.001) (Supplementary Figs. 1D and 1E). Additionally, age-associated differentially methylated sites in PBMC poorly recapitulate age-dependent changes that take place in specific primary immune cells (Supplementary Figs. 1E-F). These findings point to a wide heterogeneity of age-differential CpG methylation across immune blood cells and suggest that studies in PBMC poorly represents the changes that take place in specific cell types with aging.

Shared age associated methylation across cell types

Only 181 age-associated hypomethylated sites and 169 hypermethylated sites were shared between all 6 cell types. These numbers increased to 776 (age-hypomethylated) and 404 (age-hypermethylated) sites in 5 or more cell types (Figures 1C-D). Thus, most age-related methylation changes are cell-specific. Of note, only 10 of the sites overlap with the 359 CpGs in Horvath's pan-tissue epigenetic clock (19). While the number of shared age-hypo or hypermethylated CpGs across cells was relatively small, it was highly significantly higher than that expected based on chance alone, suggesting that common underlying epigenetic mechanisms exist across the considered cell types (Figure 1C & D). For example, CpG sites adjacent to *RCAN1* (calcineurin 1) and *KLF14* (Krueppel-Like Factor 14) show similar age-associated patterns in all cell types (Figure 1E and F).

Next, we tested whether the top 15 genes annotated to the most significant ageassociated CpGs were common across multiple cell types (Figure 2A-B and Supplementary Figs. 2A-E). Only the age-hypomethylation of *CCDC102B* was common to all cell types (Supplementary Tables 3 and 4) while *ELOVL2*, *GPR78*, *LHFPL4* and *KLF14* were commonly age-hypermethylated in all cell types (Supplementary Tables 3 and 4). These findings suggest that most CpGs with age-associated methylation consistent across cell types undergo moderate (although significant) methylation changes with aging.

Longitudinal validation of age-associated CpG sites

We hypothesized that the age-associated CpGs identified across the six immune cells in this cross-sectional study would also show longitudinal changes of the size and direction predicted. We used DNA methylation data (Illumina 450K microarray on DNA from buffy coats) assessed at baseline and 9- and 13-year follow-up in 699 participants of the InCHIANTI study (20). Of the 181 hypo-methylated and 169 hypermethylated CpGs with age in all cell types in GESTALT, 72 and 135, respectively, were represented in the 450K microarray. The beta-coefficients for age of the 207 CpG probes (72+135) estimated from the GESTALT study and their corresponding values estimated longitudinally from the InCHIANTI study were highly and significantly correlated (hypomethylated with age CpGs: r=0.49, p=1.2e-09 and hypermethylated with age CpGs: r=0.5, p=6.9e-06 for average beta coefficients across 6 cell types, Figures 2C-D and Supplementary Figs. 3A-B). Thus, CpGs identified as differentially methylated with aging across cell types in GESTALT also change longitudinally with aging.

Age-associated probes with opposite trends in different immune cells

Several CpGs showed significant but opposing age-trends in different cell types, especially in B, CD4⁺ T cells and monocytes (Supplementary Figs. 2F and G). For example, cg27123256 in the gene body of *BCL11B* was age-hypomethylated in non-T cells and significantly age-hypermethylated in naïve CD4⁺ T cells (Figure 2E). Our

observations implicate BCL11B in aging-related changes in naïve CD4⁺ T cell function, distinct from its proposed role in effector cells (14, 21, 22). Conversely, cg03530364 in the body of FAM19A1 gene was hypermethylated in non-T cells but age-hypomethylated in CD4⁺ T cells (Figure 2F). Of note, none of these CpGs were differentially agemethylated in PBMC. Thus, opposite age-methylation trends in specific cell types may cancel each other and obscure their relevance for aging when mixed cell type sample are assessed.

Pathway analysis of age-associated genes

Gene set enrichment analyses were performed on genes associated with at least one CpG significantly age-hypo or hypermethylated in 5 or more cell types. We identified 30 pathways (q-value<0.05) (Figure 3 and Supplementary Table 5). Probes commonly age-hypomethylated in 5 or more cell types (n=776) pointed to genes enriched in collagen biosynthesis, complement cascade and GTPase pathways (left-most column in bottom panel of Figure 3) that highlighted inflammatory and metabolic pathway in aging. Genes associated with shared age-hypermethylated probes (n=404) were enriched for neural pathways previously implicated to brain aging along with G-Protein Coupled Receptors pathways (23) (left-most column in top panel of Figure 3). Key pathways are highlighted, with associated genes displayed in boxes on the right-hand side.

Functional annotation of age-associated probes

To further interrogate the relationships between DNA methylation and other epigenetic states, we mapped the methylation age-associated sites to cell-specific chromHMM-derived chromatin profiles(24). As controls, we annotated all sites in the EPIC array to the

18-state chromHMM model of respective primary cell type. Granulocytes were excluded from this analysis because reference data were not available.

Age-associated hypomethylated CpGs were significantly enriched for weak/active enhancers (yellow bar, Figure 4A) whereas, confirming previous reports, agehypermethylated CpGs, were enriched in bivalent/polycomb regions compared to control set (brown and dark grey bars respectively in Figure 4A). Results for cell types-specific analyses are shown in Figure 4B.

We further mapped the profile of four epigenetic markers from the ENCODE project in and around (<u>+</u> 3kb) age-associated methylation sites. For B and CD4⁺ T cells, we observed a V-shaped peak-valley-peak pattern of DNase hypersensitivity at sites of ageassociated hypomethylation, which is characteristic of promoter sites (Figure 4C) (25). Both age-associated hypo- and hypermethylated sites showed evident H3K4me1 peaks, a marker commonly associated with active and primed enhancers (Figure 4C)(26). No specific trend was observed for H3K4me3 and H3K27ac (data not shown). These patterns were highly consistent across cell types (Supplementary Fig. 4) and strongly suggest functional connections between methylation and chromatin status.

Pattern of transcription factor binding motifs around age-associated CpGs.

Specific transcription factors (TF) may induce or been induced by DNA methylation (27, 28). Through our *de-novo* HOMER analysis, we observed that the binding motif for aryl hydrocarbon receptor nuclear translocator (*ARNT*, also named HIF1 β) was associated with age-hypomethylated CpGs across most cell types (Figure 5A). The only exception was naïve CD8⁺ T cells where the top enriched motif was B-cell lymphoma gene 6 (*BCL6*).

BCL6 code for a zinc finger transcription factor that plays a critical role in the generation of memory and effector cells in acute infection (29). Another motif associated with agehypomethylated CpGs across most cell types was chromatin architectural protein CTCF and its closely related gene BORIS. Methylation changes at CTCF sites reflected large scale genome reorganization in immune cells in older individuals (30, 31).

Repressor Element 1-Silencing Transcription Factor (*REST*) was the TF motifs most frequently associated with age-hypermethylated CpGs in 5 of 6 cell types (Figure 5B). Age-hypermethylated sites in PBMCs have been previously shown to be enriched for *REST*, which is known to repress stress response genes and is lost in cognitive impairment and Alzheimer's disease pathology (32, 33). The top enriched TF motif associated with age-hypermethylated sites in monocytes was Arid5A ($p<10^{-27}$) that binds to selective inflammation-related genes, such as *IL6* and *STAT3* and stabilize their expression (34, 35).

The recurring enrichment of *ARNT* and *REST* with age-associated CpGs observed across multiple cell types, despite relatively few shared genomic region locations, suggests this relationship is functional. We found that only 17 and 44 age-associated hypo- and hypermethylated probes, respectively, shared *ARNT* or *REST* motifs across all cells (Supplementary Figs. 5A-B), suggesting these overlaps are not random and have a specific function (Supplementary Figs. 5A and B).

Remarkably, *ARNT* was significantly overexpressed in older age in three of the six cell types and REST showed a significant decrease of expression with age in most cell types (Supplementary Table 6). These findings suggest that age-associated changes in

expression levels of *REST* and *ARNT* can affect the epigenetic status of their target genes.

Age-related differential methylation and oxygen sensing.

ARNT, REST and BCL6, three transcription factors most associated with differentially methylated regions, are implicated in hypoxia response (Figure 5C). ARNT is the beta subunit of Hypoxia Factor 1 (HIF-1), which is stabilized during hypoxia and shuttled to the nucleus where it binds to DNA hypoxia response elements (HRE) and triggers a complex response that include upregulation of angiogenesis and erythropoiesis and reprogramming of energetic metabolism from oxidative phosphorylation to anaerobic glycolysis (36). Hypoxia also upregulates the transcription of *REST* which is the master regulator of the transcriptional repression arm of the response to hypoxia. Released REST is shuttled to the nucleus where it binds to DNA and regulates approximately 20% of the hypoxia-repressed genes, including genes involved in proliferation, translation, and cell cycle progression. We identified 35 genes that were hypomethylated with aging and had close by an ARNT motif in all six cell types (Data not shown). Ten of these genes (right side of Figure 5C, genes under orange headings) have been linked to hypoxia response (37-46). Similarly, we found 20 genes with probes hypermethylated with age and with REST motif in the vicinity in all six cell types (data not shown). Four of these (right side of Figure 5C, genes under green heading) are known to be downregulated in hypoxia (47-50). These results strongly suggest a link between age-associated DNA methylation and oxygen sensing through putative regulation by transcription factors like ARNT and REST in the various immune cells.

DISCUSSION

Novel and important conclusions arise from our observations. First, only few CpG sites are hypomethylated and hypermethylated with aging across all circulating cells while the majority of significant age-associated methylation changes are cell-selective. Indeed, several CpGs show differential age-methylation in opposite directions in different cell types and are unchanged in PBMC, suggesting that they may be missed when studying mixed cell samples. Noteworthy, age-related methylation differences in this crosssectional study were strongly and significantly correlated with longitudinal age-associated methylation changes in an independent population.

Age-associated hypomethylated sites were significantly enriched for active enhancers whereas age-hypermethylated sites were enriched for bivalent/polycomb regions, confirming previous findings in whole blood(32). Age-differential methylation coincided with specific chromatin status and histone markers patterns, suggesting that their position in proximity of promoter and active enhancer regions is connected with chromatic accessibility and potentially modulation of gene expression.

Third, distinct TF binding motifs co-localize with CpGs differentially methylated with aging despite wide variation in the distribution of such sites across cell types, suggesting a specific regulatory function. Noteworthy, the top age-associated TF identified, *ARNT* and *REST* act in coordination in hypoxia response (51). *BCL6*, another top TF binding motif associated with age-differentially methylated CpG has also been shown to protects cardiomyocyte from damage during hypoxia (52). These finding supports the hypothesis that systematic methylation changes with aging may be induced by fluctuations in oxygen availability and energy metabolism. Interestingly, the mRNA encoding *ARNT* significantly increases with age in all cell types except monocytes, while mRNA coding for *REST*

declines with aging in 4 cell types and shows no significant change in naïve CD8+ T cells and NK cells. mRNAs coding for *CTCF* showed strong age-association across numerous cell types (Supplementary Table 6). The hypothesis that oxygen sensing regulates directly or indirectly DNA methylations is consistent with studies showing that in replicating fibroblasts, biological age estimated by DNA methylation slows down under hypoxia compared to normoxia(53). Further, many genes close by to "shared" agedifferentially methylated CpG identified in our analyses play important roles in hypoxia response (Figure 5C).

The specific mechanisms connecting age-related changes in DNA methylation in genes which also contain binding motifs the master hypoxia-response mediators remain unknown. Shahrzad al. reported an inverse correlation between the severity of hypoxia and the degree of DNA methylation(54). There is evidence that hypoxia-induced hypermethylation may be due to reduced TETs activity (55). Our findings add to this literature by suggesting that a direct interaction between hypoxia-related transcription factors and DNA methylation at specific DNA sites occur with aging, perhaps as an adaptive response triggered by fluctuations in oxygen levels that occur in many agerelated conditions. This hypothesis is consistent with oxygen availability been the most important environmental factor that requires physiological adaptation during pregnancy and development and extends this concept in a life course perspective.

A limitation of this study is that we have focused on circulating cells and, therefore, our findings may not apply to age-methylation in other tissues. In addition, our findings were not replicated in an independent cross-sectional study population. In spite of these limitations, this study has unique features: a cohort of exceptionally healthy donors and

percent methylation was assessed in specific cell types obtained by cytapheresis and sorted by using state-of-the art methods.

CONCLUSION

Age-associated DNA methylation profiles of the six purified primary immune cell populations in the blood show more cell-specificity than sharedness. However, we observe common regulatory features with respect to transcription factor binding motifs and histone modifications. Based on the consistent association of these methylated sites with ARNT and REST, which are master hypoxia regulators, we hypothesize that oxygen sensing and hypoxia drive mechanisms for changes in methylation. This hypothesis should be further explored in animal models with manipulation of oxygen levels and serial measures of DNA methylation in circulating immune cells.

