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Abstract: In zebra finch, basal ganglia projecting “HVCX” neurons emit one or more spike 
bursts during each song motif (canonical sequence of syllables), which are thought to be driven 
in part by a process of spike rebound excitation. Zebra finch songs are highly stereotyped and 
recent results indicate that the intrinsic properties of HVCX neurons are similar within each bird, 
vary among birds depending on similarity of the songs, and vary with song errors. We tested the 
hypothesis that the timing of spike bursts during singing also evince individual-specific 
distributions. Examining previously published data, we demonstrated that the intervals between 
bursts of multibursting HVCX are similar for neurons within each bird, in many cases highly 
clustered at distinct peaks, with the patterns varying among birds. The fixed delay between bursts 
and different times when neurons are first recruited in the song yields precisely timed multiple 
sequences of bursts throughout the song, not the previously envisioned single sequence of bursts 
treated as events having statistically independent timing. A given moment in time engages 
multiple sequences and both single bursting and multibursting HVCX simultaneously. This 
suggests a model where a population of HVCX sharing common intrinsic properties driving spike 
rebound excitation influence the timing of a given HVCX burst through lateral inhibitory 
interactions. Perturbations in burst timing, representing error, could propagate in time. Our 
results extend the concept of central pattern generators to complex vertebrate vocal learning and 
suggest that network activity (timing of inhibition) and HVCX intrinsic properties become 
coordinated during developmental birdsong learning.  
 
Introduction 
 
Network activity driving experience-dependent synaptic plasticity and activity-dependent 
regulation of cellular intrinsic properties (IPs) are two mechanisms contributing to learning and 
memory phenomena (Feldman, 2009; Mozzachiodi and Byrne, 2010; Daou and Margoliash, 2021). 
Recent studies suggest how both contribute to memory stabilization (Titley et al., 2017; Grasselli 
et al., 2020; Titley et al., 2020). One potential mechanism for integrating network activity with 
plasticity of IPs is via spike rebound excitation, where the hyperpolarization activated inward 
current and the T-type Ca++ current regulate the timing, strength and duration of the rebound burst 
upon release from inhibition, resulting in rapid depolarization and rebound spiking. The timing of 
modulation of inhibition depends on network activity. While there is substantial evidence gathered 
in vitro in support of this model, directly correlating this mechanism with behavioral plasticity is 
challenging (Alviña et al., 2008; Person and Raman, 2012; Hasselmo, 2014; Reato et al., 2016). 
Bird song is an advantageous vertebrate system for examining the interactions of network and 
cellular substrates of learned motor production. Within the telencephalic nucleus HVC, the 
HVCRA neurons project to RA (primary motor cortex analog), the HVCX neurons project to Area 
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X (basal ganglia), and there may be a small number of projection neurons (PNs) that project to 
both targets (Kornfeld et al., 2017; Benezra et al., 2018). The adult songs of zebra finches are 
highly stereotyped and thus present complex but highly spectrotemporally structured behaviors. 
During singing, HVC PNs emit phasic bursts of spikes (≈ 10 ms duration) whereas HVC 
interneurons (HVCINT) are tonically active with local minima and maxima in their firing patterns. 
Of those PNs that spike during the song motif that comprises the canonical sequence of syllables, 
HVCRA emit one spike burst and HVCX emit one or more spike bursts. Each HVCRA and HVCX 
spike burst is precisely timed to a specific moment in the motif. Whether the times when PNs 
burst is related to features of song remains unresolved (Hahnloser et al., 2002; Amador et al., 
2013). In one conceptualization of the functional organization of HVC, the burst times from all 
the HVCRA and HVCX contribute to a single sequence distributed continuously across the motif, 
explicitly representing time itself, with little (Lynch et al., 2016) or no (Picardo et al., 2016) 
representation of song features. This is the so-called “clock” model of HVC activity. 
 
HVCX neurons participate in auditory processing mechanisms central to juvenile birdsong 
learning (Roberts et al., 2010), and exhibit changes in dendritic spines and increases in intrinsic 
excitability after deafening (Tschida and Mooney, 2012). Recent results demonstrate that the IPs 
of HVCX within each bird are similar to each other, with the variation observed from bird to bird 
related to how similar are the songs of the birds (Daou and Margoliash, 2020). Thus, descriptive 
features of song correlate with the distribution and variance of features of HVCX IPs. We 
wondered how this would be expressed at the network level, intermediate between cellular 
properties and behavior. The principal feature describing the activity of HVC PNs during singing 
is the timing of when the spike bursts are released (Hahnloser et al., 2002; Kozhevnikov and Fee, 
2007). We reasoned that the bird-specific distributions of HVCX IPs should bias the timing of 
HVCX bursting during singing towards bird-specific patterns, if those bursts arise from the action 
of spike rebound excitation (Daou et al., 2013).  

 
Results 
 
Lynch et al. (2016) presented a large data set of high impedance extracellular recordings 
collected during singing from five adult zebra finch. After extensive preliminary analysis of the 
veridical burst time data from Bird 1 (“Bird 2” of Kozhevnikov and Fee (2007), available to us 
from data previously provided to DM by A. Kozhevnikov) and approximations of the data from 
Birds 2-5 that we extracted from the Lynch et al. (2016) pdf, we then re-analyzed the Lynch et al. 
(2016) data, provided by the authors. For a brief summary of the relevant data collection 
procedures refer to Materials and Methods, and for more detail refer to Lynch et al. (2016). 
 
The Lynch et al. (2016) data includes “multiburst” neurons emitting two or more bursts per motif 
(Supplemental Table 1). HVC multiburst neurons are reported to be HVCX as identified using 
antidromic stimulation techniques (Kozhevnikov and Fee, 2007; Lynch et al., 2016).  In a 
population of 105 identified HVCX recorded from 7 adult birds, 18 emitted zero bursts per motif, 
45 emitted one burst per motif, and 42 emitted between 2–4 bursts per motif (Kozhevnikov and 
Fee, 2007).  
 
