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Abstract
The All of Us (AoU) initiative aims to sequence the genomes of over one million
Americans from diverse ethnic backgrounds to improve personalized medical care. In a
recent technical pilot, we compared the performance of traditional short-read
sequencing with long-read sequencing in a small cohort of samples from the HapMap
project and two AoU control samples representing eight datasets. Our analysis revealed
substantial differences in the ability of these technologies to accurately sequence
complex medically relevant genes, particularly in terms of gene coverage and
pathogenic variant identification. We also considered the advantages and challenges of
using low coverage sequencing to increase sample numbers in large cohort analysis.
Our results show that HiFi reads produced the most accurate results for both small and
large variants. Further, we present a cloud-based pipeline to optimize SNV, indel and
SV calling at scale for long-reads analysis. These results will lead to widespread
improvements across AoU.
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Introduction
The All of Us project is a landmark initiative by the National Institutes of Health (NIH) in

the United States of America to sequence up to 1 million people using Illumina short-reads and
to genotype up to 2 million people with array data. It is one of the most extensive efforts ever to
obtain clinical-grade sequencing for the masses, with a goal of constructing and defining a
diverse health database for genomic and other studies across the USA. Already this effort has
released the first 100,000 Illumina whole genome data sets that characterized participants
across many ethnicities for the genomic variations, focusing on single nucleotide variants
(SNVs), small insertions and deletions <50bp (indels), and genomic alteration >50bp known as
structural variants (SVs). Using these data, the program aims to advance personalized medicine
by providing preventive and tailored medical care for individuals from globally diverse
backgrounds1. The endeavor represents a strategic resource to enable genomic sequencing as
a leading method for diagnosis and risk assessment, and thus will lead to new insights and
improved care for a wide range of genetic diseases.

Understanding the heritability and genetic origins of human genetic diseases requires the
accurate and comprehensive identification of all forms of genetic variation along with a detailed
recording of phenotypes 2. Historically, researchers initially focused on characterizing common
genetic variation in the human genome in an effort to understand the genetic basis of common
diseases and phenotypes in the worldwide population3. Nevertheless, they found that the
amount of heritability associated with gene variants is often very low, up to ten times smaller
than expected in some cases, which many named ‘missing heritability’4. Scientists suggested
several hypotheses to explain the missing heritability, including poor exploration of Structural
Variation (SV)5,6, inaccurate characterization of phenotypes 7, and missing rare variants that
have a crucial role in some diseases4,8,9. Over the last decade, many efforts have been made to
address each of these reasons, although all factors continue to challenge disease and traits
association studies10–12.

One major growth area in recent years has been the continued technological improvements
made to identify and study SVs. SVs are defined as genomic alterations 50bp or larger,
including insertions, deletions, inversions, duplications, and other rearrangements. Despite
being much rarer than SNV (~0.01% of SNV counts per genome), because of their larger sizes,
SVs impact a larger number of base pairs per individual6,13,14. While very challenging to resolve
with short reads, over the past few years, multiple groups, including ours, have demonstrated
the usefulness of long-reads in identifying these types of events12,15–18. Thus, gave rise to new
research efforts where we uncovered novel sequence elements, found biases in the human
reference genomes19–21, resolved the complete telomere-to-telomere (T2T) human reference
genome22, and could begin to demonstrate the impact of complex alleles across various human
diseases17,23.
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Currently, there are two major sequencing technologies that provide long reads. The first
commercially available technology is from Pacific Biosciences (PacBio) which started with
continuous long reads (CLR) with a high error rate (15%)24,25 using single molecular real time
(SMRT) sequencing. Later, they developed high-fidelity reads (HiFi) with an error rate lower than
1%. HiFi reads are typically 15-20 kbp long with a tightly controlled insert size26. Today, PacBio
sequencing is commonly performed on their medium output Sequel II instruments, although they
recently announced a new high throughput Revio27 instrument would be available within the next
year with capacity for thousands of genomes per year per instrument. PacBio has showcased
many advantages of long-reads over the years, for example, by boosting our ability to produce
highly continuous de novo assemblies (e.g., T2T)22 and enabling more comprehensive genomic,
transcriptomic and epigenomic benchmarks20.