MATERIALS AND METHODS

Cohort details

Buffy coat, peripheral blood cells (PBMC) and granulocytes were collected from Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing study (GESTALT) study participants (N=55; 34 men and 21 women; age 22-83 years) who were free of diseases (except controlled hypertension or history of cancer silent for > 10 years), not on medications (except one antihypertensive drug), had no physical or cognitive impairments, non-smokers, weighed > 110 lbs, had BMI < 30 kg/m² (56) (57). GESTALT was approved by the institutional review board of the National Institutes of Health and participants explicitly consented to participate.

Isolation of PBMC and immune cell populations

PBMCs were isolated from cytapheresis packs by density gradient centrifugation using Ficoll-Paque Plus. Total B, CD4⁺ and CD8⁺ T cells were enriched by negative selection using EasySep Negative Human kits specific for each cell type; monocytes were negatively enriched using "EasySep Human Monocyte Enrichment Kit w/o CD16 depletion". Natural killer cells were negatively enriched by depleting PBMCs with antibodies against CD3, CD4, CD14, CD19 and Glycophorin-A in HBSS buffer. Enriched cell populations were FACS sorted by flow cytometry as per Human Immunophenotyping Consortium (HIPC) phenotyping panels (58). Gating strategies and post-sort purity were analyzed by FlowJo software (LLC, Ashland, OR)(56). Granulocytes were positively selected from whole blood using EasySep™ Human Whole Blood CD66b Positive Selection Kit. Purified cells and PBMC were washed with PBS, snap frozen and stored at -80° C. All sorted cells were >95% pure by flow cytometry(56).

Assessment of DNA methylation

DNA was isolated from 1–2 million cells using DNAQuik DNA Extraction protocol and the Qiagen DNeasy Kit. 300 ng of DNA was treated with sodium bisulfite using Zymo EZ-96 DNA Methylation Kit. The methylation of ~850,000 CpG sites was determined using Illumina Human MethylationEPIC BeadChip, and data preanalyzed by GenomeStudio 2011.1.

Data processing and functional annotation of CpG sites

Analyses was performed by the R minfi package (59, 60). Probes with low detection pvalues (cutoff 0.01) were filtered out(61). Data was normalized using noob and BMIQ(62), batch corrected by ComBat function (sva package), and β values were used for differential methylation analyses. Following the MethylationEPIC probe annotation (IlluminaHumanMethylationEPICanno-.ilm10b2.hg19) to the UCSC RefSeq genes (hg19), we grouped the locations into 3 categories - 1) promoter group- TSS1500 (from 201-1500 bp upstream of TSS), TSS 200 (≤200 bp upstream of TSS), 5'UTR, first exon; 2) genebody- exons (all exons except exon1), exon intron boundary, intron and 3'UTR and 3) intergenic probes. The first gene in the annotation package was considered. Probes were divided into 3 groups-within CpG islands (CGI), within CpG shore (0-2kb from CGI), CpG shelf (2-4kb from CGI) and open sea (>4kb from CGI).

Definition of age-associated probes

Age and sex adjusted CpG-specific beta regressions were performed on normalized β values using the R *betareg* function. P-values were adjusted for multiple testing (Benjamini-Hochberg (BH) adjusted p< 0.05). Probes with FDR p<0.05 for age were considered age-differentially methylated CpGs and considered hypo- (Estimate_{age} < 0) or hypermethylated (Estimate_{age} >0). The overlap of probes across multiple combinations of the six cell types was assessed using R package SuperExactTest (v.1.1.0) (63).

Gene Set Enrichment Analysis (GSEA)

Based on the EPICarray annotation, genes were classified as differentially hypo- or hyper-methylated with age. Genes with both age hypo- and hyper-methylated CpGs were removed from the analysis. Enrichment analysis was performed by the tmodHGtest method in the tmod v.0.46.2 R package, comparing a foreground list of genes found in \geq 5 cell types against reference gene set collections "Hallmarks" and "Canonical Pathways"

(which includes Reactome, KEGG, WikiPathways, PID, and Biocarta gene sets) from the Molecular Signature Database MSigDB (v.7.4)(64).

Visualization of histone peaks and DHS peaks

Primary cell DHS and chromatin ChIP-Seq bigwig files were downloaded from ENCODE (https://www.encodeproject.org/) (56). DeepTools was used to visualize DHS and histone peaks in +3kb region surrounding age-associated shared and non-shared methylated sites. For plotting purposes, the order of methylated probes was determined based on descending score of DHS peaks and followed for all histone marks (H3K4me1, H3K4me3 and H3K27ac).

Annotation of age-associated methylated probes using chromHMM

The 18-state chromHMM models (based on 6 chromatin marks H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 and H3K27ac) for various immune cells (E032primary B cell, E038- primary naïve CD4⁺ T cells, E047- primary naïve CD8⁺ T cells, E029- monocyte, E046- NK cell) were downloaded from Roadmap epigenomics project (https://egg2.wustl.edu/roadmap/web_portal/chr_state_ learning.html). Bedops tool was used to map the age-associated methylated sites to the respective chromHMM profiles. All Infinium MethylationEPIC array probes were also partitioned using each of the immune cell chromHMM profiles as controls.

Prediction of de-novo transcription factor binding motifs by HOMER

<u>+</u>200bp around each age-associated methylated site was provided as input for analysis in HOMER using de novo setting(65).

InCHIANTI longitudinal study cohort

InCHIANTI (Invecchiare in Chianti) is a population-based cohort of individuals \geq 20 years old from the Chianti region of Tuscany, Italy (PMID: 11129752). The Italian National Institute of Research and Care on Aging Institutional Review Board approved the study protocol and all participants explicitly consented to participate. DNA methylation from 699 participants (1841 observations) were used for the analysis. CpG methylation of 485,577 CpGs was determined by the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA) and data processed by the R package "sesame". Mean rates of change were estimated from 2-3 longitudinal timepoints.

RNA-Seq sample extraction, processing and data analysis

Total RNA was extracted from 2 x10⁶ cells, depleted from ribosomal RNA and 50ng was used for cDNA synthesis and library preparation. Libraries were sequenced for 138 cycles on Illumina HiSeq 2500. After adapter removal and end trimming of raw FASTQ files, transcript abundances were quantified with reference to hg19 transcriptome using kallisto 0.44 (with options --single -I 250 -s 25). Transcripts were aggregated to genes with tximport and filtered out if less than 10TPM were detected in more than 33% of the samples. Linear regression models (~ phase + age*sex) were used on TPM normalized expression values to study expression changes of selected transcription factors with age. female.

Data sharing statement

Microarray data are available at GEO under accession number GSE184269.

FIGURE LEGENDS

Figure 1: Study design and identification of age-associated methylation probes A) Study design. B) Age-associated CpG methylation (FDR p<0.05) in 6 cell types. C-D) SuperExactTest circular plots to show the number of age-associated hypo- and hypermethylated probes shared among different combinations of cell types (indicated by green boxes), respectively. The outermost bars show the number of probes shared among each cell type combination (regardless of other cell types). For examples, probes hypomethylated with age in B + CD4 + CD8 + gran + mono (n=222) includes probes also hypomethylated in NK cells (n=181) and probes not hypomethylated with age in NK cells (n=41). Based on the exact probability distributions of multi-set intersections, all the overlaps shown are highly statistically significant (p<10⁻¹⁰⁰). E) Graphical representation of age-associated hypomethylation in promoter region of RCAN1 in all 6 cell types. F) Graphical representation of age-associated hypermethylation in promoter region of KLF14. The methylation status in PBMC and buffy coat are also shown. Missing methylation data is represented in white.

Figure 2: Characteristics of age-associated probes. A-B) Manhattan plot of ageassociated hypo- and hypermethylated CpG sites in B cells respectively. Most significant genic probes (-log padj <10) are labelled. C) Correlation between beta-regression coefficients of age-differentially methylated CPGs in GESTALT and longitudinal InCHIANTI study. X-axis- InCHIANTI, Y-axis- B cell (Figure 2C) and CD4⁺ T cell coefficients (Figure 2D). Blue dots - age-hypomethylated CpGs, yellow triangles- agehypermethylated CpGs. E and F) Scatter plot of age-associated CpGs showing opposite trends in different immune cells. E) cg27123256 (in BCL11B promoter) is hypomethylated

with older age in B, monocytes and NK while is hypermethylated with older age in CD4⁺ T cells. F) cg03530364 (in FAM19A1 promoter) is hypermethylated with older age in B, granulocytes, monocytes and NK cells while it is hypomethylated with older age in CD4⁺ T cells.

Figure 3: Pathway analysis of methylated probes. Enrichment analysis of genes annotated to age-associated hypo- and hyper-methylated CpGs in ≥5 cell types (left-most column) and in individual cell types. Red/green shades indicate enrichment scores in hyper- (red) and hypo- (green) methylated genes. Yellow indicates ambiguous pathways associated with both hypo- and hyper-methylated genes in individual cell types. Not significant pathways are shown in grey. Full results in Supplementary Table 5.

Figure 4: Functional annotation of age-associated probes along with their grouping based on sharedness. A) ChromHMM annotation of age-associated CpGs. B) Proportion of CpGs mapping to weak/active enhancers (left, orange box), bivalent enhancers/TSS (inset, brown box) and polycomb repressor regions (right, grey box) in age-associated hypo- (blue line), hypermethylated (red line) CpGs as compared to all MethylationEPIC CpGs (grey line). C) DeepTools plots showing the distribution of accessible chromatin (DNase hypersensitive sites) and H3K4me1 histone mark in and around \pm 3kb region of age-differentially methylated CpGs. The age-associated sites were divided into shared (blue) (common between 5 or more immune cells) and selective sites (green). The top row shows the pattern for age-associated hypomethylated CpGs while the bottom row is for the age-associated hypermethylated CpGs in B and CD4⁺ T cells.

Figure 5: Association of transcription factor binding motifs with age-differentially **methylated CpGs.** A) Top 5 TF motifs at and around (± 200bp) of CpG sites that are hypomethylated with age. Recurring motifs like ARNT and CTCF/BORIS are highlighted. B) Top 5 TF motifs at and around (± 200bp) CpG sites that are hypermethylated with age. Recurring motifs like REST and Sp100 are highlighted. C) Hypoxia-centric model of age-associated sites with ARNT and REST motifs. CpG sites hypomethylated with aging across 6 different cell types are significantly more likely to host binding motifs for ARNT, the core hub for the hypoxia response. On the contrary, CpG sites hypermethylated with aging are significantly more likely to host binding motifs for REST, a hypoxia response transcriptional repressor. On the right are selected age-associated genes that carry the motifs for ARNT or REST transcription factors.

Acknowledgements

This work was supported entirely by the Intramural Research Program of the National Institute on Aging. We are grateful to the GESTALT participants and the GESTALT Study Team at Harbor Hospital and NIA.

Author Contributions

Conception or design of the work- N.P.W., R.S., L.F

Acquisition, analysis, or interpretation of data- R.R., P-L.K., J.C, D.S., C.U-M., D.H., M.K., S.A., A.S., A.B., J.K., A.Z.M., T.T., J.M., L.Z., C.N., T.W., C.D., R.W., W.W., Y.P., K.G.B., C.C., S.D., J.M.S.

Drafting or substantively revising the manuscript-R.R., R.S., L.F.

Conflict of interest disclosure

The authors have no conflict of interest to disclose.

REFERENCES

1. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371-84.

2. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-67.

3. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic predictor of age. PLoS One. 2011;6(6):e14821.

4. Gale CR, Marioni RE, Harris SE, Starr JM, Deary IJ. DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clin Epigenetics. 2018;10(1):101.

5. McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, et al. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer's disease. Alzheimers Dement (Amst). 2018;10:429-37.

6. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.

7. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylationbased measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844-65.

8. Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013;22(R1):R7-R15.

9. Martin-Herranz DE, Aref-Eshghi E, Bonder MJ, Stubbs TM, Choufani S, Weksberg R, et al. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol. 2019;20(1):146.

10. Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun. 2018;9(1):387.

11. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, et al. Agedependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20(4):440-6.

12. Dozmorov MG, Coit P, Maksimowicz-McKinnon K, Sawalha AH. Age-associated DNA methylation changes in naive CD4(+) T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics. 2017;9(4):429-45.

13. Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014;5:5366.

14. Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Sci Rep. 2015;5:13107.

15. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8(4):e1002629.