The Lynch data set was strongly biased towards HVCX (Supplemental Table 1). For PNs that 
were confirmed (that is, identified by antidromic stimulation) HVCX were 62.5% of Bird 4 
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neurons and ≥ 80% for the other birds. Across the five birds, of all positively identified PNs, 
positively identified HVCX contributed 66–93% of all bursts. In what follows we mostly 
analyzed just the HVCX data, with a focus on multiburst neurons. Expanding the data set to 
include putative PNs (see Methods), multiburst HVCX were 42-65% of all HVCX neurons in the 
five birds. Bursts from multiburst neurons dominated the data set for the three birds with the 
larger samples (67%, 73%, 63%, Birds 1-3, respectively) and also contributed substantially for 
the other two birds (36%, Bird 4; 39% Bird 5). Since some of the multiburst neurons includes 
putative PNs (neurons that had characteristic features of HVC PNs but were not identified by 
antidromic stimulation; see Lynch et al. (2016)), the sample we analyzed was highly enriched in 
HVCX but may include very small numbers of other as yet poorly defined cell classes (see 
Methods). In the rest of the Results, for ease of exposition, we refer to these data as HVCX.  
 
HVCX burst rhythmically during singing 
 
We observed that multiburst HVCX evinced simple low-order structure in the timing of the 
bursts. To explore this, using the Lynch et al. (2016) definition of a spike burst, first we 
examined the timing of intervals between bursts.  To this end we constructed histograms (10 ms 
bins) from the pooled inter-burst intervals (IBIs) from each multiburst neuron within a bird. 
Birds 1 and 5 had relatively flat histograms; the Bird 3 histogram had at least two peaks, and the 

histograms of Birds 2 and 4 were dominated by a single peak. The position of the peaks varied 
from bird to bird. Simple scaling or truncation of the time axes (to account for different motif 
durations) could not account for these differences. Thus, there was evident first-order structure in 

Figure 1. Inter-burst interval histograms of multiburst HVCX.  
The distributions vary among the birds, with no peaks evident for Birds 1 and 5, clear single peaks 
evident for Birds 2 and 4, and several peaks evident for Bird 3. 10 ms binwidth, all histograms. 
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the timing of HVCX multiple bursts and variation from bird to bird. This also demonstrates that 
within each bird the burst intervals of multiburst HVCX neurons were very highly correlated 
(statistically dependent). 
 
A subset of PN spikes did not qualify as contributing to bursts, and the IBI histograms capture a 
first order statistic (and with a somewhat arbitrary bin width). To address these limitations, we 

also evaluated the spike firing rate of each multiburst PN, thus including all the spikes of each 
neuron in the analysis. Autocorrelograms of the firing rates were created from the 1 ms-binned 
spike rates for each neuron. An example is shown in Fig. 2A. The mean spike rate of a neuron 
(Figure 2A, top panel) is autocorrelated yielding a principal peak at zero lag and burst-interval-
related peaks at positive and negative lags (Figure 2A, middle panel). Focusing just on the 
positive lags we defined the numerically largest values as the peaks (Figure 2A, bottom panel). 

Figure 2. Autocorrelations of multiburst HVC PNs. 
(A) Example autocorrelation analysis for neuron 25 of Bird 1. Top panel: 1 ms-binned spike rate 
averaged over all motifs. Middle panel: autocorrelation of averaged spike rate for lags up to the motif 
duration. Bottom panel: positive domain of autocorrelation, with peaks indicated by orange stars. (Birds 
1–5) Summed autocorrelograms for each bird. Per-neuron autocorrelograms as in (A), bottom panel, 
were normalized to the unit interval and summed to produce these plots. To give context, the number of 
neurons contributing to the top 50% (black horizontal line) of each peak relative to the total number of 
multiburst neurons is Bird 1, 28% (5/18) and 22% (4/18) (first and second peaks); Bird 2, 74% (50/68); 
Bird 3, 23% (10/44) and 39% (17/44) (first and second peaks); Bird 4, 93% (13/14); Bird 5, 60% (6/10). 
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To search for common second order patterns across the neurons of each bird, we then scaled the 
autocorrelogram height of each neuron on the unit interval and summed them, resulting in a 
single plot per bird (Figure 2, Birds 1–5). These summed autocorrelograms show distinct peaks 
within a given bird, indicating that the intervals between periods of high firing rate were similar 
across neurons within a bird. Features of the summed autocorrelograms can be related to features 
of the corresponding PSTHs (Figure 1), although the autocorrelograms have more detail. 

 
The structure of the summed autocorrelograms show clear differences between birds. To test the 
significance of these differences we computed the zero-lag correlations (dot products) between 
the autocorrelograms of all pairs of neurons within each bird and between all pairs of neurons 
across each pair of birds. Some of the resulting distributions were not normally distributed, so we 
assessed the differences in the distributions using the K-S statistic. In 18/20 comparisons the 
distributions were statistically significantly different, with only Bird 5 self vs. cross of Bird 4 and 
Bird 5 self vs cross of Bird 3 failing to achieve significance after Bonferroni correction 
(Supplemental Table 2). (Bird 5 had the smallest data set.) Thus, the functional properties of 

Figure 3. Neuron cascade representations reveal structure in the timing of later bursts 

Burst times of HVCX PNs for each bird, with all the bursts of each neuron on one row and neurons 
ordered vertically by the time of their first bursts within the song. First burst times are in blue, later 
burst times in orange. For Birds 1, 4, and 5 dotted lines with slopes fit to the corresponding initial 
slope lines show examples of bursts that cluster at a fixed temporal offset to the initial bursts. 
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multiburst neurons varied among the birds. We note that individual differences in song is a 
hallmark of birdsong learning. 
 
HVCX bursts during singing are organized in bird-specific multiple sequences  
 
The similarity of burst timing in the HVCX within each bird for neurons that are recruited at 
different moments of song should constrain the dynamics of the population bursting. 
Specifically, it implies that later bursts should be organized into sequences at time offsets relative 
to the initial bursts.  Lynch et al. (2016) (their Figure S1) provided a useful representation for 
examining the structure of the population of HVC activity in relation to the song motif. In that 
“neuron cascade” representation, bursts from the same neuron are plotted on the same row, and 
neurons are sorted from top to bottom by the time of their first burst relative to the canonical 
song motif. Preserving the ordinal relationship of the timing of the first bursts while retaining the 
neuron identity of the subsequent bursts aligns all bursts in relation to when they occurred during 
the song motif while representing the flow of neurons as they were initially recruited during the 
motif. 
 