The second company, Oxford Nanopore Technologies (ONT), innovated the space with
nanopore sequencing, providing ever longer reads (up to 4 Mbp)28, However, these reads often
suffer from a higher sequencing error29, although new “duplex” sequencing is reducing error
rates to nearly HiFi levels ONT has several instruments that provide a range of sequencing
capacity to adapt from whole genome population analysis (ONT PromethION) to regional
sequencing (ONT MinION and GridION). Over the past years, ONT also innovated de novo
assemblies30 and demonstrated scalability for SV detection31. Thus, both technologies currently
proved advantages in detecting complex alleles compared to short-read sequencing6.

Historically, these technologies have seen limited applications in human genetics due to their
higher costs, lower throughput, and lower accuracy. Only a few published studies so far have
considered more than ten long read genomes, however, these results begin to illustrate the
usefulness of the technology and the potential for scaling these technologies31–33. For example,
one study utilized long-read sequencing to diagnose 13 individuals, with a solving rate of
41.67% (5/12 patients)34. They developed special pipelines and used long reads at 46 to 64x
coverage to identify SNV, SV, and smaller indels35. Still, it is relatively uncertain what the
success and utility of long reads at scale will be. While it's clear that they improve the detection
of SVs and other complex variants, it is unclear how they compare to short reads for more
clinically relevant sequences which are generally less repetitive, especially within exons.
Furthermore, if long reads improve only non-coding variant detection (e.g., repeats far from
exons), will this be relevant for clinical research? This might not be easy to answer, since most
repeat differences and non-coding variants are more difficult to interpret compared to exonic
variations.

Answering this question is particularly challenging since the standard of practice for genomics
within medically focused studies often does not consider the entire genome, but rather focuses
on several key genes that can be prioritized. Usually, these genes have already been shown to
be medically important (i.e., have an established impact on certain diseases) so focusing on
these genes often reduces costs and reduces the labor needed to review variants of unknown
significance. Multiple gene lists are available depending on the physician, the diseases being
studied, and the ability of the technology at hand to assess these. One of the most commonly
used gene lists is the ACMG36, which encompasses 73 genes in their recent release36. Two
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other recent publications postulated their own catalogs of medically relevant but challenging
genes. Mandelker et al. (2016) showcase 193 genes that are hard to impossible to characterize
using traditional short-read sequencing technology37. Thus, they showed the need to use long
reads to fully capture these genes (e.g., SMN1& 2, LPA). Wagner et al. (2022) extended this list
further based on a superset of 5,000 genes20. They identified 386 genes as highly challenging
and reported to be medically relevant. These genes represent different challenges like complex
polymorphism (e.g., LPA), high levels of repeats (SMN1&2), and interaction with their
pseudogene (e.g., GBA vs. GBAP1)20.

In this work, we investigate the utility of long-reads for the All of Us program using a
combination of publicly available control samples and long-read sample data collected using a
range of tissue types and extraction methods from samples previously used inside All of Us to
establish the short-read pipeline. We used the control samples to derive a computational
pipeline that can accurately identify SNV and SV at scale. To make the work scalable and
reproducible, the pipeline is implemented using the Workflow Definition Language (WDL) and
hosted in a public GitHub repository (https://github.com/broadinstitute/long-read-pipelines)
making it possible to run in large datacenters and commercial computing clouds. Furthermore,
we compare this pipeline with Illumina whole genome data processed with DRAGEN, the All of
Us production short-read pipeline, to assess long-read utility. We do so on both “simple”
medically relevant genes (4,641) and “challenging” medically relevant genes (386) to evaluate
the different sequencing technologies. One critical study characteristic we evaluated is
coverage: for a fixed amount of financial resources, lower coverage per sample can potentially
expand the number of samples analyzed yet requires careful controls to not inflate errors or
missing variation. Overall, our study answers the question of the utility and need for long-read
sequencing to identify previously hidden variations that likely have implications on medical
phenotypes.

Results

Optimizing variant detection in cell lines
We first focused on four established HapMap cell lines to assess the long-read ability to

cover and comprehensively identify variants across medical relevant genes. We used the widely
studied sample NA24385 (Caucasian), as well as HG00514, HG00733, and NA19240 from
different ethnicities, for which assembly-based analyses are available33. The latter samples
(HG00514, HG00733, NA19240) are not as well-curated as the NA2438520,38,39. Nevertheless,
they provide valuable information, since variant calling tools have generally not been previously
optimized across these samples to minimize overfitting.