16. Kananen L, Marttila S, Nevalainen T, Jylhava J, Mononen N, Kahonen M, et al. Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. BMC Genomics. 2016;17:103.

17. Acevedo N, Reinius LE, Vitezic M, Fortino V, Soderhall C, Honkanen H, et al. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes. Clin Epigenetics. 2015;7:34.

18. Marttila S, Kananen L, Hayrynen S, Jylhava J, Nevalainen T, Hervonen A, et al. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics. 2015;16:179.

19. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

20. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48(12):1618-25.

21. Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8(+) T-cell differentiation. Immunol Rev. 2014;261(1):157-68.

22. Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol. 2014;14(8):529-45.

23. de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. Gi/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci. 2019;11:89.

24. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9(3):215-6.

25. Pundhir S, Bagger FO, Lauridsen FB, Rapin N, Porse BT. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Nucleic Acids Res. 2016;44(9):4037-51.

26. Bae S, Lesch BJ. H3K4me1 Distribution Predicts Transcription State and Poising at Promoters. Front Cell Dev Biol. 2020;8:289.

27. Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MS, Kawaji H, et al. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics. 2014;15:119.

28. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38.

29. Kim C, Jin J, Weyand CM, Goronzy JJ. The Transcription Factor TCF1 in T Cell Differentiation and Aging. Int J Mol Sci. 2020;21(18).

30. van Ruiten MS, Rowland BD. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF. Curr Opin Cell Biol. 2021;70:84-90.

31. Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol. 2021;22(10):653-70.

32. Yuan T, Jiao Y, de Jong S, Ophoff RA, Beck S, Teschendorff AE. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet. 2015;11(2):e1004996.

33. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507(7493):448-54.

34. Nyati KK, Zaman MM, Sharma P, Kishimoto T. Arid5a, an RNA-Binding Protein in Immune Regulation: RNA Stability, Inflammation, and Autoimmunity. Trends Immunol. 2020;41(3):255-68.

35. Wilsker D, Patsialou A, Dallas PB, Moran E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 2002;13(3):95-106.

36. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol (1985). 2000;88(4):1474-80.

37. Craps S, Van Wauwe J, De Moudt S, De Munck D, Leloup AJA, Boeckx B, et al. Prdm16 Supports Arterial Flow Recovery by Maintaining Endothelial Function. Circ Res. 2021;129(1):63-77.

38. Stegmann TJ. FGF-1: a human growth factor in the induction of neoangiogenesis. Expert Opin Investig Drugs. 1998;7(12):2011-5.

39. Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 2017;292(16):6600-20.

40. Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis. 2012;45(3):962-72.

41. Wang J, Taba Y, Pang J, Yin G, Yan C, Berk BC. GIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma. Arterioscler Thromb Vasc Biol. 2009;29(2):202-8.

42. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223-32.

43. Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet. 2020;11:743.

44. Pangou E, Befani C, Mylonis I, Samiotaki M, Panayotou G, Simos G, et al. HIF-2alpha phosphorylation by CK1delta promotes erythropoietin secretion in liver cancer cells under hypoxia. J Cell Sci. 2016;129(22):4213-26.

45. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol. 2013;200(2):163-72.

46. Cai ZL, Liu C, Yao Q, Xie QW, Hu TT, Wu QQ, et al. The pro-migration and anti-apoptosis effects of HMGA2 in HUVECs stimulated by hypoxia. Cell Cycle. 2020;19(24):3534-45.

47. Tan WS, Lee JJ, Satish RL, Ang ET. Detectability of secretagogin in human erythrocytes. Neurosci Lett. 2012;526(1):59-62.

48. Liu TJ, Yeh YC, Lee WL, Wang LC, Lee HW, Shiu MT, et al. Insulin ameliorates hypoxia-induced autophagy, endoplasmic reticular stress and apoptosis of myocardial cells: In vitro and ex vivo models. Eur J Pharmacol. 2020;880:173125.

49. Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther. 2004;102(1):61-85.

50. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298-307.

51. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, et al. REST is a hypoxiaresponsive transcriptional repressor. Sci Rep. 2016;6:31355.

52. Gu Y, Luo M, Li Y, Su Z, Wang Y, Chen X, et al. Bcl6 knockdown aggravates hypoxia injury in cardiomyocytes via the P38 pathway. Cell Biol Int. 2019;43(2):108-16.

53. Matsuyama M, WuWong DJ, Horvath S, Matsuyama S. Epigenetic clock analysis of human fibroblasts in vitro: effects of hypoxia, donor age, and expression of hTERT and SV40 largeT. Aging (Albany NY). 2019;11(10):3012-22.

54. Shahrzad S, Bertrand K, Minhas K, Coomber BL. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics. 2007;2(2):119-25.

55. Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537(7618):63-8.

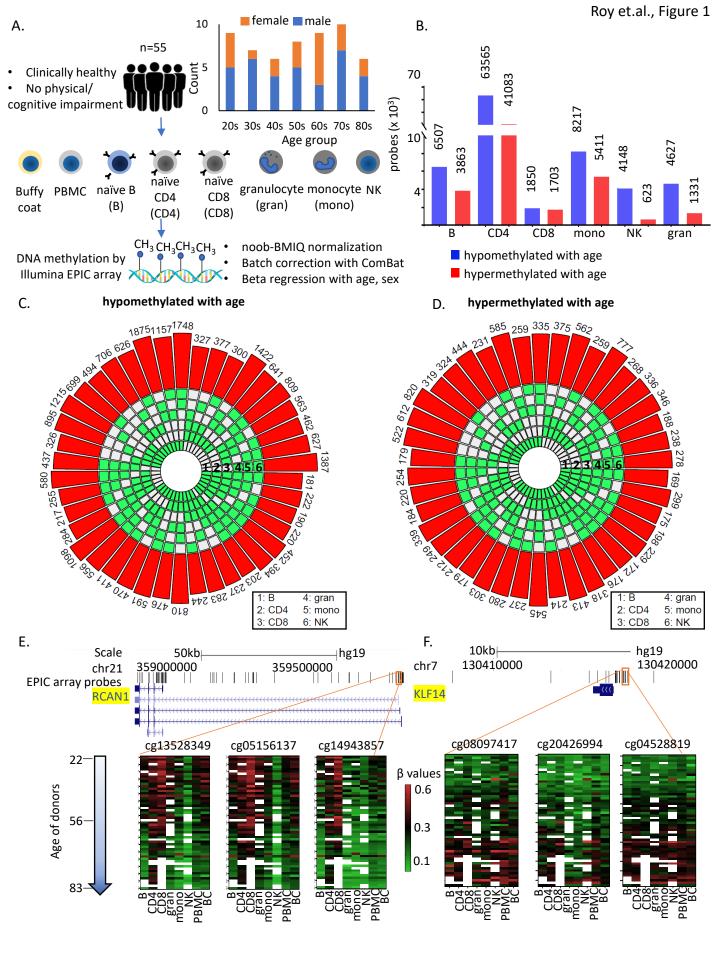
56. Roy R, Ramamoorthy S, Shapiro BD, Kaileh M, Hernandez D, Sarantopoulou D, et al. DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity. Immunity. 2021.

57. Ubaida-Mohien C, Gonzalez-Freire M, Lyashkov A, Moaddel R, Chia CW, Simonsick EM, et al. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol. 2019;10:312.

58. Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 2012;12(3):191-200.

59. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363-9.

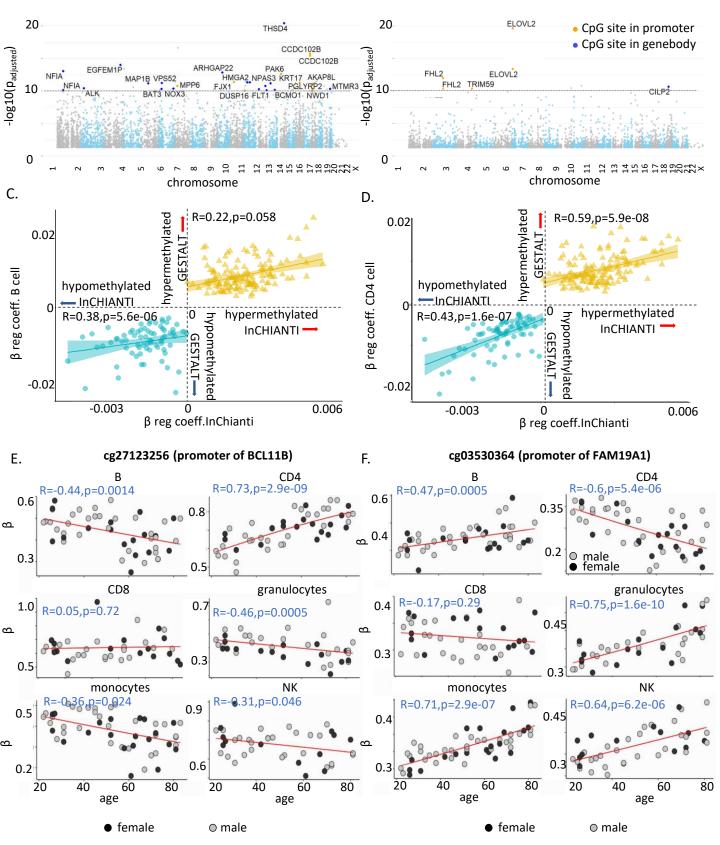
60. Fortin JP, Triche TJ, Jr., Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558-60.

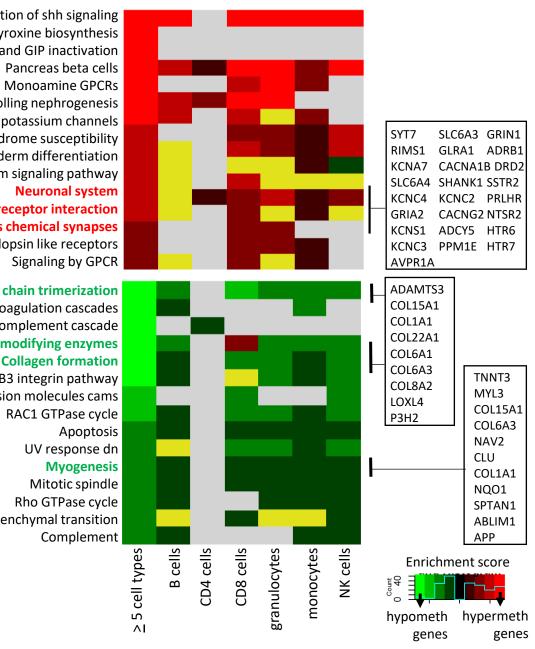

61. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389-99.

62. Liu J, Siegmund KD. An evaluation of processing methods for HumanMethylation450 BeadChip data. BMC Genomics. 2016;17:469.

63. Wang M, Zhao Y, Zhang B. Efficient Test and Visualization of Multi-Set Intersections. Sci Rep. 2015;5:16923.

64. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.


65. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineagedetermining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-89.