Lynch et al. (2016) evaluated HVCX and HVCRA together. Here, examining such representations 
but only for the HVCX for each of the five birds (Figure 3A–E; first bursts in blue, later bursts in 
orange), we observed a clearly defined approximately linear slope of initial bursts (or piecewise 
fits where appropriate), and quasi-linear segments of later bursts parallel to the slope of the initial 
burst. A striking example is found in Bird 4, with over 50% (10/17) of later bursts arranged 
around a single line (Figure 3D, dotted line). Other clear example are the later bursts of Birds 1 
and 5 (Figures 3A, 3E, dotted lines). We stress that here we have placed the dotted lines 
manually, to draw attention to some of the more obvious examples of this structure. To quantify 
the apparent structure of later bursts, we developed a procedure to analyze the significance of 
clustering of subsequent bursts (Supplemental Figure 1). First, we projected the later bursts onto 
an axis normal to the first burst line (Supplemental Figure 1A, B). Then, we tested whether the 
bursts cluster on this axis, and confirmed that they do using the Ripley (1976) L statistic 
(Supplemental Figure 1C–H).  
 
While these results demonstrate that there are multiple sequences of HVCX bursts that unfold 
over the time course of a song motif, there is no a priori reason to believe that a burst cascade 
should be well-characterized by a linear fit. Therefore, we developed an analysis to examine the 
arrangement of subsequent bursts without the parameterization imposed by the linear regression 
and normal-axis projection method. Starting with a neuron cascade representation for a given 
bird, e.g., Bird 1 (Figure 4A), we shifted each neuron’s burst times so that its first burst occurred 
at zero, while preserving all within-neuron IBIs (Figure 4B, top panel). All later bursts could then  
be projected onto the time axis (Figure 4B, bottom panel), restricting subsequent analysis to this 
one-dimensional representation. Bursts close together on this axis will be arranged in the original 
burst time plots in such a way as to follow a similar progression in time as the first bursts. 
Analyzing these data with the Ripley’s L metric we found that Birds 1-4 displayed clustering at 
short timescales that lay outside the 95% confidence band for the surrogate data. Bird 5 did not 
exhibit clustering greater than that displayed by its surrogate data, but this is likely explained by 
its small set of later bursts (n = 11). 
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Having demonstrated the existence of clustering of later bursts we then determined how many 
clusters existed and the timing of those clusters for each bird. The question can be seen to be 
equivalent to a well-known problem in combinatorics, the set cover problem, with a set defined 
by an interval on the time axis containing one or more burst times. The one-dimensional 
geometric version of this problem admits of a simple greedy solution (see Methods). We applied 
this algorithm to the burst locations on the time axis to generate a collection of offsets, together 
with the later bursts that they capture. A given offset captured all later bursts that fell within a 

Figure 4. Multiple Sequences of Later Bursts During Singing 

For all panels, initial burst times are in blue, while later burst times within and outside of capture windows are in 
red and orange, respectively. All results are from the larger capture set algorithm (see text). (A) Burst times for 
Bird 1, plotted as in Figure 3A. An example offset is at 202 ms (dark blue line at center of shaded 30 ms capture 
window). (B) Top panel: burst times for Bird 1, adjusted per-neuron so that each neuron’s first burst occurs at 0, 
preserving within-neuron IBIs . Bottom panel: projection of all bursts from the top panel onto the time axis. An 
offset at 202 ms (black vertical line) captures spikes in a ±15 ms surrounding region (grey shading). (C) The 
cumulative proportion of later bursts captured by increasing numbers of offset regions for Bird 1. Proportion of 
later bursts captured is depicted by blue points, with the shaded blue region the area under this curve (AUC). The 
diagonal black line shows the capture result if every offset had only captured a single burst. (D) Summary of 
comparable AUC analysis for each bird. The blue bars denote the 95% confidence interval for the surrogate 
random uniformly-distributed data. Black points represent the AUC for the real data. (E–I) All capture regions 
for Birds 1–5. The blue offset regions are those which capture three or more later bursts. For Birds 4 and 5, 
additional offsets which captured two bursts are plotted in gray. The two vertical bars on each time axis denote 
the beginning and end of each motif. 
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fixed window of the offset. When mapped back onto the original burst time plots, this set of 
bursts can be seen to fall along a portion of an offset first burst line (Figure 4A). The examples 
shown in Figure 4 all used a window of 30 ms centered at each offset. We confirmed that they 
are representative of the effects seen by using a range of window sizes from 20 ms to 60 ms. 
Each bird’s later bursts were covered by a collection of offsets smaller than the number of bursts, 
often dramatically so (Bird 1: 9 offsets captured all 26 later bursts; Bird 2: 20 offsets captured all 
113 later bursts; Bird 3: 16 offsets captured all 48 later bursts; Bird 4: 7 offsets captured all 17 
later bursts; Bird 5: 6 offsets captured all 11 bursts). 
 
To evaluate the statistical significance of these results we compared the performance of the set 
cover algorithm on real data against its performance on the surrogate uniformly-placed data. We 
constructed a plot for a set cover solution, similar to a scree plot (but inverted around the unit 
slope line), of the proportion of the later bursts captured versus the number of offsets, once they 
had been sorted in descending order by proportion of later bursts captured. A given solution will 
describe a monotonically increasing curve, whose slope is everywhere nonincreasing (Figure 
4C). To produce a single value for comparison between the real and surrogate data, we took the 
area under this curve (AUC). For Birds 1–4, the AUC for the real data was significantly greater 
than that for the surrogate data (Bird 1, p=0.042; Bird 2, p=0.0002; Bird 3, p=0.0023; Bird 4, 
p=0.0001; p-values derived via bootstrap). The set cover solution for Bird 5, which had the 
fewest later bursts, did not rise to significance (p=0.11). With Bonferroni correction for five 
birds, Bird 1 becomes non-significant. These values are largely insensitive to the size of the 
window. 
 
The set cover solutions described above capture all of a bird’s later bursts using the fewest 
offsets but ignores biologically significant solutions in which some offsets capture more bursts. 
We therefore extended the analysis above using a modified algorithm that preferentially selects 
large capture sets (see Methods), rather than minimizing the total number of sets. For this 
algorithm a smaller number of offsets covered most of each bird’s later bursts than for the prior 
algorithm (Bird 1: 4 offsets captured 19/26 later bursts; Bird 2: 11 offsets captured 96/113 later 
bursts; Bird 3: 6 offsets captured 34/48 later bursts; Bird 4: 2 offsets captured 12/17 later bursts; 
Bird 5: 3 offsets captured 8/11 bursts). The same pattern of values obtained, with Birds 1-4 
having significantly greater AUC than their surrogates, and Bird 5 not being significantly 
different from its surrogates (Bird 1, p=0.0032; Bird 2, p=0.0001; Bird 3, p=0.0016; Bird 4, 
p=0.0001; Bird 5, p=0.14; p-values derived via bootstrap) (Figure 6D). Birds 1–4 retain 
significance following Bonferroni correction for five birds. These values, too, were insensitive to 
the choice of half-window size.  
 