First, we assessed the genome-wide coverage and read length capabilities across these
control samples to quantify the ability of the different sequencing technologies at this basic level.
Because of the randomized nature of whole genome sequencing, coverage and read length
establish the fundamental limitations of variant identification. For example, in an extreme
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scenario, if there are zero reads spanning a given region of the genome, clearly no variants will
be detected there. Moreover, if variants are detected by only a single read they are generally
less trustworthy and are often filtered out. One simple but effective strategy is to require at least
two or more supporting reads to identify a variant since it is substantially less likely two reads
will have the same error at the same position (e.g., assuming 1% sequencing error, there is a
0.01% chance of two reads having the same error at the same position at random)12. In low
coverage situations, however, requiring two reads spanning a position to identify a variant will
limit the recall of variants, especially for heterozygous variants since the haplotype-specific
coverage is half of the total coverage. Nevertheless, an idealized analysis assuming a Poisson
coverage distribution shows 6x coverage is sufficient to recall over 98% of homozygous variants
and 8x is sufficient to recall over 90% of heterozygous variants (Figure 1A, Methods). One
notable exception to this model is capturing insertion variants when the length of the variant
approaches or exceeds the length of the read, since the amount of coverage that spans the
variant will be proportionally reduced by the length of the insertions (Figure 1B, Methods). This
idealized analysis establishes the fundamental limits for variation detection, although in real
world analysis there are additional considerations, especially non-random sequencing errors,
repeats, alignment errors, overdispersion in coverage, and other biases that further complicate
variant calling that require an empirical approach to measure and resolve that we discuss in
later sections of the paper.

Figure 1: A) Idealized recall of homozygous and heterozygous variants as a function of overall
coverage, assuming at least two spanning reads are required to recall a given variant in the
genome. Here we assume the sequencing coverage follows the Poisson distribution centered
on a given overall coverage level, and the coverage will be evenly distributed across maternal
and paternal haplotypes following the binomial distribution with p=0.5. B) Idealized recall of
insertion variants of different lengths assuming 20kbp reads, 5x, 10x or 20x coverage overall,
and at least 2 reads span the insertion. As plotted, this represents the recall of homozygous
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variants, although heterozygous variants follow the same distribution as a function of the
haplotype specific coverage.

The short-read Illumina coverage was between 29.76x (NA19240) to 32.50x (NA24385)
(see Methods); and across the long-read technologies (Figure 2A), we obtained an average
coverage of 45.29x for ONT and 35.70x for PacBio HiFi. It is important to highlight that ONT
required only 1-2 PromethION flow cells per sample to produce this coverage, while PacBio HiFi
required several times more using Sequel IIe (HG00514, HG00733, & NA19240 each required
four flow cells, NA24385 six flow cells). ONT also generated longer aligned N50 lengths
compared to PacBio HiFi, with an aligned N50 length of 20 kbp compared to an aligned N50
length of 11 kbp (Supplement Figure 1) (Figure 2A).

Figure 2: A) Coverage on X-axis vs N50 on the Y axis, for samples NA24385, HG00514,
HG00733, and NA19240 (HapMap) B) Indels distribution, HapMap samples, indels length on
the X-axis, and count and density (in red) on Y-axis (using a merge of DeepVariant and Clair3
for HiFi). C) SV size distribution, HapMap samples, SVs length on the X-axis, and count and
density (in red) on the Y-axis (using a merge of Sniffles and PbSv HiFi). D) Circular plot for
HapMap samples from outside in genes density (Brown), SNVs (substitutions) average density
between HapMap data (Orange), SNVs (indels) average density between HapMap data
(Aquamarine), deletions average density between HapMap data (Blue), insertions average
count between HapMap data (Green).

Next, we assessed the ability of the technologies for the identification of SNVs and indels
across these samples using state-of-the-art methods. Starting with Illumina, we utilized the
Dragen pipeline (v3.4.12)40 with the exact specification as All Of Us (AoU), resulting in a high
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recall of 99.32% and precision of 99.63%, leading to a total F-score of 99.47% across GIAB
benchmark v4.2.139 (see Methods).