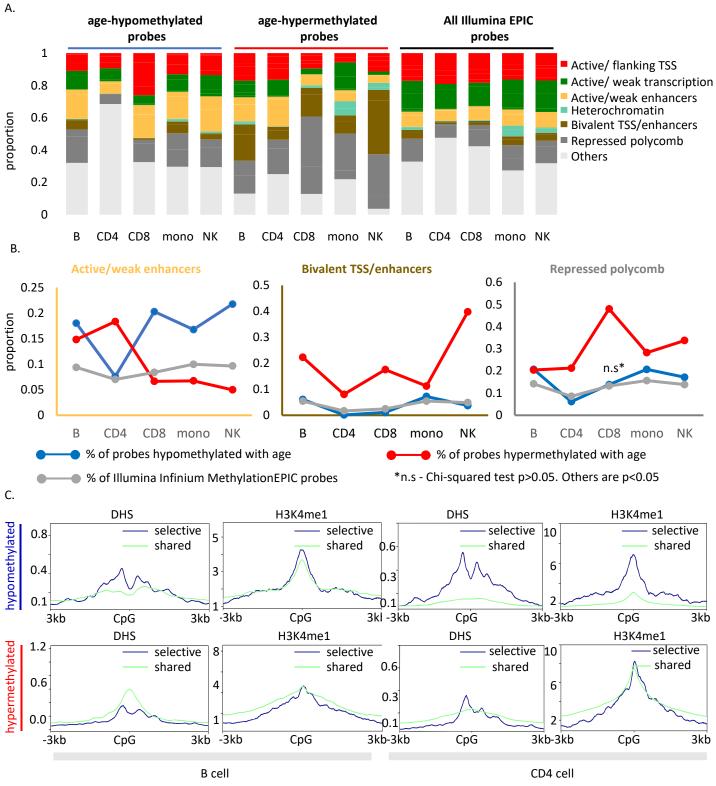


Roy et.al., Figure 2

A. Probes hypomethylated with age in B cells

B. Probes hypermethylated with age in B cells

TGIF disruption of shh signaling Thyroxine biosynthesis Synthesis secretion and GIP inactivation Monoamine GPCRs Genes controlling nephrogenesis Voltage gated potassium channels Sudden infant death syndrome susceptibility **Ectoderm differentiation** Calcium signaling pathway **Neuroactive ligand receptor interaction Transmission across chemical synapses** Class a 1 rhodopsin like receptors **Collagen chain trimerization** Complement and coagulation cascades Complement cascade Collagen biosynthesis and modifying enzymes


> AVB3 integrin pathway Cell adhesion molecules cams Epithelial mesenchymal transition

Age-hypermethylated genes

Age-hypomethylated genes

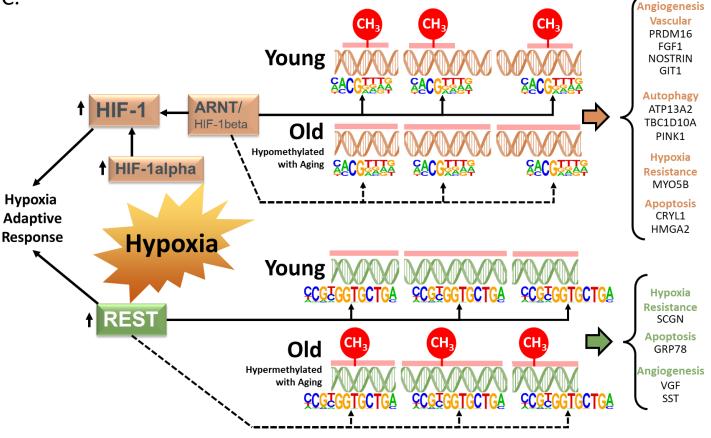
N.S(q>0.05)

mixed(showing both hypo and hypermethylation with age)

Hypomethylated with age

Β.

BN_6507 probes							
Motif	de novo p						
FECGITIE	Arnt	1e-97					
CCACIAGGIGGC	CTCF	1e-63					
TITCCTCCCA	Stat4	1e-40					
<u><u></u>ETGATICATE</u>	Fra1 (bZIP)	1e-28					
ACTICCCACI	NFIA	1e-24					
CD8N_1850 probes							
Motif	de novo	o p					
CTATACAGGAC	Bcl6	1e-21					
ITCTITTGTAAC	NFIL3	1e-18 1e-17					
GTEACITTCGIC	PRDM1						
TECCETCIAGIC	CTCF	1e-17					
<u>CAGITIGGCACI</u>	NFIA	1e-16					
monocytes_8217 probes							
Motif	de novo	р					
SECOUS	Arnt	1e-126					
<u>GCCAICTAGTGG</u>	CTCF (Zf)	1e-113					
TIÇÇÇÇÇA	Stat3 (Stat)	1e-26					
<u>TCACGAAATGAS</u>	ETS	1e-25					
CACCCTCCCT	ZNF416 1e-20						


CD4N_63565 probes							
Motif	de novo	р					
SACGT	Arnt	1e-1084					
A TÇARTÇA Z	Fra1 (bZIP)	1e-424					
EXACCCCT	Klf7	1e-92					
SAAAGTGAAA	IRF1 (IRF)	1e-65					
TCCACCECE	CTCFL	1e-62					
granulocytes_4627 probes							
Motif	de novo	р					
EXERCUL	Arnt	1e-86					
<u>FCCAFCTAEIGE</u>	BORIS (Zf)	1e-65					
TACCCACCC	ZNF354C	1e-25					
TTAGALICACGT	Bhlhb2	1e-23					
TAACCASIAAGT	RUNX1 (Runt)	1e-21					
NK_4148 probe	NK_4148 probes						
Motif	de novo	р					
SACGITIAN	Arnt	1e-56					
<u><u><u>GCCALCTAGTGG</u></u></u>	CTCF (Zf)	1e-50					
<u>ÇTÇCÇÊTÊÇÇÇ</u>	Tcfap2c	1e-18					
<u>CCTGGCAASG</u>	NF1	1e-18					
GCCCAGACGGCT	Smad2 (MAD) 1e-18						

BN_3863 probes	;		CD4N_41083 pro	obes	
Motif	de novo	р	Motif	de novo	р
TGACTCAT	JUND	1e-28	CCLEARA	Sp100	1e-359
TAJGCAGTASG	Myb	1e-26	AACAGGAAST	ETS	1e-319
<u><u><u>SCGECCTCCTCA</u></u></u>	REST	1e-26	AAACCACA	RUNX1	1e-146
CCCCTTAT	ZBED1	1e-25	<u>TAAAFACGC</u>	FOXL1	1e-119
<u><u>AICCGITI</u></u>	RUNX2	1e-24	GAGAGCCCTC	E2F2	1e-114
CD8N_1703 probes granulocytes_174 probes					
Motif	de novo	р	Motif	de novo	р
CETCCTCCAA	REST	1e-27	CCTCICCEICCI	REST	1e-38
SAACACT CC	Zfp116	1e-24	<u> AIGIÇÇ</u> AI	Sp100	1e-27
IICGACGA	Sp100	1e-21	ÊÎ Ç A III AÇ Â Ê	Hoxc9	1e-26
AAAGCGGICT	GRHL1	1e-20	TTETACCTGAAT	Sox8	1e-19
ACGAATAAATTI	Lhx3	1e-20	ACCTGIGAGACG	ZEB1 (Zf)	1e-18
monocytes_5411	probes		NK_623 probes		
Motif	de novo	р	Motif	de novo	р
FECTAT	Arid5a	1e-53	CACCASCGACAG	REST	1e-35
GCTGTCCATGGT	REST	1e-35	ATCAGCACET	NRL	1e-20
ICTICGACGA	Sp100	1e-28	CGAJAACTACTG	Osr2	1e-19
RAGCGCTGGC	HIC1 (Zf)	1e-23	CGATGCCCATCC	HIC2	1e-18
TTCAAC ZACACCE	MYBL2	1e-23	\$ttt ç çççêtg	Egr1 (Zf)	1e-17

Hypermethylated with age

C.

A.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1: Characteristics of entire dataset and age-associated methylation data in 6 primary immune cells. A) PCA plot of normalized methylation data of six immune cells in the 55 healthy donors. The cell types are indicated in different colors, while the three broad age groups (20-40, 40-60 and 60-90 years) are indicated in different shapes (PC1- principal component 1, PC2- principal component 2). B) Distribution of beta-regression coefficient of the age-associated hypoand hypermethylated probes in all six immune cell types estimated this cross-sectional study. Distribution of coefficient values categorized into groups is shown in Supplementary Table 2. C). Age-associated probes from independent sample t-test analysis of young (<=35years, 25th percentile) vs old (>=70years, 75th percentile) donors for each cell type. The pie charts on top show the extent of overlap with results from the beta-regression analysis. D) Distribution of age-associated probes from beta regression into groups based on distance from CpG islands (CGI) (Island- within CGI, shore- within 2kb of CGI, shelf-2-4kb of CGI, open sea- >4kb from CGI). E) Distribution of age-associated hypo- and hypermethylated probes with respect to location (promoter-1500TSS to 1st exon, genebody-within exons, introns and 3'UTR). F and G) Overlap of age-associated hypoand hypermethylated probes in the 6 immune cell types with those identified in PBMCs. The first bar indicates the number of age-associated probes identified in PBMC. The following bars show the counts in the other immune cells, the lighter portion of the bars show the number of probes that are shared with PBMCs, and the darker portion indicates non-PBMC cell-specific probes. The tables below show the log of odd's ratio and its 95%

confidence interval to represent of the significance of the overlap between age-associated probes in each cell type with PBMC.

Supplementary Figure 2: Most significant age-associated CpGs in non-B immune cells along with CpGs showing opposite age-associated trends. A) Manhattan plot of age-associated CpGs in CD4⁺ T cells. The X-axis shows the distribution of significant CpGs (FDR p<0.05), and the Y-axis shows the associated negative log of the adjusted p value from beta regression. Positive axis comprises of probes hypermethylated with age while the negative axis shows age-associated hypomethylated probes. The top hits in each group with the most significant p-values are labelled where the orange dot present CpG probes in the gene promoter. B) Manhattan plot of age-associated probes in CD8⁺ T cells. C) Manhattan plot of age-associated probes in granulocytes. D) Manhattan plot of age-associated probes in NK cells. E) Manhattan plot of age-associated probes in monocytes. F) Count of probes hypomethylated with age in cell type of interest but showing hypermethylation in one or more other cell types. For example, 315 probes are age-hypomethylated in B cells but are significantly hypermethylated with age in one or more other immune cell types. Maximum number of such probes are observed in CD4⁺ T cells followed by B cells and monocytes. G) Count of probes hypermethylated with age in cell type of interest but showing hypomethylation in one or more other cell types. For example, 282 probes are hypermethylated in B cells but are significantly hypomethylated with age in one or more other immune cell types. Maximum number of such probes are observed in CD4⁺ T cells followed by B cells and monocytes.

Supplementary Figure 3: Comparison individual immune cells with InCHIANTI longitudinal study. A-B) Correlation between beta-regression coefficients of age-

associated methylation probes in 5 or more cell types in study and beta-regression coefficients estimated from longitudinal data in the InCHIANTI study. On the X-axis is the data from InCHIANTI longitudinal study cohort while on the Y-axis is cell-specific coefficient values for CD8⁺ T cells (top left), granulocytes (top right), monocytes (bottom left) and NK cells (bottom right). pink dots are the coefficients of the age-hypomethylated probes (Supplementary Figure 3A) while the blue dots are for age-hypermethylated probes (Supplementary Figure 3B).

Supplementary Figure 4: Functional annotation of age-associated probes with respect to DHS and histone marks from ENCODE. The functional significance of age-associated probes with respect to other epigenetic marks was examined using the DNase hypersensitivity sites and H3K4me1 peaks on primary immune cells from ENCODE. Granulocyte data was not available and hence could not be examined. Age-associated hypo- or hypermethylated probes were grouped into shared (blue) and selective (green) based on whether they were common across 5 or more of the 6 cell types. A region of 3kb of either side of the CpG probes of interest was examined.

Supplementary Figure 5: Count of age-associated hypo- or hypermethylated probes with ARNT or REST motifs within 1kb respectively. ARNT and REST were the top TF motifs associated respectively with all hypo- and hypermethylated age-associated probes in most cell types. To verify whether the same set of probes were present in each cell type with the ARNT(A) or REST(B) motifs, HOMER was used to find the probes that have a ARNT or REST motif within <u>+</u> 500bp. The SuperExact test based circular plots shows the overlap between the different cell types (relevant cell types are indicated in green boxes in the inner circles for each combination). The numbers above

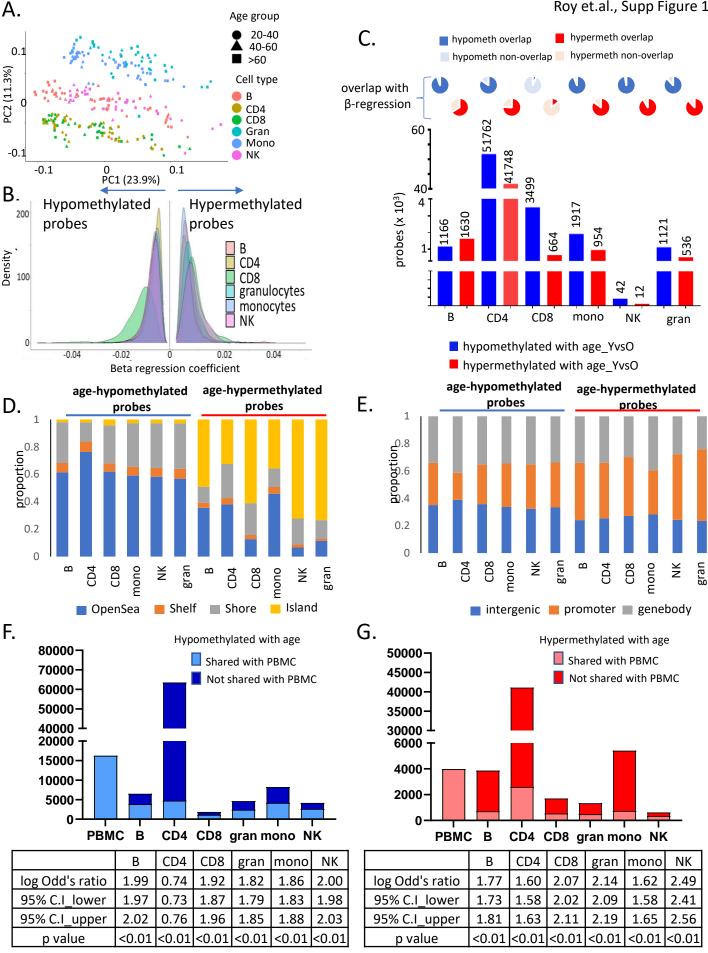
the outermost bars indicate the count of probes that have ARNT or REST motifs across various combinations of cells while the color of the outermost bars in the plot indicate the log transformed p values obtained from hypergeometric test to check whether the overlap is significant or not.