The offsets capturing three or more bursts for all birds are plotted in Figures 4E–4I, providing 
visual confirmation of the fits described above. It is immediately apparent that different offsets 
are emphasized in different birds. For these imputed sequences at any given moment in song 
there can be multiple sequences engaged simultaneously – bursts occurring later in one sequence 
occurring at the same time interval as bursts occurring earlier in another sequence. Such overlap 
is also observed directly in the data for all three birds with the larger numbers of multiburst 
neurons (Birds 1–3). For example, for Bird 3 different bursts occurring at roughly 250 ms 
contribute to three distinct sequences. A similar effect for Bird 3 is also observed at 550 ms and 
925 ms (Figure 4G).  
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Across the birds the number of sequences scaled with the sample size (number of later bursts), 
thus from this data set there was no evident upper bound to the number of sequences. A 
remarkable degree of structure was observed for Bird 4, with a single 30 ms offset window 
accounting for 59% (10/17) of later bursts. Average numbers of bursts/offset were highest in 
Birds 2 and 4 (9.3 and 10 bursts/cluster, respectively), with intermediate values for Birds 1 (5.5) 
and 3 (5.7), and Bird 5 having the lowest numbers of bursts/offset (4). Thus, sample size was not 
directly related to the success of the clustering procedure. We did observe, however, that the two 
birds with small sample sizes had the greatest proportion of solitary bursts (on the transformed 
axis) (Bird 4: 0.41 (7/17), Bird 5 0.55 (7/11)). We conservatively defined sequences as having at 
least three bursts, but this may overly penalize the birds with the smallest sample sizes. Lowering 
the criterion to two bursts per sequence decreases the proportion of solitary bursts (Bird 4: 5/17; 
Bird 5: 3/11), bringing them more in line with the other three birds. 
 
Reevaluating analyses for uniform distributions 
 
Lynch et al. (2016) described HVC PN spike bursts (combining both HVCX and HVCRA) as 
forming a single continuous representation over the time course of the song motif. Clearly, our 
conclusions are distinct from theirs. Prior to exploring the basis for this discrepancy, we first 
confirmed that we could reproduce the results of Lynch et al. (2016). 
 
Following the procedure of Lynch et al. (2016), bursts from all PNs recorded from a bird during 
singing were pooled and reduced to a burst time within a canonical song motif. The pooling 
procedure aggregates, for each bird, the burst times of all single burst PNs with all the burst 
times from all multiburst HVCX. The resulting vector of burst times is processed irrespective of 
the PN type, the ordinal burst position, or any other constraint. Lynch et al. (2016) graphically 
represented such data with the time of each burst represented on the abscissa and the ordinal 
position of each burst within the canonical motif represented on the ordinate (Figures 5, Birds 1–
5, bottom left insets). We term this a “burst cascade” representation to distinguish it from the 
neuron cascade representations of Figures 3 and 4. In a burst cascade representation, each row 
contains a single burst, and a column contains multiple data points only if there are two or more 
bursts with identical times. This depiction yields a strong tendency for typical experimental data 
to flow from top left to bottom right, giving the visual impression of a single, approximately 
straight line. The graphical decision to represent the data as spike rates tends to smear the time 
base of each burst causing overlap between bursts, thus reinforcing visual continuity. The degree 
to which burst times represented as a point process in this space are described by a continuous 
and uniform distribution were central questions explored in Lynch et al. (2016). 
 
For each bird we then calculated inter-burst intervals (IBIs) from consecutive pairs of bursts as 
did Lynch et al. (2016), to produce a real data "population IBI", one per bird. Histograms of these 
population IBI are shown for each bird in the top right insets of Figure 5. Note that the data 
treated in this way yield IBI histograms that all have peaks near 0 ms, tend to rapidly fall off in 
approximately exponential fashion, and have roughly the same attributes across the different 
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birds. Thus, ignoring the neuronal identity of bursts in assessing the timing of information in the 
network destroys the actual structure present in the IBIs displayed by multiburst HVCX (cf. 

Figure 5. Burst cascade representations of population HVCX activity during singing  
(Birds 1–5) Burst times for each bird (HVCRA in red, HVCX in blue, putative PNs in green), with bursts 
pooled across neurons and ordered vertically by time within the song.. Syllables are marked by shaded 
gray columns. The dark gray shaded region denotes where 95% of random uniformly distributed 
surrogate datasets fall. Insets in lower left are of the same bursts as plotted in Figure 1 of Lynch et al. 
(2016). Insets in top right are IBI histograms computed for the same data. (Bottom right) Each bird is 
identified by number. All bursts from all PNs are represented by black dots with confidence intervals in 
grey. The red shaded region denotes the 95% confidence band for random uniformly distributed 
surrogate datasets of the same size as the positively-identified HVCRA dataset for each of the birds.  
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Figure 1), that contributed 36–73% of the HVCX bursts for each bird. It also obscures differences 
between birds. Computing similarity of all pairs of IBI histograms and all pairs of population IBI 
histograms (see Methods) yielded two completely non-overlapping distributions (Supplemental 
Table 3), with significantly different means (independent-sample t-test p = 2.7 x 10-7). Thus, the 
population IBI approach suppresses individual-level biological variation that exists in the data. 
 