For the long-read technologies, we evaluated several best practice small variant callers
(Longshot41, Pepper/DeepVariant42, and Clair343) as well as various combinations of them.
Figure 2B shows the indel sizes ranges that were detected, and Figure 2D shows the
comparison of SNV and indel density across samples. Importantly, Longshot can only identify
substitutions (Supplement Figure 2 and 3), which made it complicated to compare this method
to the others, which can also identify short indels. DeepVariant and Clair3 both showed a similar
number of substitutions when applied to data generated by PacBio and ONT sequencers.
Specifically, DeepVariant identified 4,335,053 substitutions in the PacBio data and 4,709,454
substitutions in the ONT data. Similarly, Clair3 identified 4,597,773 substitutions in the PacBio
data and 4,578,168 substitutions in the ONT data. On the other hand, Longshot resulted in an
approximately 1.57-fold increase in the number of substitutions for data generated by ONT,
although the excess is almost entirely false positives (see below). Overall, a combination of
Clair3 and DeepVariant using PacBio HiFi data achieved the best F-score (99.87%) at this
coverage level (as shown in Supplement Figure 4). For ONT, the F-score is 98.74% from
merging the results from Clair3 and DeepVariant (Supplement Figure 5). It is worth noting that
the improvement from merging Clair3 and DeepVariant for PacBio is marginal compared to
using only DeepVariant or Clair3 individually, with a gain of only 0.01% to 0.04% in precision,
respectively. Conversely, for ONT, the merge F-score enhancement is 0.70% (DeepVariant) and
2.50% (Clair3) improved over using the individual methods. Furthermore, we assessed the
correctness of genotypes across NA24385 and found that Clair3 achieved higher accuracy than
DeepVariant. Given this result, we adjusted our merging strategy to utilize the genotype values
(GT flags) from Clair3 when available. With the pipeline optimized for one sample, we extended
the analysis to HG00514, HG00733, and NA19240 and benchmarked them against their
respective gold-standard variant call sets44. As expected, Clair3 merged with DeepVariant
achieved the best results. Regardless, the overall performance is reduced compared to
NA24385 (HG002). This might be because of different challenges in variant representation or
comparison, as well as less training data specifically in these samples.

Next, we assessed the technologies' abilities for SV calling in medically relevant genes using
Manta (see methods) starting with NA24385 (see methods). Using the state-of-the-art algorithm
Manta developed by Illumina45, Illumina's F-score is 0.45, chiefly due to its inability to identify
large insertions. In contrast, we found that a combination of PbSV and Sniffles for ONT and
PacBio achieved the best results, with an F-score of 0.93 using HiFi and 0.91 for ONT (see
Supplement Figure 6). When applied to the other samples, we found that using long-reads
improved the accuracy of structural variation (SV) detection, although the F-score was slightly
lower at 0.77 (as shown in the Supplement Figure 7). When comparing the detection of SVs
between the samples (as depicted in Figure 2C), we observed that the frequency of detected
SVs was similar.

Overall, the results of this study reproduce several previous findings that long-read sequencing
enhances SV calling and achieves a high accuracy of genome-wide SNV and indel calling. We
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further established an improved variant calling pipeline for SNVs and SVs for long reads that
work similarly well for PacBio HiFi as well as ONT and thus makes the comparison across the
sequencing technologies faster and easier.

Performance assessment for All of Us samples across medically
relevant genes.

To provide a more realistic assessment of the value of long-read sequencing in a clinical
research setting, we next utilized long-reads to benchmark the analysis of control samples
commercially sourced by the All of Us (AoU). These samples were sequenced multiple times
across the individual AoU genome centers to establish and assess the variability of each center
for different tissue sources and preparations. Specifically, we sequenced two anonymized AoU
samples T662828295 and T668639440 using ONT, HiFi, and Illumina technologies for different
tissue sources (white blood cells and whole blood cells, henceforth WBC and whole blood cells,
respectively) and extraction methods (Chemagen and Autogen).

First, when assessing coverage, we observed that in this limited sample set, WBC
achieved a better coverage with either Autogen or Chemagen extraction for ONT and HiFi, while
the opposite was found for Illumina (whole blood cells achieve a better coverage). The minimum
and maximum coverage for AoU samples T662828295 and T668639440 are shown in
Supplement Table S1: Illumina (31.95, 41.68, 34.19, 39.30), HiFi (6.46, 10.50, 5.11, 15.76) and
ONT (28.92, 29.26, 28.09, 29.46). This coverage resulted from using one flow cell for ONT and
maximum two flow cells for HiFi (Supplement Figure 8 and Supplement Table S1).
Furthermore, we observed that the extraction method impacted the N50 alignment length
(Supplement Figure 9). The average N50 of aligned reads for HiFi is greater than that of ONT
17,612 bp and 15,726 bp, respectively. However, ONT produced the longest single read
alignment by a large margin (758,354 bp).