LIST OF SUPPLMENTARY TABLES

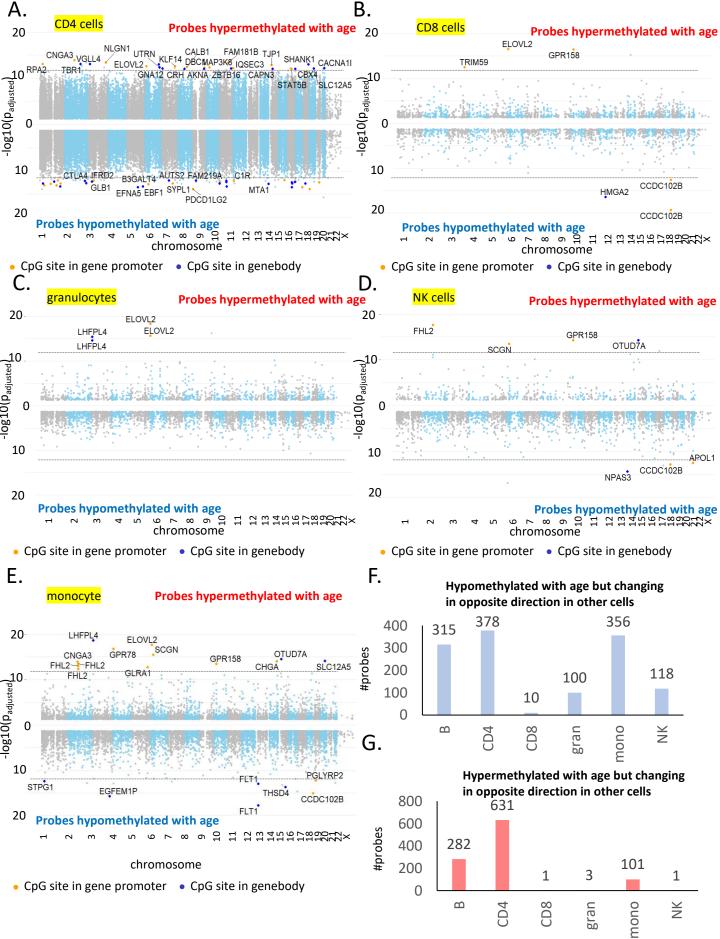
Supplementary Table 1: Demographic and flow cytometry marker details of the cohort. Details of the age and sex distribution of the healthy donors from the GESTALT study for each of the primary immune cell type population are described. The flow cytometry markers for cell selection are also mentioned.

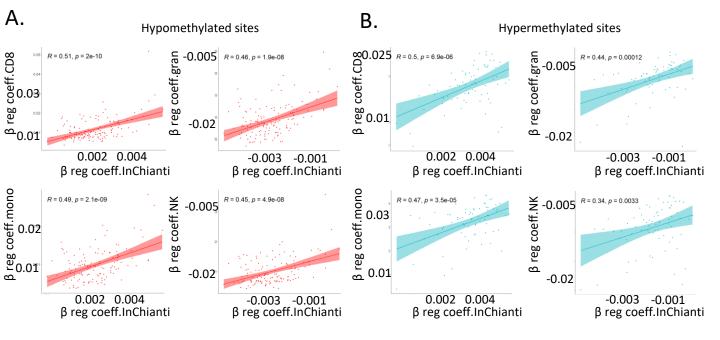
Supplementary Table 2: Distribution of slope for probes significantly changing with age in the immune cells. The age-associated probes were identified from beta regression (FDR p<0.05).

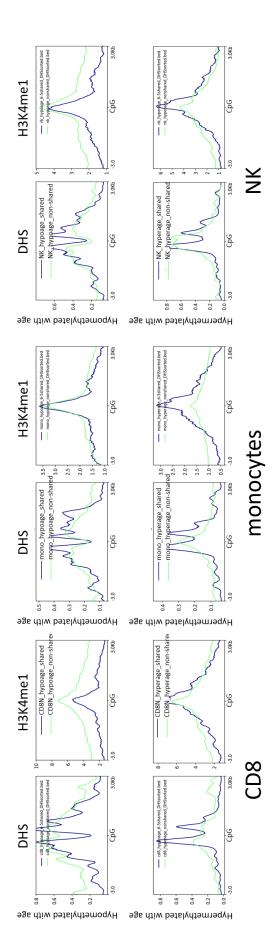
Supplementary Table 3: List of most significant age-associated probes in the immune cells. Based on a p-value cut off (-log (FDR adjusted p) >10), the top age-associated candidates were studied to search for common genes across all immune cells.

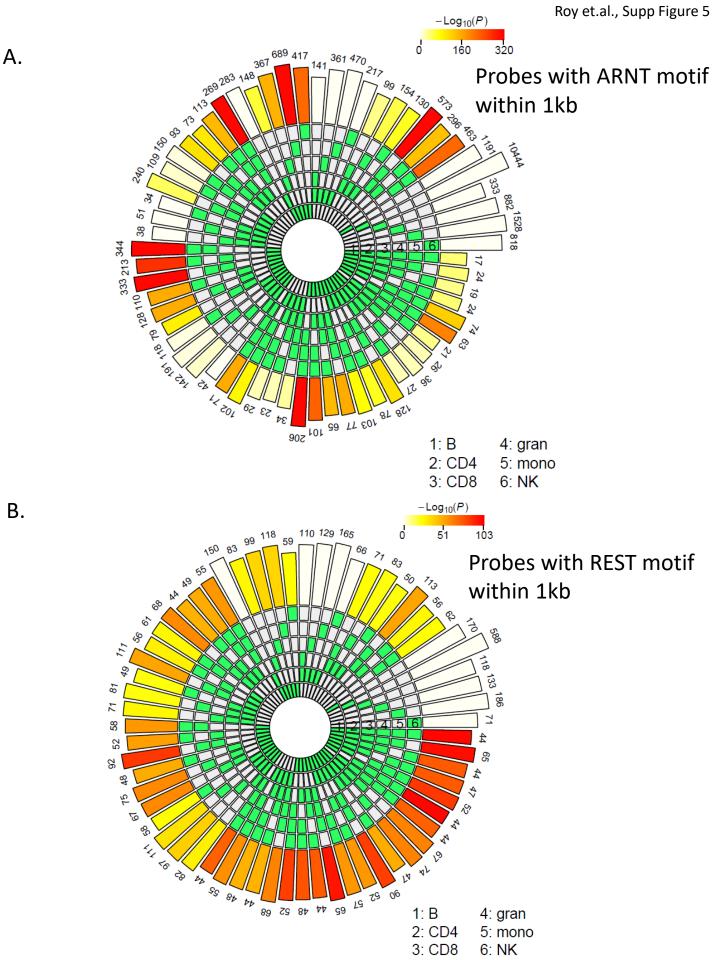

Supplementary Table 4: List of top age-associated genes in the six immune cell types. The list of genes from top 50 age-associated hypo- and hypermethylated probes.

Supplementary Table 5: Detailed output of Gene Set Enrichment Analysis. Gene Set Enrichment Analysis was performed on genes based on annotation of age-associated hypo- and hypermethylation probes commonly changing in 5 or more cell types.


Supplementary Table 6: Age-associated differences of transcripts for ARNT, REST


and CTCF. RNASeq data was used to look into the gene expression change of the selected transcription factors with age. These transcription factor motifs are most commonly associated with the age-related methylated sites in all immune cells.





Roy et.al., Supp Figure 2

Cell	Total	Males/Females	20s	30s	40s	50s	60s	70s	80s	Sorting markers
BN	49	31/18	8	7	5	7	9	10	3	CD19 ⁺ CD27 ⁻ CD38 ⁺
CD4N	48	30/18	7	7	6	7	8	8	5	$CD4^{+}CD62L^{+}CD45RA^{+}$
CD8N	41	24/17	9	7	6	8	8	3	0	CD8 ⁺ CD62L ⁺ CD45RA ⁺
Mono	52	32/20	8	7	6	8	9	8	6	CD3 ⁻ CD91 ⁺ CD14 ⁺
NK	42	29/13	8	8	5	5	6	6	4	CD3 ⁻ CD56 ⁺ CD16 ⁺
Granulo	40	24/16	8	6	4	4	4	8	6	Magnetic enrichment
PBMC	55	34/21	9	7	6	8	9	10	6	NA

Supplementary Table 1: Demographic and flow cytometry marker details of the cohort.

	В	N	CD	04N	CD8N granulocytes			mono	ocytes	NK		
β-coefficie	hypoage*	hyperage*	hypoage	hyperage	hypoage	hyperage	hypoage	hyperage	hypoage	hyperage	hypoage	hyperage
<0.01	5418	3558	63185	40787	1446	1576	4077	1211	7344	5186	3509	506
0.01-0.02	1018	287	321	274	379	122	525	116	824	211	609	109
0.02-0.03	63	17	56	21	24	5	24	4	46	14	28	7
>0.03	8	1	3	1	1	0	1	0	3	0	2	1
Total	6507	3863	63565	41083	1850	1703	4627	1331	8217	5411	4148	623

Supplementary Table 2: Distribution of β -coefficient for probes significantly changing with age in the immune cells.

hypoage*- probes hypomethylated with age hyperage*- probes hypermethylated with age

Supplementary Table 3: List of age-associated probes and their annotation for all the immune ce

Supplementary Table 3: List o	or ag		-			
ID UCSC_RefCCHR		BP	location	padj	neglog_pa	
cg1686765 ELOVL2		11044877	•	2.04E-30		cd8n_hyperage
cg1686765ELOVL2	6	11044877	•	4.04E-23		mono_hyperage
cg1284126LHFPL4	3	9594093	genebody	4.36E-22	21.36017	mono_hyperage
cg1062820 NFIA	1	61547131	genebody	5.14E-22	21.28892	nk_hypoage
cg0702456THSD4	15	71615957	genebody	3.71E-21	20.43063	BN_hypoage
cg1686765 ELOVL2	6	11044877	promoter	8.12E-21	20.0906	nk_hyperage
cg1686765 ELOVL2	6	11044877	promoter	2.12E-20	19.67366	bn_hyperage
cg1355269CCDC102B	18	66389447	promoter	4.73E-20	19.32479	cd8n_hypoage
cg23500530	5	1.4E+08	intergenic	5.56E-20	19.25457	mono_hyperage
cg2486641LHFPL4	3	9594082	genebody	2.26E-19	18.64556	mono_hyperage
cg1686765 ELOVL2	6	11044877	promoter	4.93E-19	18.30692	gran_hyperage
cg2175726 FLT1	13	28896815	genebody	1.83E-18	17.73716	mono_hypoage
cg2157272 ELOVL2	6	11044894	promoter	1.83E-18	17.73716	mono_hyperage
cg1726865 FHL2	2	1.06E+08	promoter	2.64E-18	17.57795	nk_hyperage
cg1197034GPR78	4	8582287	promoter	1.55E-17	16.80978	mono_hyperage
cg20052760	6	10510789	intergenic	1.57E-17	16.80543	nk_hypoage
cg26947030	7	33935438	intergenic	2.42E-17	16.61618	BN_hypoage
cg2157272 ELOVL2	6	11044894	promoter	2.77E-17	16.5569	cd8n_hyperage
cg1320672GPR158	10	25463350	promoter	3.23E-17	16.49016	cd8n_hyperage
cg2255115HMGA2	12	66342368	genebody	4.11E-17	16.38609	cd8n_hypoage
cg13649050	9	1.36E+08	intergenic	5.56E-17	16.25506	gran_hyperage
cg1355269CCDC102B	18	66389447	promoter	1.9E-16	15.72125	BN_hypoage
cg0732348EGFEM1P	3	1.68E+08	genebody	1.9E-16	15.7203	mono_hypoage
cg2157272 ELOVL2	6	11044894	promoter	1.95E-16	15.70932	gran_hyperage
cg21323640	22	31709724	intergenic	1.95E-16	15.70924	CD4N_hypoage
cg0649399SCGN	6	25652602	promoter	3.14E-16	15.50334	mono_hyperage
cg1928380 CCDC102B	18	66389420	promoter	3.73E-16	15.42829	BN_hypoage
cg1284126LHFPL4	3	9594093	genebody	3.83E-16	15.41673	gran_hyperage
cg03032490	14	61108227	intergenic	4.96E-16	15.30466	cd8n_hyperage
cg1355269CCDC102B	18	66389447	promoter	8.63E-16	15.06393	mono_hypoage
cg13649050	9	1.36E+08	intergenic	1E-15	14.99906	mono_hyperage
cg2486641LHFPL4	3	9594082	genebody	2.3E-15	14.63772	gran_hyperage
cg07082260	16	85429035	intergenic	2.33E-15	14.6329	mono_hypoage
cg0487512OTUD7A	15	31775895	genebody	2.71E-15	14.56749	mono_hyperage
cg0176309 OTUD7A	15	31775406	genebody	4.54E-15	14.34281	nk_hyperage
cg2594019 NPAS3	14	33654069	genebody	4.69E-15	14.32853	nk_hypoage
cg1320672GPR158	10	25463350	promoter	4.69E-15	14.32853	nk_hyperage
cg13176010	2	1.57E+08	intergenic	5.54E-15	14.25651	cd4n_hyperage
cg0754754SLC12A5	20	44658225	genebody	7.55E-15	14.12198	mono_hyperage
cg1548036 CHGA	14	93389485	promoter	7.95E-15	14.0994	mono_hyperage
cg0732348EGFEM1P	3	1.68E+08	genebody	9.28E-15	14.03245	BN_hypoage
cg1967112CNGA3	2	98962974	promoter	1.14E-14	13.94248	mono_hyperage
cg1129954 PDCD1LG2	9	5510595	promoter	1.2E-14	13.92181	CD4N_hypoage
cg2703770 PRNT	20	4721316	promoter	1.2E-14	13.92181	CD4N_hypoage
cg15181100	1	21521531	intergenic	1.2E-14	13.92181	CD4N_hypoage
			-			- · · · •