Following Lynch et al. (2016), we then compared the real data population IBI to 10,000 
population IBIs produced from a synthetic uniform distribution over the song duration via 
parametric bootstrap (see Methods). These results are visualized, one per bird, as cumulative 
density functions (CDFs) of the real data (black lines, Figures 6A–E), the mean of the 
bootstrapped data (dark blue lines) and the 95% confidence intervals of the bootstrapped data 
(blue shading delimited by light blue lines). Our plots reasonably accurately reproduce the 
equivalent plots reported in Lynch et al. (2016) (see insets, Figures 6A–E) while showing 
additional detail since we did not apply 1 ms binning to the data as they did. Note that the real 
data stay confined within the confidence intervals at virtually all points for all birds. We then 

Figure 6. Cumulative density functions of IBIs of HVC projection neurons 

Cumulative density functions for the HVC projection neuron IBI distribution for each 
bird. Real data denoted by black lines, surrogate data by dark blue line (median for 
surrogates) and light blue shaded region (95% confidence interval). The original CDFs 
from Lynch et al (2016) for each bird are displayed as insets. 
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compared the real data CDF with the surrogate population CDFs using a Kolmogorov-Smirnov 
test, obtaining Bird 1 p=0.640, Bird 2 p=0.015, Bird 3 p=0.421, Bird 4 p=0.714, Bird 5 p=0.811. 
Lynch et al. (2016) reported p=0.014 for Bird 2 and p>0.28 for the other four birds. Thus, our 
results closely align with those reported by Lynch et al. (2016). Furthermore, we observed that 
the remaining variation (for Bird 2) lies within the distribution of p-values obtained by running 
the overall parametric bootstrap procedure many times. Lynch et al. (2016) observed that after 
Bonferroni correction for five birds the K-S test is not significant for all birds, as did we. The 
similarity in the two sets of results gives confidence that we have reproduced the Lynch et al. 
(2016) method accurately. Note, however, that this method relies on negative inference – 
attempting to evaluate the failure to achieve statistical significance. It also assumes that the 
timing of spike bursts are independent from each other. 

 
We also plotted burst cascades but with each burst time represented by a point (the weighted 
average of all spike times within the burst), with HVCRA, HVCX, and putative PNs distinguished 
by color (red, blue, and green, respectively), and with 95% confidence intervals calculated for 
the combined population of all PNs marked by shading around the path from first to last burst 
(Figure 5, Birds 1–5, central images). Considering all bursts, note that there are regions where 
the path of the sequential bursts exceeds the limits of the confidence intervals for each bird, in 
some cases substantially in magnitude (Figure 5, Bird 2) or over an extended interval of the path 
(Figure 5, Birds 2, 4). This contrasts with the behavior of the same data when viewed as a CDF 
(Figure 6), where the real data rarely or never violates the confidence intervals. This emphasizes 
that structure in the real data is not 
detected by negative inference using the 
K-S statistic, which relies on the CDFs and 
only examines the relative distributions of 
intervals, not their ordering. 
 
Given these issues, we also searched for an 
independent biologically meaningful test 
to evaluate the utility of the population IBI 
approach. To this end, we examined the 
activity of RA projection neurons, that 
project to syringeal and respiratory 
brainstem motor neurons (Vicario, 1993; 
Wild, 1993), and are spatially organized by 
the syringeal muscle they innervate 
(Vicario, 1991). RA PNs also burst 
multiple times during each song motif, 
albeit with many more bursts than for 
HVCX. Using data from Leonardo and Fee 
(2005) (kindly provided by A. Leonardo) 
and restricting ourselves to the three 
Leonardo birds with the largest data sets, 
we conducted population IBI analysis on 
Leonardo Bird i9 (34 neurons, 267 bursts), 
Bird i10 (10 neurons, 134 bursts), and Bird i12 (26 neurons, 329 bursts) – a data set with larger 

Figure 7. Burst cascades and IBIs of nucleus RA 
projection neurons recorded during singing. 

(A, C, E) RA PN burst times for three birds plotted as in 
Figure 5. (B, D, F) RA PN CDFs plotted as in Figure 6. 
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numbers of bursts than those for Birds 1, 4, and 5 and comparable numbers of bursts as for Birds 
2 and 3 of Lynch et al. (2016). Plotting these data in the burst cascade approach (Figure 7A, C, 
E) evinced clear deviations of the burst time paths from the confidence intervals, with prominent 
deviations for Birds i10 and i12 (Figure 7C, E). Yet, even with far greater violations of the 
confidence intervals for the population IBIs than seen in the HVC data, the measured CDF for 
each RA bird hewed closely to the corresponding CDF of the uniform distribution for that bird 
(Figure 7B, D, F). The K-S test verified this (Bird i9, p=0.129, Bird i10, p= 0.271, Bird i12, 
p=0.038); with Bonferroni correction for multiple comparisons all p-values are above 0.05. Yet 
RA activity is related to note structure (Yu and Margoliash, 1996) and variation in features of 
song including pitch, amplitude, and spectral entropy (Tang et al., 2014), and has been 
hypothesized to transform an HVC clock input into muscle coordinates (Fee et al., 2004). This 
suggests that the failure to reject the continuous representation null hypothesis will in general fail 
to yield biological insight into neural encoding mechanisms. 
 
Discussion 
 
Multiple sequences of HVCX spike bursts: a model for song and error representation 
 
Exploring the organization of HVCX bursting we have identified multiple sequences of later 
bursts that unfold over time at different delays from the wave of first bursts. (We note that given 
the multiple sequences, assigning single burst neurons to the first sequence is arbitrary. 
Potentially, detailed functional connectivity information could resolve this issue, but this is 
currently unavailable.) What might the multiple sequences encode? We propose that this could be 
a potent organization to enhance detection of small variations in HVC activity during singing. 
Errors in singing could be reflected by changes in the timing and numbers of HVCRA bursting at 
a given moment in time. The HVCRA interact with HVCX via local interneurons (Mooney and 
Prather, 2005), a disynaptic inhibitory pathway yielding song corollary discharge information in 
HVCX (Prather et al., 2008). Within a local regime of connectivity, suppression of HVCInt tonic 
activity could influence the timing of subsequent HVCX bursting. The HVCX expressing a burst 
timing error would burst coincidently with other HVCX participating in different sequences, such 
as we have demonstrated here, therefore conveying the timing error laterally within the network. 
Such lateral interactions would involve single burst HVCX as well as multiburst HVCX (except 
those single burst HVCX that occur near the beginning of song, prior to the first sequence of later 
bursts). Interneurons help to regulate the timing of HVC PN bursts (Amador et al., 2013; Kosche 
et al., 2015), and developmental learning regulates inhibition onto HVCRA (Vallentin et al., 
2016). Our results suggest that learning–dependent developmental changes will also be seen in 
the timing of HVCX spike bursts. 
 
The timing errors in the HVCX potentially could also propagate forward in time (to the next 
bursts of those neurons). This depends on a multitude of factors, both of network activity and 
HVCX cellular mechanisms. The latter could include IPs that influence burst timing (see below).  
 