For small variant calling (substitutions, insertions, and deletions < 50bp, i.e., SNVs), we
assessed the concordance between technologies and found that long- and short-read, agree on
approximately 67.55% (the median is 70.47%). We can explain this reduced concordance level
by the lower HiFi coverage and the difficulty in accurately calling insertions and deletions
between technologies. Nevertheless, when we compare substitutions only, the concordance
reaches 79.00% on average (Supplement Table S2). Unsurprisingly, among variants not found
by all three technologies, HiFi shows greater SNV concordance with Illumina when compared to
ONT 8.46% and 5.44%, respectively; except for sample T668639440 Whole Blood Chemagen,
where ONT agreed two folds higher than HiFi with Illumina 15.49% and 6.46%, respectively.
This is likely due to the much lower coverage from HiFi (5.11x) compared to ONT (28.09x) data
set, as mentioned earlier. Additionally, we noticed an enrichment on Illumina only identified
variations (mean 12.10% and median 8.98%) compared to a lower unique identification on each
of the long reads (ONT or HiFi ~2.29%). Of note, the higher Illumina average of 12.10%
uniquely identified SNVs was chiefly due to the T668639440 WBC Autogen sample. This outlier
substantially skewed the mean, causing 33.54% of variants to be identified uniquely by Illumina.
Correspondingly, when we focused only on exon and intron regions (point mutations and indels),
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the concordance between long- and short-read increased to   81.33% and 77.46%, respectively.
Additionally, HiFi showed higher concordance in exons and introns with Illumina (Supplement
Table S3).

We next analyzed SVs using the three technologies (HiFi, ONT, and Illumina). We identified an
average of 24,235 SVs per sample (for each tissue and extraction method), which aligns with
previous studies44. The percentage of SVs agreed upon by all three technologies is
approximately 22.00%; ONT and HiFi agreed on 53.86% of all SVs (31.90% identified only by
long read plus 22.00% identified by all reads). However, 22.40% remains that is either detected
exclusively by ONT or HiFi, meaning that 32% of the SVs identified by long read were not
detected when using short read sequencing. Moreover, approximately 15% of SVs were found
exclusively by Illumina.

We studied in depth each of these distinctive variants per technology. We found that 950 SVs
were identified uniquely by Illumina in all datasets, and the majority are translocations (68.63%),
followed by duplications(11.26%). For ONT, we identified 57 unique SVs, with the majority being
deletions (56.14%), followed by insertions (42.11%), and duplications (1.75%). Furthermore, we
found that PacBio had the least number of unique SV (54), with the majority being insertions
(40.74%), followed by deletions (37.04%), duplications (16.67%), inversions (3.70%), and
translocations (1.85%). Based on these results, it is likely that Illumina reports a higher number
of false SVs, particularly translocations in healthy individuals, as seen in prior studies12,32.
Meanwhile, deletions dominated the uniquely SVs identified by ONT, while insertions dominated
for HiFi.

To investigate the clinical utility of long-reads for a program like All of Us, we focused on a set
of 4,641 genes that are reported to be medically relevant 38. Most notably, these genes
represent non-repetitive or generally non-complex genes of the human genome (see Figure
3A). The coverage across these genes was similar to the genome-wide coverage across all
technologies (see Figure 3B); In Figure 3B, we compared normalized gene coverage (average
gene coverage divided by sample average coverage) between HiFi and ONT and found larger
coverage variability for HiFi likely due to the overall lower coverage.

Similarly, we compared the number of genes with average coverage less than one (henceforth,
“uncovered genes”) across the sequencing technologies. For Illumina, we identified only three
uncovered genes for T668639440 Chemagen (C4A, C4B, and OR2T5), while Autogen only had
two uncovered genes (C4A and C4B) for the same sample and only one gene for sample
T662828295 Autogen (C4A). PacBio HiFi covered all genes, except when using Whole Blood
Chemagen. In sample T662828295 using Whole Blood Chemagen the gene PDE6G for sample
T662828295 and 14 genes in T668639440 are uncovered. In contrast, we observed that all
genes were covered using ONT. Overall, ONT and HiFi (regardless of the one sample that
shows low coverage T668639440 Whole Blood Chemagen) showed the least amount of
uncovered medically relevant genes.
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Figure 3: A) percentage of gene bases intersecting with hard-to-map regions in yellow is the
5,207 genes and in blue 386 medical gene sets B) Normalized gene coverage (normalized by
sample coverage) for HiFi (yellow) and ONT (blue) for T668639440 and T662828295 C) Log
percentage of SNVs per gene for the 4,641 medical genes for samples T668639440 and
T662828295.