cg1967112CNGA3	2	98962974	promoter	1.2E-14	13.92181 cd4n_hyperage
cg0702456THSD4	15	71615957	genebody	2.14E-14	13.66969 mono_hypoage
cg0408096 EFNA5	5	1.07E+08	genebody	2.87E-14	13.54212 CD4N_hypoage
cg0162030 ADAM11	17	42856469	genebody	2.87E-14	13.54212 CD4N_hypoage
cg1355269 CCDC102B	18	66389447	promoter	2.87E-14	13.54212 CD4N_hypoage
cg1320672GPR158	10	25463350	promoter	3.19E-14	13.49562 mono_hyperage
cg1726865 FHL2	2		promoter	3.19E-14	13.49562 mono_hyperage
cg0649399 SCGN	6		•	3.28E-14	13.48386 nk_hyperage
cg2731555 NLGN1	3		, promoter	4.04E-14	13.39342 cd4n hyperage
cg13292260	-	67238541	•	4.04E-14	13.39342 CD4N_hypoage
cg17110580		36454623	•	4.04E-14	13.39342 cd4n_hyperage
cg14674720	2		intergenic	4.04E-14	13.39342 cd4n_hyperage
cg13649050	9		intergenic	4.04E-14	13.39342 cd4n_hyperage
cg01634320	4		intergenic	4.17E-14	13.37986 BN_hypoage
•	6	11044894	•	4.17E-14 4.17E-14	13.37986 bn_hyperage
cg2157272ELOVL2	-		•		
cg2095982EBF1	5		genebody	4.36E-14	13.36008 CD4N_hypoage
cg1380674FAM181B		82443436	•	4.36E-14	= // 0
cg1729694 CNTN2	1		genebody	4.51E-14	13.34573 CD4N_hypoage
cg1815569LRP5		68214224	• •	4.54E-14	13.34313 CD4N_hypoage
cg08637690	9		intergenic	4.7E-14	_ // 0
cg20789810	7		intergenic	4.76E-14	13.32222 CD4N_hypoage
cg10778280	12	1.14E+08	intergenic		13.21231 cd4n_hyperage
cg06914500	15	39464601	intergenic	7.03E-14	13.15278 mono_hypoage
cg1574983VGLL4	3	11643341	genebody	7.44E-14	13.12816 cd4n_hyperage
cg1605427F5	1	1.7E+08	promoter	7.44E-14	13.12816 CD4N_hypoage
cg2629485TSPAN1	1	46645697	promoter	7.44E-14	13.12816 CD4N_hypoage
cg2541066 RPA2	1	28241577	promoter	7.44E-14	13.12816 cd4n_hyperage
cg26921960	5	92948217	intergenic	7.44E-14	13.12816 cd4n_hyperage
cg1207930 NFIA	1	61547163	genebody	8.51E-14	13.07007 BN_hypoage
cg1275701TBR1	2	1.62E+08	genebody	8.62E-14	13.06433 cd4n_hyperage
cg0663932FHL2	2	1.06E+08	promoter	9.15E-14	13.03862 mono_hyperage
cg2721793LOC10013(6		genebody		13.02796 cd4n_hyperage
cg0706055SHANK1	19	51198381			13.02727 cd4n_hyperage
cg03431910		77716367	• •		13.01586 nk hypoage
cg2654453FLT1		28896826	-	1.03E-13	12.9859 mono_hypoage
cg01634320		10162179			12.89259 mono_hypoage
cg1240033TJP1		30114871	•	1.36E-13	12.86624 cd4n hyperage
cg0016354B3GALT4		33246185	-	1.47E-13	= // 0
cg2279670 ARHGAP22		49673534	•	1.47E-13	= // 0
•					12.82974 BN_hypoage
cg10382670	2		intergenic	1.63E-13	12.78707 mono_hypoage
cg00363380		37641339	-	1.64E-13	12.78553 CD4N_hypoage
cg1437792 MTA1	14		genebody	1.67E-13	12.77827 CD4N_hypoage
cg1355269CCDC102B		66389447	•	1.7E-13	12.76965 nk_hypoage
cg1994225 KCNA3	1		promoter	1.78E-13	12.74934 CD4N_hypoage
cg20437890	2		intergenic	1.78E-13	
cg0005922GLRA1	5		promoter	1.84E-13	= // 0
cg16238140	13	1.11E+08	intergenic	1.92E-13	12.7175 cd4n_hyperage

cg03776850	22	36461577	intergenic	1.97E-13	12.70469 mono_hypoage
cg0106507TRAF3IP3	1	2.1E+08	promoter	2E-13	12.69818 CD4N_hypoage
cg1915468 GATAD2A	19	19600745	genebody	2E-13	12.69818 CD4N_hypoage
cg0648862COL16A1	1	32131874	genebody	2E-13	12.69818 CD4N_hypoage
cg0355722NPEPPS	17	45693418	genebody	2E-13	12.69818 CD4N_hypoage
cg24590480	12	13683399	intergenic	2E-13	12.69818 CD4N_hypoage
cg0931588SYPL1	7	1.06E+08	-	2E-13	12.69818 CD4N_hypoage
cg1830470 MAST3	19	18229454	•	2E-13	12.69818 CD4N hypoage
cg2001253GPR123	10		genebody	2E-13	12.69818 CD4N_hypoage
cg27209570	2		intergenic	2E-13	12.69818 cd4n_hyperage
cg1169370 PAK6	15		-	2.21E-13	12.65561 BN_hypoage
cg1686765ELOVL2	6	11044877	•	2.21E 13 2.29E-13	12.64046 cd4n_hyperage
-	7		•		
cg0809741KLF14	-		promoter	2.29E-13	12.64046 cd4n_hyperage
cg0495591C2orf24	2		genebody	2.33E-13	12.63213 CD4N_hypoage
cg1928380 CCDC102B		66389420	•	2.49E-13	12.60386 cd8n_hypoage
cg0755376TRIM59	3		promoter	2.8E-13	12.55348 cd8n_hyperage
cg11890720	7		intergenic	2.96E-13	12.52921 CD4N_hypoage
cg26947030		33935438	•	3.16E-13	12.50044 mono_hypoage
cg08090641F135	17	41159289	genebody	3.25E-13	12.48766 CD4N_hypoage
cg1844842 APOL1	22	36648832	promoter	3.48E-13	12.45874 nk_hypoage
cg0505649 RCAN1	21	35899448	promoter	3.49E-13	12.45745 CD4N_hypoage
cg2629063CALB1	8	91094847	promoter	3.54E-13	12.45038 cd4n_hyperage
cg21213070	10	30880636	intergenic	3.79E-13	12.42163 CD4N_hypoage
cg2153108STPG1	1	24718669	genebody	3.97E-13	12.40137 mono_hypoage
cg1247648 UTRN	6	1.45E+08	genebody	4.03E-13	12.39502 cd4n_hyperage
cg0574311WBP2	17	73850681	genebody	4.03E-13	12.39502 CD4N_hypoage
cg0958533FAM89B	11	65340843		4.18E-13	12.37929 CD4N_hypoage
cg1484750 MAP3K8	10	30724194	promoter	4.18E-13	12.37929 cd4n_hyperage
cg14646980	9	34602974	•	4.18E-13	12.37929 CD4N_hypoage
cg20786220	6		intergenic	4.29E-13	12.36754 BN_hypoage
cg2245476FHL2	2		-		12.34563 mono_hyperage
cg2002439GLB1		33131138			12.33412 CD4N_hypoage
cg18143290	3		intergenic		12.32681 cd4n_hyperage
•			-		
cg1591367TMEM105		79304420			12.32239 CD4N_hypoage
cg2393321PDE4DIP	1		genebody	4.98E-13	•
cg05770380		88722796	•		12.29593 CD4N_hypoage
cg19469500		49080681	-	5.06E-13	= // 0
cg0708037SLC25A22	11		promoter	5.06E-13	
cg24049880	10		intergenic	5.13E-13	= // 0
cg0660284 DBC1	9	1.22E+08	promoter	5.15E-13	12.28824 cd4n_hyperage
cg0740845 PGLYRP2	19	15590532	promoter	5.85E-13	12.23287 mono_hypoage
cg02383780	7	1.28E+08	intergenic	6.05E-13	12.21836 cd4n_hyperage
cg1985547 CACNA1I	22	40060836	genebody	6.11E-13	12.21387 cd4n_hyperage
cg23756170	17	26577713	intergenic	6.68E-13	12.17523 cd4n_hyperage
cg2332310EHD1	11	64643272	genebody	6.86E-13	12.16345 CD4N_hypoage
cg24970170	14	77339984	intergenic	6.86E-13	12.16345 CD4N_hypoage
cg1765647 IQSEC3	12	176424	promoter	6.86E-13	12.16345 cd4n_hyperage
-			-		<u> </u>