Whatever the sources of timing errors, and whether they arise from direct effects on HVCRA or 
from effects in RA, the brainstem, or the basal ganglia pathway (Hamaguchi et al., 2014), error 
in motor output would be conveyed back to HVC through multiple pathways including via 
auditory feedback (Konishi, 1965). In an experiment where zebra finch were presented with a 
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continuous delayed auditory feedback (cDAF), song was rapidly and potently disrupted 
(Fukushima and Margoliash, 2015). Presentation of cDAF also disrupted HVCX IP homogeneity, 
in a dose-dependent fashion. Changes in the IPs of HVCX were detected in as little as 4 hours 
after the onset of cDAF, the shortest interval attempted (Daou and Margoliash, 2020). These 
results indicate that auditory feedback error (or motor error from auditory feedback error) can 
rapidly drive changes in HVCX IP homogeneity, representing an error signal. Examining the 
changes in HVC that accompany cDAF singing can help to elaborate this model.  
 
Biological systems can experience substantial delay in feedback relative the motor event giving 
rise to that feedback. Typically, this problem is posed it terms of how feedback can “find” and 
alter the neurons whose motor-related activity gave rise to that feedback earlier in time. Instead, 
we envision the problem as mapping a sequence of feedback events onto a sequence of delayed 
copies of motor-related events (multiple spike bursts within individual neurons). The 
organization of HVCX spike bursts into multiple sequences preserves the temporal precision and 
sparseness of individual HVCX bursts while organizing them into a dense population 
representation at each moment in time. This structure could also accommodate feedback signals 
from respiratory, auditory and somatosensory activity representing information about singing 
behavior that are transmitted to HVC (Wild, 1994; Suthers et al., 2002; Ashmore et al., 2005; 
Akutagawa and Konishi, 2010) presumably with different delays. A given feedback signal would 
synapse into a local circuit (including HVCX and HVC interneurons) at the appropriate moment 
in time that compensates for the delay associated with that input, allowing it to interact with 
corollary discharge information in the later sequences. Perhaps during development feedback 
signals project widely through HVC, allowing local networks within HVC to preferentially 
enhance connections based on temporal coincidence (pruning non-coincident connections), 
resulting in tuning to specific delays. Thus, our results suggest that sparse, structured HVCX 
bursting effectively carries an efference copy signal, representing a biologically plausible 
solution to the so-called temporal credit assignment problem. 
 
Finally, the projection of HVCX would transmit to the basal ganglia pathway a normal signal (no 
error) or an error signal, with the signal converted into motor commands instructing RA activity 
(Giret et al., 2014). The signal might be evaluated in the basal ganglia by assessing the 
coincidence of populations of HVCX bursts occurring over small intervals of time. 
 
Spike rebound excitation as a candidate mechanism for network rhythmic bursting 
 
We propose that the timing of HVCX spike bursts depends both on the pattern of connections in 
HVC and on HVCX IPs through the mechanism of spike rebound excitation. In spike rebound 
excitation, the timing of spike bursts are regulated by IPs that influence the duration and 
magnitude of hyperpolarizing membrane excursions interacting with release from inhibition (a 
consequence of changes in network activity) that rapidly triggers a spike burst.  
 
In vitro recordings demonstrate that HVCX express spike rebound excitation (Daou et al., 2013). 
In HVCX this is mediated by the expected complement of ion channels, including 
hyperpolarization-activated cyclic nucleotide-gated channels (Ih), T-type calcium channels (ICa-T), 
and small conductance calcium-activated potassium channel (ISK) (Daou et al., 2013). Previous 
results indicate that relative minima of HVCInt occur in temporal relation to spike bursts of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525213doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525213


 

 15 

HVCX (Amador et al., 2013) and HVCRA (Kosche et al., 2015) during singing. These are the 
most fundamental set of features required to support the spike rebound excitation mechanism, 
but absent additional constraints, demonstrating the action of these features in behaving animals 
can be difficult (e.g., making whole cell patch recordings in singing birds). 
 
The organization of the HVCX in zebra finches provides for such additional constraints (Daou 
and Margoliash, 2020). Recent results with in vitro whole cell patch recordings in brain slices 
from adult birds demonstrate that all the HVCX in a given animal tend to have similar spike 
waveform shapes and timing of spikes in response to canonical depolarizing and hyperpolarizing 
current injections. Following Hodgkin Huxley modeling, this yields similar estimates for each of 
five ion current magnitudes (INa, IK, ICa-T, Ih, and ISK) in different neurons within the same 
animal. Different individuals have different combinations of IPs (except birds singing similar 
songs such as sibling birds). Differences in the magnitudes of ICa-T, Ih, and ISK could induce 
substantial effects on the timing of spike rebounds bursts. Correspondingly, systematic 
differences among individual birds in these IPs could induce systematic differences in the timing 
of spike rebound bursts. This argues a for a connection between the IP homogeneity seen in vitro 
and the multiple spike burst sequences observed in vivo. We envision that this pattern of 
organization will vary among songbird species depending on the regularity of singing structure. 
 
Given that the homogeneity of HVCX IPs in adults is sensitive to experimentally-induced errors 
in singing (Daou and Margoliash, 2020), that HVCX IPs are developmentally regulated (Ross et 
al., 2017; Ross et al., 2019; Daou and Margoliash, 2020), and that juvenile zebra finches in the 
plastic stage of song development show differences in their IPs and far less uniformity in IPs as 
compared with adults  (Ross et al., 2017; Daou and Margoliash, 2020), this adds confidence that 
HVCX IPs are closely tied to the song of the bird. Nonetheless, we have not yet associated 
specific IP values with specific features of song or specific patterns of spike burst timing during 
singing. These represent attractive future directions. 
 
Reevaluating the continuous representations hypothesis for HVC 
 
The clock model envisions a single continuous representation of burst times, with recent papers 
combining both HVCX and HVCRA into a single sequence (e.g., Lynch et al., 2016; Picardo et al., 
2016). Feedforward excitatory connections are envisioned as the mechanism to sustain 
propagation of bursts down the chain. The activity of each HVC PN is said to explicitly represent 
time itself, hence these are “clock” models. The bursts of multiburst HVCX represent a challenge, 
however, since under the feedforward concept the functional connections each HVC PN makes 
will presumably be invariant to which sequence it is participating in, yet the sequences represent 
different moments in time. In contrast, our model proposes a simple mechanism for 
implementing dynamics in functional network connectivity. 
 