To further assess the coverage from a medical perspective, we downloaded SNPs and indels
from ClinVar that were reported pathogenic and checked whether the individual sequencing
technologies adequately covered these variant locations. We used variants that are not
conflicting in reporting their pathogenicity and submitted by multiple clinics (see Methods). This
resulted in a set of 10,368 variant sites across the 4,641 medically relevant genes.

We calculated the number of uncovered (coverage <1) variants per sample and condition: For
the PacBio HiFi sample, on average, we have 6 variants without coverage for sample
T662828295 (only two out of four datasets have uncovered variants) and 24 for T668639440
(three datasets have uncovered variants). ONT covered all variant sites, while Illumina, on
average, did not cover 6 variants across the individual runs for sample T662828295 and 7 for
T668639440 (Supplement Table S4).

Next, we analyzed the list of 73 American College of Medical Genetics and Genomics (ACMG)
genes, in which mutations are commonly recommended to be reported to patients. These genes
span both gene groups defined in this study, including mostly easily accessible genes (68) but
also some challenging genes (5). Overall, the genes are well covered by each of the
technologies and the normalized average gene coverage is one or more (Supplement Figure
10 and Supplement Table S5). For the 5 challenging genes, we observed that the normalized
average coverage is slightly higher for ONT than for HiFi, indicating a better mapping overall for
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the ONT data (Supplement Figure 11 and Supplement Table S5). Additionally, for the pilot
data T668639440 and T662828295, the normalized mean coverage for accessible genes are
similar, HiFi (1.06) and ONT (1.04). Nevertheless, coverage differs in channeling genes, where
HiFi is 0.88 and ONT is 1.03. For the benchmark of variants within genes available in the GIAB,
the result from HiFi and Illumina are similar compared to ONT. However, the average F-score
across these the genes is higher for Illumina 93.64% compared to HiFi 85.24%, that is due to
low F-score for gene TNNI3 (Supplement Table S5 and Supplement Figure 12). Based on the
previous finding, we can conclude that the ACMG list is well covered by all technologies;
Likewise, we can call variants with high accuracy using either Illumina or HiFi.

Resolution of highly challenging medically relevant genes
Next, we assessed the utility of long-reads specifically within highly complex and repetitive
medically relevant genes. In principle, this is where the long-read technology offers its greatest
advantages, but it remains to be shown across primary tissues from patient donors. For this, we
focused on a gene set from recent GIAB publication, which proposed 386 genes that were
found to be highly challenging for mapping and variant calling 20.

We first assessed the normalized gene coverage (Figure 4A) between HiFi and ONT; and, as
expected, HiFi has a lower median gene coverage than ONT similar to the genome-wide
results. Further, normalized coverage distribution is centralized around median 1.05x for ONT
compared to 0.97 for HiFi (Supplement Figure 13). Additionally, we counted the number of
uncovered genes (i.e., genes that do not contain a single read).

For Illumina, nine genes (CCL3L1, CRYAA, DGCR6, DUX4L1, H19, NAIP, PRODH, SMN1, and
U2AF1) are uncovered in sample T668639440 and eight genes (CCL3L1, CFC1B, DUX4L1,
H19, HLA-DRB1, SMN1, TAS2R45, and U2AF1) in sample T662828295. Thus, five genes are
uncovered across both samples (Supplement Table S6). Interestingly, in our analysis, we found
that ONT and HiFi did not cover genes H19 and U2AF1. Nevertheless, previous studies found
that these genes are incorrectly duplicated in GRCh38, which makes it hard, if not possible, to
call variants in these genes 19,46. However, genes CCL3L1 and DUX4L1 are covered, making
them only challenging for short reads. Interestingly, the SMN1 gene differentiates between the
long-read ability to untangle this complex repetitive gene. While HiFi could not support coverage
for the gene in all samples-- ONT managed to cover it in ~50% bp of sample T662828295.
Nonetheless, ONT failed to do the same in sample T668639440.