cg2336871C1R	12	7245510	promoter	7.02E-13	12.15368 CD4N_hypoage
cg0754754SLC12A5	20	44658225	genebody	7.02E-13	12.15368 cd4n_hyperage
cg1551713CTLA4	2	2.05E+08	genebody	7.16E-13	12.14537 CD4N_hypoage
cg14912640	2	1.57E+08	intergenic	7.16E-13	12.14537 cd4n_hyperage
cg0694818FAM219A	9	34403522	genebody	8.02E-13	12.0956 CD4N_hypoage
cg1082748ZBTB16	11	1.14E+08	genebody	8.02E-13	12.0956 cd4n_hyperage
cg21943110	1	2840308	intergenic	8.02E-13	12.0956 CD4N_hypoage
cg01752940	2	1.1E+08	intergenic	8.02E-13	12.0956 CD4N hypoage
cg2330464 GNA12	7		genebody	8.24E-13	12.08416 cd4n_hyperage
cg17956780	22	30649441		8.68E-13	12.06161 cd4n_hyperage
cg25580580	10		intergenic	8.8E-13	12.05552 CD4N_hypoage
cg0944343AUTS2	7	69126948	-	9.31E-13	12.03127 CD4N_hypoage
cg24732751FRD2		50330513	- ·	9.31E-13	12.03127 CD4N_hypoage
cg2246336 AKNA	9		genebody	9.34E-13	12.02951 cd4n_hyperage
cg0234906 RNASEL	1		promoter	9.34E-13	12.02951 CD4N_hypoage
cg2319879 CAPN3	15		•	9.69E-13	12.01369 cd4n_hyperage
cg1971577CBX4	17		genebody	9.81E-13	12.00813 cd4n_hyperage
cg17110580	19		- ·	9.93E-13	12.00315 mono hyperage
cg1637717STAT5B	17		•	9.95E-13	12.00208 cd4n_hyperage
cg2302758CRH		40392933 67089513	•	9.95E-13 9.95E-13	
-					12.00208 cd4n_hyperage
cg0422905SLC38A7	-	58718971	•	9.95E-13	12.00208 CD4N_hypoage
cg0663932FHL2	2		promoter	1.04E-12	11.98297 bn_hyperage
cg1289230C17orf104	17		•	1.04E-12	11.98125 nk_hyperage
cg10424970		66388348	-	1.36E-12	11.8663 mono_hypoage
cg0974874 ASL		65540429	•	1.36E-12	11.8663 mono_hypoage
cg0364878NRM	6	30659345	•		11.83207 mono_hypoage
cg07504610	3		•	1.47E-12	11.83207 mono_hypoage
cg08234500	5		intergenic	2.1E-12	11.67821 mono_hypoage
cg1820469 NOX3	6		genebody	2.26E-12	11.64595 mono_hypoage
cg2692464C11orf49		47026076			11.59007 mono_hypoage
cg12179910	12	22568845	-		11.46344 BN_hypoage
cg05498680	7	7142996	intergenic	3.64E-12	11.4389 BN_hypoage
cg07082260	16	85429035	intergenic		11.38839 nk_hypoage
cg1174120 FJX1	11	35638398	promoter		11.36957 BN_hypoage
cg01528540	12	81468232	intergenic	4.42E-12	11.35491 mono_hypoage
cg02318780	15	27213174	intergenic	4.43E-12	11.35386 mono_hyperage
cg0026692ST8SIA3	18	55021277	genebody	4.43E-12	11.35319 mono_hyperage
cg07914610	1	62072468	intergenic	4.44E-12	11.35267 nk_hypoage
cg0678499ZYG11A	1	53308768	genebody	4.49E-12	11.34817 mono_hyperage
cg1856849SLC2A13	12	40406687	genebody	4.54E-12	11.34294 BN_hypoage
cg2255115HMGA2	12	66342368	genebody	4.54E-12	11.34294 BN_hypoage
cg1671476 DCHS2	4	1.55E+08	genebody	4.72E-12	11.32587 nk_hypoage
cg07082260	16	85429035	intergenic	4.95E-12	11.30539 BN_hypoage
cg2723697 KRT17		39781997	-		11.30539 BN_hypoage
cg0809741 KLF14	7		promoter		11.25457 mono_hyperage
cg16381160	21	16031542	•		11.24545 mono_hypoage
cg03032490		61108227	-		11.23894 nk_hyperage
J	-		0- 0	_	_ //***02

cg2059545 VPS52	6	33219392 genebody	5.95E-12	11.22548 BN_hypoage
cg1941957SP1	12	53808961 genebody	6.03E-12	11.21968 mono_hypoage
cg1108433LHFPL4	3	9594264 genebody	6.03E-12	11.21968 mono_hyperage
cg2594019 NPAS3	14	33654069 genebody	6.67E-12	11.17587 BN_hypoage
cg1305330 MAP1B	5	71435267 genebody	6.67E-12	11.17587 BN_hypoage
cg20786220	6	1.65E+08 intergenic	7.03E-12	11.15285 nk_hypoage
cg15366840	4	6012468 intergenic	7.03E-12	11.15285 nk_hypoage
cg0663932 FHL2	2	1.06E+08 promoter	7.03E-12	11.15285 nk_hyperage
cg26947030	7	33935438 intergenic	7.7E-12	11.11375 cd8n_hypoage
cg02151510	9	35955041 intergenic	7.97E-12	11.0983 mono_hypoage
cg2553324 AKAP8L	19	15530630 promoter	8.41E-12	11.0752 BN_hypoage
cg25427880	10	1.02E+08 intergenic	9.79E-12	11.0093 mono_hyperage
cg0972793LINC00577	6	1.05E+08 promoter	9.91E-12	11.00406 mono_hyperage
cg00331330	4	1.56E+08 intergenic	1.04E-11	10.98369 mono_hypoage
cg0702456 THSD4	15	71615957 genebody	1.06E-11	10.97267 nk_hypoage
cg23746490	6	1.05E+08 intergenic	1.11E-11	10.95652 mono_hyperage
cg1534112DIO3	14	1.02E+08 promoter	1.19E-11	
cg2594019NPAS3		33654069 genebody	1.36E-11	10.86501 mono_hypoage
cg0980967EDARADD	1	2.37E+08 promoter	1.38E-11	10.8614 nk_hypoage
cg1976127CSNK1D		80232096 promoter	1.39E-11	10.85735 cd8n_hypoage
cg25427880	10	1.02E+08 intergenic	1.57E-11	10.8041 bn_hyperage
cg0541202ABCC4	-	95952937 genebody	1.69E-11	10.77211 BN_hypoage
-	10	1.21E+08 intergenic	1.7E-11	
cg08023680		•	1.7E-11 1.7E-11	10.76955 BN_hypoage
cg05694020		19699504 intergenic		= // 0
cg16381160		16031542 intergenic	1.7E-11	10.76955 BN_hypoage
cg1393122 MPP6		24612418 promoter	1.7E-11	10.76955 BN_hypoage
cg26413500	6	1.41E+08 intergenic	1.78E-11	10.74838 mono_hypoage
cg1928380 CCDC102B		66389420 promoter	1.98E-11	10.70267 mono_hypoage
cg0176309 OTUD7A		31775406 genebody		10.70267 mono_hyperage
cg0754418CILP2		19651235 genebody	2.02E-11	= // 0
cg1355269 CCDC102B		66389447 promoter		10.65265 gran_hypoage
cg07057570		95870112 intergenic		10.63861 mono_hyperage
cg1934462NWD1		16830749 promoter		10.63613 nk_hypoage
cg1305330 MAP1B	5	71435267 genebody		10.62027 mono_hypoage
cg2245476FHL2	2			10.59791 nk_hyperage
cg20105290	5	1.51E+08 intergenic		10.58514 mono_hypoage
cg05991450	4	1.48E+08 intergenic		10.56774 mono_hyperage
cg25485370	4	1.06E+08 intergenic		10.56067 BN_hypoage
cg1289327 FLT1	13	28922440 genebody	3.2E-11	10.49454 mono_hypoage
cg1169370 PAK6	15	40542019 promoter	3.41E-11	10.46682 cd8n_hypoage
cg2294700 BCMO1	16	81272281 promoter	3.43E-11	10.46471 BN_hypoage
cg13649050	9	1.36E+08 intergenic	3.43E-11	10.46471 bn_hyperage
cg10501210	1	2.08E+08 intergenic	3.55E-11	10.45031 mono_hypoage
cg10001180	11	94882829 intergenic	3.55E-11	10.45031 mono_hypoage
cg1466783ALK	2	30064491 genebody	3.57E-11	10.44733 BN_hypoage
cg03776850	22	36461577 intergenic	3.57E-11	10.44733 BN_hypoage
cg1221169 ADGRB2	1	32211779 genebody	3.71E-11	10.43012 mono_hypoage

cg0541202ABCC4	13	95952937 genebody	3.78E-11	10.42269 cd8n_hypoage
cg0980967EDARADD	1	• .	3.78E-11	10.42269 cd8n_hypoage
cg1976127CSNK1D	17	80232096 promoter	3.81E-11	10.4193 mono_hypoage
cg2116508C11orf85		64739736 promoter	3.81E-11	10.4193 mono_hyperage
cg0755376TRIM59	3	1.6E+08 promoter	4.07E-11	10.39086 mono_hyperage
cg04581930	6	31364999 intergenic	4.39E-11	10.35754 BN_hypoage
cg1820469 NOX3	6	1.56E+08 genebody	4.39E-11	10.35754 BN_hypoage
cg0755376TRIM59	3	1.6E+08 promoter	4.39E-11	10.35754 bn_hyperage
cg12857880	17	•	4.84E-11	10.31515 BN hypoage
cg0740845 PGLYRP2	19	15590532 promoter	4.84E-11	10.31515 BN_hypoage
cg0662319 MTMR3		30400763 genebody	4.84E-11	10.31515 BN_hypoage
cg1580921BAT3	6	• .	4.84E-11	10.31515 BN_hypoage
cg26413500	6	1.41E+08 intergenic	4.84E-11	10.31515 BN_hypoage
cg2245476 FHL2	2	1.06E+08 promoter	4.84E-11	10.31515 bn_hyperage
cg03431910	17	77716367 intergenic	4.94E-11	10.30603 mono_hypoage
cg2175726 FLT1	13	28896815 genebody	5.19E-11	10.28483 BN_hypoage
cg18645240	21	43022102 intergenic	5.19E-11	10.28483 BN_hypoage
cg2024956 NWD1	19	16830739 promoter	5.21E-11	10.28355 nk_hypoage
cg06467320	9	1.03E+08 intergenic	5.44E-11	10.2644 BN_hypoage
cg16932820	3	1.94E+08 intergenic	5.46E-11	10.26261 mono_hypoage
cg17885220	6	1.05E+08 intergenic	5.46E-11	10.26261 mono_hyperage
cg03738020	6	1.05E+08 intergenic	5.56E-11	10.25475 mono_hyperage
cg07914610	1	62072468 intergenic	5.62E-11	10.25026 BN_hypoage
cg0487512OTUD7A	15	31775895 genebody	6.18E-11	10.20877 nk_hyperage
cg1726865 FHL2	2	1.06E+08 promoter	6.3E-11	10.20066 bn_hyperage
cg1320806 NWD1	19	16830563 promoter	6.37E-11	10.19559 cd8n_hypoage
cg03193040	4	74570180 intergenic	6.48E-11	10.18867 nk_hypoage
cg0408415VGF	7	1.01E+08 promoter	6.49E-11	10.18768 nk_hyperage
cg1207930 NFIA	1	61547163 genebody	6.63E-11	10.17845 nk_hypoage
cg2663871NRXN3	14	80053724 genebody	6.82E-11	10.16622 BN_hypoage
cg1934462 NWD1	19	16830749 promoter	6.82E-11	10.16622 BN_hypoage
cg1548036 CHGA	14	93389485 promoter	7.23E-11	10.1408 gran_hyperage
cg0149947COL4A2	13	1.11E+08 genebody	7.39E-11	10.13136 BN_hypoage
cg20052760	6	10510789 intergenic	7.39E-11	10.13136 BN_hypoage
cg1928380 CCDC102B	18	66389420 promoter	7.46E-11	10.12732 nk_hypoage
cg26413500	6	1.41E+08 intergenic	7.46E-11	10.12732 nk_hypoage
cg19028580	5	1.43E+08 intergenic	7.8E-11	10.10791 BN_hypoage
cg1062820 NFIA	1	61547131 genebody	7.87E-11	10.10403 BN_hypoage
cg1641923 PENK	8	57360613 promoter	7.96E-11	10.09934 mono_hyperage
cg16008960	1		8.29E-11	10.08145 BN_hypoage
cg0185554DUSP16	12	12716653 promoter	8.63E-11	10.06399 BN_hypoage
cg17438690	1		8.94E-11	
cg12350470	17	46578476 intergenic	9.8E-11	10.00879 nk_hypoage

Supplementary	/ Table 4- To	p 15 age-hypo ;	and hypermethy	vlated gene	s in each cell type
ouppiententur	1 1 4 6 1 6 1 6			Juncea Berie	