As well as conceptual issues there are statistical ones. Lynch et al. (2016) treated HVC PN burst 
times as independent (Figure 5, Birds 1–5, bottom insets). A similar assumption was made by 
Picardo et al. (2016) which used optogenetic techniques to image large numbers of HVC PNs 
neurons during singing. This included recording from multiburst neurons but in that paper too 
the timing of each burst was treated as an independent event (and multiple bursts were not 
considered in the analysis). Our results demonstrating rhythmicity of HVCX bursting renders the 
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assumption of spike burst independence untenable and invalidates the basic statistical treatment 
of data in those papers. Both Lynch et al. (2016) and Picardo et al. (2016) concluded that HVC 
PN are organized in a single continuous representation across the song motif. Our results refute 
this for HVCX PN and emphasize that the neuronal identity of bursts has biological as well as 
statistical significance. 
 
Central to the statistical testing proposed for evaluating a continuous representation is attempting 
to support a model by appealing to the failure to reject the null hypothesis. Innumerable forms of 
structured data may hide behind such a failure, including the results we reported. Furthermore, 
we showed that the KS statistic as applied to populations of IBIs is weak and uninformative, 
failing to detect evident non-uniform distributions in the sequence of IBIs. Yet the clock model 
envisions for each bird a specific sequence of IBIs. The population IBI concept orders bursts 
independent of the neurons or ordinal positions of the bursts. Whether this has utility remains 
unknown. Instead, we found structure by respecting the neuronal identity and sequential order of 
the bursts. 
 
Finally, here and in other recent papers very small samples of HVCRA have been “hitched” onto 
much larger samples of HVCX (Okubo et al., 2015; Lynch et al., 2016) for analysis, or small 
numbers of intracellularly recorded HVCRA were analyzed (Picardo et al., 2016). We fully 
acknowledge all these remarkable recordings during singing are exceptionally difficult to 
achieve, and represent a tour de force. Nonetheless, when small samples of HVCRA are 
considered in isolation, they define an almost limitless space of potential paths through the motif 
(Figure 5, bottom right panel). Thus, they offer effectively no information about the sequential 
organization of populations of HVCRA in relation to singing. In contrast, the optical recordings of 
Picardo et al. (2016) included presumptive large samples of both HVCRA and HVCX, but for 
reasons of technical limitations they could not distinguish between the two classes of PN, and 
therefore also provided no resolution to this problem. Thus, we have shown that the temporal 
organization of HVCX bursts are not consistent with the continuous representation clock model, 
and it continues to remain entirely in the realm of speculation whether HVCRA are.  
 
Methods 
 
Data collection 
 
These data were collected by the authors of Lynch et al. (2016) and provided by them at our 
request. We restate the salient details here; for more detail on collection, refer to their methods. 
All HVC projection neuron data were collected using microdrive-mounted high-impedance 
single electrodes surgically implanted into HVC of male zebra finches. Electrophysiological 
recordings were made while the birds sang in the presence of a female zebra finch (directed 
song) and neurons were identified as interneurons or PNs according to firing properties. PNs 
were classified as HVCRA or HVCX based on antidromic stimulation using electrodes implanted 
into nucleus RA or Area X, or were classified as “putative PNs” if they demonstrated song-
related firing patterns characteristic of PNs but could not be definitively identified by antidromic 
stimulation. 
 
All RA projection neuron data were collected similarly, with projection neurons identified by 
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their firing properties. These data were previously reported in Leonardo & Fee (2005) and were 
provided to us by Anthony Leonardo. For more detail, refer to that paper's methods. 
 
Data received 
 
We received both spike times and inferred burst times from the Lynch et al. (2016) authors. In 
both cases, the values provided were those obtained after having been warped to a canonical 
motif for each bird (piecewise linearly by syllable start and stop times, following Glaze and 
Troyer 2006). 
 
Lynch et al. (2016) determined burst times by producing 1 ms-binned spike rates pooled over all 
motif renditions, smoothing by convolution with a 9ms square window, and identifying candidate 
burst onset and offset times using a 10Hz threshold. Only candidate windows which contained 
spikes on greater than 50% of all song renditions were considered. Burst times were calculated 
from these windows by taking the mean spike time within the window. 
 
In all analyses involving burst timing, we used the burst times provided to us, rather than 
recalculating them ourselves (beyond confirming that we were able to), to maintain continuity 
with the original data and analyses. 
 
Identification of PNs 
 
We treated all multiburst neurons as HVCX. Thus, we include the three multiburst HVCRA from 
the Lynch et al. (2016) data (one neuron in each of Birds 2, 4, and 5) given that such HVC PNs 
are not described elsewhere and we cannot exclude the possibility that like canonical HVCX 
these neurons also project to Area X (the basal ganglia) (see Benezra et al. (2018)). Any bias 
towards one or the other class of identified PN in the putative PNs is not known. 
 
Application of Lynch analysis to RA data 
 
The RA data provided by A. Leonardo included spike rates in 0.5 ms bins, averaged over all 
motif renditions (after piecewise linear warping to a canonical motif). As the firing properties of 
RA PNs differ from those of HVC PNs, we could not apply the burst identification method used 
by Lynch et al. (2016). Following Leonardo & Fee (2005) we identified burst onsets and offsets 
with a 125 Hz threshold on this spike rate. 
 
Surrogate random data were generated largely following the procedure described above, except 
that the prohibition on bursts from a single neuron closer together than 9 ms was removed. 
Otherwise, all analyses performed on these data were identical to those for the HVC PN data. 
 
Surrogate uniform distributions 
 
Surrogate uniform distributions for comparison with the real data were generated by parametric 
bootstrap as follows: to generate a single surrogate dataset for one bird, new burst times were 
generated for each neuron from that bird, matching the number of bursts that neuron produced. 
These burst times were drawn uniformly from an interval with length equal to that of the bird’s 
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canonical motif, with the requirement that for a given neuron, no two bursts occur within 9ms of 
one another (as the burst identification analysis described above precludes this possibility in the 
real data). Burst times were generated independently across neurons. Population IBIs were 
generated as for the real data. (Lynch et al. (2016), personal communication with Galen Lynch). 
 
For each bird, 10,000 of these surrogate datasets were generated. 
 
Population IBI CDFs and Kolmogorov-Smirnov tests 
 
The primary statistical test performed on the population IBIs was a two-sample Kolmogorov-
Smirnov (K-S) test between the real data and the median of the 10,000 surrogate uniform 
distributions for each bird. The K-S statistic generated was compared with the distribution of K-
S statistics calculated between the median and each of the 10,000 surrogate distributions. The p-
values quoted in the results express the proportion of this bootstrapped distribution which is 
greater than or equal to the K-S statistic obtained between the real data and the median of the 
surrogates (after a small-sample correction). The K-S test was applied using the ks_2samp 
method from the Python scipy.stats library (here and elsewhere in our analyses). 
 