	BN	CD4N	CD8N	monocytes		granulocytes
	THSD4	PDCD1LG2	CCDC102B	FLT1	NFIA	CCDC102B
	CCDC102B	PRNT	HMGA2	EGFEM1P	NPAS3	SEMA7A
	EGFEM1P	EFNA5	CSNK1D	CCDC102B	CCDC102B	IL21R
age	NFIA	ADAM11	PAK6	THSD4	APOL1	LAG3
th	ARHGAP22	CCDC102B	ABCC4	STPG1	DCHS2	LMNA
Ň	PAK6	EBF1	EDARADD	PGLYRP2	THSD4	PDCD1LG2
ited	FJX1	CNTN2	NWD1	ASL	EDARADD	SLC25A22
genes hypomethylated with age	SLC2A13	LRP5	PDE1C	NRM	NWD1	STPG1
let	HMGA2	F5	THSD4	NOX3	ACSS3	THSD4
μο	KRT17	TSPAN1	HLA-DPB1	C11orf49	ASPA	LDB2
d y h	VPS52	B3GALT4	MAP1B	SP1	P3H2	SAMD14
Jes	NPAS3	MTA1	NPAS3	NPAS3	FLJ23834	C11orf49
ger	MAP1B	KCNA3	PI4KB	MAP1B	SIGIRR	DNER
	AKAP8L	TRAF3IP3	EIF1	ADGRB2	PTGDS	STOML1
	ABCC4	GATAD2A	CNTN4	CSNK1D	RNF182	RARRES3
	genes observ	ved in more than	1 cell type			
	BN	CD4N	CD8N	monocytes		granulocytes
	ELOVL2	CNGA3	ELOVL2	ELOVL2	ELOVL2	granulocytes ELOVL2
	ELOVL2 FHL2	CNGA3 NLGN1	ELOVL2 GPR158	ELOVL2 LHFPL4	ELOVL2 FHL2	-
	ELOVL2 FHL2 CILP2	CNGA3 NLGN1 FAM181B	ELOVL2 GPR158 TRIM59	ELOVL2 LHFPL4 GPR78	ELOVL2 FHL2 OTUD7A	ELOVL2 LHFPL4 CHGA
age	ELOVL2 FHL2 CILP2 TRIM59	CNGA3 NLGN1 FAM181B VGLL4	ELOVL2 GPR158	ELOVL2 LHFPL4 GPR78 SCGN	ELOVL2 FHL2 OTUD7A GPR158	ELOVL2 LHFPL4
ith age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4	CNGA3 NLGN1 FAM181B VGLL4 RPA2	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A	ELOVL2 FHL2 OTUD7A GPR158 SCGN	ELOVL2 LHFPL4 CHGA SOBP GPR158
d with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104	ELOVL2 LHFPL4 CHGA SOBP GPR158
ated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14
hylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5
methylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3
bermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK
hypermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158 PC	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2 KLF14	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4 LRP5	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2 GLRA1	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1 LHFPL4	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK SCGN
nes hypermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158 PC NEFM	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2 KLF14 CALB1	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4 LRP5 SP8	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2 GLRA1 ST8SIA3	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1 LHFPL4 TRIM59	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK SCGN SYT14
genes hypermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158 PC NEFM VGF	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2 KLF14 CALB1 UTRN	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4 LRP5 SP8 ADCY5	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2 GLRA1 ST8SIA3 ZYG11A	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1 LHFPL4 TRIM59 CALB1	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK SCGN SYT14 PRLHR
genes hypermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158 PC NEFM VGF AFAP1	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2 KLF14 CALB1 UTRN MAP3K8	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4 LRP5 SP8 ADCY5 FHL2	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2 GLRA1 ST8SIA3 ZYG11A KLF14	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1 LHFPL4 TRIM59 CALB1 KLF14	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK SCGN SYT14 PRLHR NXPH1
genes hypermethylated with age	ELOVL2 FHL2 CILP2 TRIM59 LHFPL4 STXBP5L CHGA GPR78 OTUD7A GPR158 PC NEFM VGF AFAP1 KLF14	CNGA3 NLGN1 FAM181B VGLL4 RPA2 TBR1 LOC100130476 SHANK1 TJP1 ELOVL2 KLF14 CALB1 UTRN	ELOVL2 GPR158 TRIM59 RPA2 ALDH1A2 KLF14 GPR62 SYNGR3 ALX3 LHFPL4 LRP5 SP8 ADCY5 FHL2 PPM1E	ELOVL2 LHFPL4 GPR78 SCGN OTUD7A SLC12A5 CHGA CNGA3 GPR158 FHL2 GLRA1 ST8SIA3 ZYG11A	ELOVL2 FHL2 OTUD7A GPR158 SCGN C17orf104 VGF GPR176 CHGA NXPH1 LHFPL4 TRIM59 CALB1 KLF14	ELOVL2 LHFPL4 CHGA SOBP GPR158 PRRT4 KLF14 SLC12A5 DIO3 BOK SCGN SYT14 PRLHR

Supplementary Table 5: Detailed Gene Set Enrichment Analysis Output

Gene_Set	Group	ID	Pathway	b	В	n	N	E	p_Val	q_Val	Genes_in_Pathway
	common_		Hallmark pancreas beta								
Hallmarks	hyper	M5957	cells	6	40	226	26325	17.47	#####	#####	PAX6,NEUROD1,PCSK1,SCGN,CHGA,SST
											SYT7,RIMS1,KCNA7,SLC6A4,KCNC4,GRIA2,KCNS1,KCNC3,S
	common_		Reactome neuronal								LC6A3,GLRA1,CACNA1B,SHANK1,KCNC2,CACNG2,ADCY5,P
Reactome	hyper	M735	system	17	409	225	25982	4.8	#####	2E-04	PM1E,GRIN1
	common_		Kegg neuroactive ligand								ADRB1,DRD2,SSTR2,PRLHR,NTSR2,GRIA2,HTR6,HTR7,AVP
KEGG	hyper	M13380	receptor interaction	11	269	226	26361	4.77	#####	0.004	R1A,GLRA1,GRIN1
	common_		Reactome rac1 gtpase								PLEKHG6,NISCH,RAB7A,GIT1,MCF2L,DOCK4,ARHGAP22,PL
Reactome	hypo	M41809	cycle	13	184	426	25982	4.309	#####	0.007	D2,PAK6,ARHGAP17,KALRN,DLC1,ARHGAP12
			Reactome collagen								
	common_		biosynthesis and								P3H2,COL1A1,COL6A1,ADAMTS3,COL6A3,COL22A1,COL8A
Reactome	hypo	M26999	modifying enzymes	8	67	426	25982	7.282	#####	0.007	2,COL15A1
											PLEKHG6,NISCH,ARHGEF10L,RAB7A,STMN2,GIT1,CCDC88
											A,MCF2L,DOCK4,NDUFA5,ARHGAP22,PLD2,PAK6,ARHGAP
	common_		Reactome rho gtpase								17,CDC42EP2,PLEKHG4B,KALRN,DLC1,ARHGAP12,KCTD13,
Reactome	hypo	M27078	cycle	21	443	426	25982	2.891	#####	0.007	SPTAN1
	common_		Reactome collagen								P3H2,COL1A1,LOXL4,COL6A1,ADAMTS3,COL6A3,COL22A1
Reactome	hypo	M631	formation	9	90	426	25982	6.099	#####	0.007	,COL8A2,COL15A1
	common_		Kegg cell adhesion								CD274,PDCD1LG2,CD4,NRXN3,HLA-DPB1,HLA-C,HLA-
KEGG	hypo	M16476	molecules cams	10	130	426	26361	4.76	#####	0.01	B,PTPRF,CNTNAP2,CNTN2
	common_		Kegg calcium signaling								ADRB1,GRIN1,CACNA1B,HTR6,HTR7,AVPR1A,CACNA1G,CA
KEGG	hyper	M2890	pathway	8	176	226	26361	5.302	1E-04	0.014	CNA1I
	common_		Reactome complement								
Reactome	hypo	M19752	cascade	7	58	426	25982	7.361	#####	0.014	CLU,MASP1,C5AR2,C1QC,C1R,C3AR1,CR1
	common_		Wp genes controlling								
WP	hyper	M39891	nephrogenesis	5	43	226	26124	13.44	#####	0.016	FGF8,GDNF,HOXD11,NPHS1,GLI3
	common_		Wp tgif disruption of								
WP	hyper	M39607	shh signaling	3	9	226	26124	38.53	#####	0.016	FOXG1,FGF8,GLI3
			Wp sudden infant								
	common_		death syndrome sids								
WP	hyper	M39373	susceptibility pathways	8	162	226	26124	5.708	#####	0.018	SST,SSTR2,TP73,PHOX2B,SLC6A4,NEUROD1,GRIN1,TAC1
	common_		Reactome collagen								
Reactome	hypo	M27812	chain trimerization	6	44	426	25982	8.317	#####	0.021	COL1A1,COL6A1,COL6A3,COL22A1,COL8A2,COL15A1
			Reactome voltage								
	common_		gated potassium								
Reactome	hyper	M1056	channels	5	43	225	25982	13.43	#####	0.021	KCNA7,KCNC4,KCNS1,KCNC3,KCNC2

											TAC1,ADRB1,PDE4C,PRLHR,RGS22,WNT2B,HTR7,DRD2,OB
	common		Reactome signaling by								SCN,SST,HTR6,GPR176,AVPR1A,NTSR2,GPR25,ADCY5,SSTR
Reactome	hyper –	M746	gpcr	18	696	225	25982	2.986	#####	0.021	2,PENK
	common										TNNT3,MYL3,COL15A1,COL6A3,NAV2,CLU,COL1A1,NQO1,
Hallmarks	hypo –	M5909	Hallmark myogenesis	11	200	427	26325	3.391	5E-04	0.023	SPTAN1,ABLIM1,APP
	common										
Hallmarks	hypo –	M5902	Hallmark apoptosis	9	161	427	26325	3.446	0.001	0.026	SPTAN1,PDGFRB,TSPO,CLU,LMNA,ENO2,APP,SOD2,BMP2
	common_		Hallmark mitotic								NUMA1,KIF5B,CDC42EP2,CCDC88A,DOCK4,CENPE,KIF3C,S
Hallmarks	hypo	M5893	spindle	10	198	427	26325	3.114	0.002	0.026	PTAN1,PXN,CSNK1D
	common_		Wp complement and								
WP	hypo	M39649	coagulation cascades	7	58	426	26124	7.401	#####	0.026	F5,CR1,C1QC,C1R,C3AR1,CLU,MASP1
	common_										
WP	hyper	M39585	Wp monoamine gpcrs	4	33	226	26124	14.01	2E-04	0.028	HTR7,HTR6,ADRB1,DRD2
	common_		Reactome thyroxine								
Reactome	hyper	M27120	biosynthesis	3	10	225	25982	34.64	#####	0.029	DUOX1,DUOX2,DIO3
	common_		Wp ectoderm								
WP	hyper	M39575	differentiation	7	142	226	26124	5.698	2E-04	0.03	FHL2,SIX6,ELOVL2,CLVS1,GLI3,NR2F2,PAX6
	common_		Hallmark uv response								ABCC1,MAP1B,KCNMA1,NRP1,COL1A1,PDGFRB,KALRN,DL
Hallmarks	hypo	M5942	dn	8	144	427	26325	3.425	0.002	0.031	C1
	common_		Pid avb3 integrin								
PID	hypo	M160	pathway	7	74	427	26458	5.861	2E-04	0.038	PXN,PI4KB,COL8A2,COL6A3,COL6A1,COL15A1,COL1A1
			Reactome transmission								
	common_		across chemical								RIMS1,SLC6A4,GRIA2,SLC6A3,GLRA1,CACNA1B,CACNG2,A
Reactome	hyper	M15514	synapses	10	268	225	25982	4.309	1E-04	0.039	DCY5,PPM1E,GRIN1
			Reactome class a 1								
	common_		rhodopsin like								TAC1,ADRB1,PRLHR,HTR7,DRD2,SST,HTR6,AVPR1A,NTSR2,
Reactome	hyper	M18334	receptors	11	329	225	25982	3.861	2E-04	0.039	SSTR2,PENK
			Reactome synthesis								
			secretion and								
			inactivation of glucose								
			dependent								
	common_		insulinotropic								
Reactome	hyper	M27318	polypeptide gip	3	13	225	25982	26.65	2E-04	0.039	PAX6,GATA4,PCSK1
	common_		Hallmark epithelial					a =ac			FBN1,COL1A1,COL6A3,TPM1,SLIT3,COL8A2,SCG2,ENO2,P
Hallmarks	hypo	M5930	mesenchymal transition	9	199	427	26325	2.788	0.005	0.046	DGFRB
Hallmarks	common_	M5921	Hallmark complement	9	200	107	26325	2 774	0.006	0.046	C1R,F5,C1QC,CR1,CLU,ZFPM2,SH2B3,L3MBTL4,DOCK4
naimaiks	hypo		nannark complement	9	200	42/	20325	2.774	0.000	0.040	

INDEX

b	number of genes from input list significantly associated with the particular pathway					
В	number of genes from background list(all EPIC probes) significantly associated with the particular pathway					
n	total number of genes from input list associated with the particular pathway					
N	total number of genes from background list(all EPIC probes) associated with the particular pathway					
E	enrichment score					
p_Val	enrichment p value					
q_Val	enrichment adjusted q value					

Supplementary Table 6: Age-associated differences of transcripts for ARNT, REST and CTCF.

	BN	CD4N	CD8N	granulocyt monocytes NK		
ARNT	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹¹
CTCF	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹¹	<10 ⁻¹⁰	<10 ⁻¹¹	<10 ⁻¹¹
REST	0.05	<0.001	N.S.	<10 ⁻⁷	<0.01	<0.05

Cyan- negative relationship between gene expression and age

Magenta- positive relationship between gene expression and age

*unadjusted p-values from linear regression