Multiburst neuron burst timing analysis 
 
The multiburst neuron IBI distributions were generated by first calculating the IBIs between the 
bursts for each neuron, and then pooled into a single distribution per bird. That is, if a bird has 
two multiburst neurons, each of which fires two bursts, then each neuron will contribute one IBI 
to that bird's multiburst neuron IBI distribution. For all histograms displaying these distributions 
a bin size of 10 ms was used. 
 
To quantify histogram similarity, for each bird we constructed 10-bin histograms with the 
ordinate normalized by the peak height of each histogram, both for standard IBI and population 
IBI representations. We compared pairs of histograms by computing an RMS value summed over 
the difference between bin 1 pairs, bin 2 pairs, etc. The smaller the summed number, the more 
similar on average are the two histograms being compared. 
 
Set cover analysis 
 
The one-dimensional geometric set cover problem can be solved greedily by sorting the sets by 
their central point and sweeping across the entire interval in one direction, and for every 
uncaptured burst encountered, collecting the set that contains that burst on its trailing edge and 
marking all bursts within that set as captured. This solution will be optimal with respect to the 
total number of sets (or offset times) required to capture all of a bird’s later bursts. (This 
algorithm is usually discussed without attribution, given its simplicity, e.g. Agarwal et al (2020).) 
 
The alternative algorithm we used to maximize the area under the capture curve is also simple: 
collect sets (and mark the bursts they contain as captured) in decreasing order of the number of 
uncaptured bursts contained in the set. This algorithm will produce solutions with more sets that 
capture a large number of bursts, at the cost of a longer “tail” of sets which only capture one 
burst. 
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Code availability, quantification 

All code and statistical analyses will be made available upon publication on GitHub (exact 
location TBD). We used Python, various Python libraries, and Jupyter notebooks. The complete 
list and version numbers are found in the GitHub repository. 
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Supplemental Figure 1. Linear Fits of Later Bursts in Neuron Cascade Representations 
Demonstrate Clustering 

 (A) Starting with the neuron cascade representation for Bird 1 (Figure 3A), a line (left blue line) was 
defined as the best fit to all the initial bursts. Parallel lines (in orange) were then drawn through each of 
the subsequent bursts except the line for the last burst is in blue. An axis normal to the lines was then 
defined. While the normal axis appears graphically to be far from normal this is due to the different axis 
scales (roughly 100 to 1). The intersection points of the blue lines with the normal line are depicted as red 
circles and define the bounds of possible projections of later bursts onto the normal line. (B) The normal 
axis line from (A) with the burst intersection points and bounds (vertical lines). Note many bursts appear 
to cluster together. (C—G) Statistical analysis using Ripley's L statistic of clustering for each piecewise 
fit of initial bursts for each of the five birds. (Only Bird 2 had two piecewise fits associated with 
significant numbers of subsequent bursts and so contributes two plots.) The observed clustering along the 
normal axis was compared with clustering in synthetic data that were produced so as to maintain the 
locations of each neuron's first bursts, but to uniformly randomly place its subsequent bursts between its 
first burst and the end of the canonical song motif (maintaining a 9 ms interval between any two bursts, 
per Lynch et al. (2016)). Short-range clustering on this axis indicates that the later bursts of multiburst 
neurons tend to describe sequences during singing that proceed at the same rate as the sequence described 
by the first bursts of these neurons. For Birds 1–4 the normal-axis intersection clustering exceeds the 95% 
confidence interval calculated via the bootstrap procedure at short cluster distances. This was limited to 
brief intervals for Birds 1 and 3 (C and F, respectively), but with substantial departures from the 95% 
confidence intervals for Bird 2 (both fits) (D and E) and Bird 4 (G). Bursts from Bird 5 (H) exceed the 
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confidence interval only for clustering at long cluster distances; however, given that Bird 5 had very few 
later bursts (n = 11 later bursts; Supplemental Table 1) it exhibited wide confidence intervals at short 
cluster distances. Bird 4, with the next-fewest later bursts (n = 17; Supplemental Table 1), was the only 
other bird to share these features of the shape of the confidence intervals: wide intervals at short cluster 
distance and exceeding the confidence interval at long cluster distance. 
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 Bird 1 Bird 2 Bird 3 Bird 4 Bird 5 
Confirmed HVCX 32 93 69 25 20 
Multiburst HVCX 
(confirmed/putative) 18/0 56/12 38/6 6/8 6/4 

Confirmed HVCRA 8 14 15 15 5 
Putative PN 0 29 16 24 19 
Total PN 40 136 100 64 44 
HVCX bursts 58 187 110 31 24 
HVCRA bursts 8 15 15 16 7 
Multiburst HVCX 
bursts 44 181 92 31 21 

Total bursts 66 249 146 85 54 
 

Supplemental Table 1. Numbers of different classes and spike bursts of HVC projection neurons.  
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Bird 1 2 3 4 5 
1  1.31e-36 2.22e-16 2.03e-29 1.12e-14 
2 0.00135  1.81e-45 1.83e-25 2.47e-08 
3 2.08e-09 1.9e-28  1.21e-14 0.0147 
4 2.66e-15 6.66e-16 2.61e-10  0.523 
5 1.28e-14 6.53e-29 0.00167 0.000192  

 
Supplemental Table 2. Testing for bird-specific structure in the autocorrelograms. 

K-S test p-values for comparisons of distributions of neuron-by-neuron autocorrelogram dot 
products between all pairs of birds. The matrix is not symmetric because the distribution of dot 
products between a pair of birds’ neurons can be compared with each bird’s distribution of its 
own neurons dotted with one another. 
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Supplemental Table 3. Comparing structure of multiburst IBI histograms and population IBI histograms. 

 Root mean square of bin differences from multiburst neuron IBI histograms (top) and population 
IBI histograms (bottom). 

 

Multi-burst neurons     
Bird 1 2 3 4 5 
1  0.11 0.1 0.16 0.12 
2   0.1 0.12 0.13 
3    0.12 0.1 
4     0.14 
5      
      
Population 
IBI 

     

Bird 1 2 3 4 5 
1  0.089 0.049 0.067 0.076 
2   0.048 0.046 0.047 
3    0.04 0.046 
4     0.032 
5      
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