We next compared the percentage of genes where 50% or more of the gene body lacks
coverage (Figure 4C). In the majority of samples, we saw that the 386 genes group has a
higher percentage of gene bodies that are not covered. However, for ONT, the percentage of
uncovered gene bodies is always lower than HiFi for 386 and 5,027 groups alike. Additionally,
we saw only that the difference between the two gene sets is in guanine (G) and cytosine (C)
GC content percentage (Supplement Figure 14); Thus, we conclude that the difference in the
percentage of uncovered genes is due to the sample coverage.
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Figure 4:  A) Normalized gene coverage distribution for the 386 genes in different datasets for
ONT and HiFi B) The percentage of SNVs (substitutions and indels) in the data sets for the 386
genes C) Percentage of zero-base coverage per gene, where 50% or more of the gene body is
not covered using HiFi data D) SVs breakpoints that intersect with medical genes across
samples for different tissue and extraction methods T40 stands for sample T668639440 and
T95 for T662828295, W for Whole Blood cells, B for WBC, and finally A for Autogen and C for
Chemagen.

We next assessed variant calling ability for long reads, starting with the GIAB sample that has a
gold standard benchmark to compare. Specifically, we employed sample NA24385 to rank and
characterize 273 genes (70.75% of our 386 gene panel) for which a GIAB benchmark is
available. We excluded seven genes that do not report a variant in this benchmark. For each
technology, we investigated the top and lowest ten genes ranked by F-score (Supplement
Table S7) and compared these genes across the other technologies. Importantly, the top ten
genes that achieved the highest F-scores with Illumina, had the same or better F-score with
HiFi. Meanwhile, for these same top ranked genes, ONT had a lower recall for three genes by
failing to identify an insertion in each gene (PIGV and MYOT) and two substitutions in MYOT.

For the ten lowest performing genes using HiFi (CBS, CRYAA, GTF2IRD2, H19, KCNE1,
KMT2C, MDK, MUC1, SMN1, and TERT), in six genes (CBS, CRYAA, GTF2IRD2, KCNE1,
MUC1, and SMN1) HiFi still showed a better performance than Illumina. Likewise, ONT
achieved a better F-score in these genes than Illumina. Moreover, in SMN1, KCNE1, and CBS
genes, the ONT F-scores are better than HiFi and Illumina. However, in KMT2C and TERT
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genes, Illumina outperformed both HiFi and ONT F-scores (Illumina 67.47% and 59.74%), (HiFi
44.76% and 54.32%), and (ONT 32.47% and 47.78%), respectively.

For AoU samples T668639440 and T662828295, because we do not have an established
benchmark for these samples, first, we compared the percentage of variants per gene to identify
any abnormalities (Figure 4B). When we consider the distribution of the variants in the 386
genes across datasets (tissue source and extractions), we found that the variant distribution is
similar and the tissue source or extraction method did not substantially affect the variant
distribution. We then analyzed the concordance of substitutions and indels across the 386
genes, and found the lowest concurrence in introns between the three technologies
(approximately 60.47% for exons and 57.67% for introns).

For these 386 genes, we observed that the variant calling capability of Illumina seems to be
highly impacted, even in exonic regions, compared to the easier set of 5027 medically relevant
genes. This is most clear in the overall concordance between short and long reads: For the
5,027 genes, we had a high concordance (81.33%) for all three platforms, while for the 386 the
concordance drops to 60.74%. The latter is impacted by a reduced concordance of Illumina and
showing also higher Illumina only variants that are likely falsely identified (Supplement Table
S8). Maybe not surprisingly, this trend is amplified for the intronic regions (Supplement Table
S8)

We next investigated the coverage of the ClinVar pathogenic variants that intersect with these
genes (see Methods). For HiFi sequenced samples, we achieved on average ~8x coverage for
T662828295 and ~9x for the T668639440 sample per variant, both are lower than what the
5,027 genes group achieved (9x and 10x respectively) (Supplement Figure 15). Likewise, not
surprisingly, Illumina achieved the highest average coverage per variant, followed by ONT and
HiFi respectively (Supplement table Table S4). Interestingly, when we compare the number of
uncovered variants for each sample per technology, we can see a systematic distribution of
variants without coverage in Illumina (SD: 1.39) compared to the more variable ONT results
(SD: 5.93) (Supplement Figure 16 and Supplement Table S4); However, we could not find a
correlation between the gene composition (GC, GT, or AT rich) and the coverage (Supplement
Figure 17).

In summary, HiFi outperformed the other technologies in both precision and recall (Supplement
Table S7). Furthermore, there are a few genes that are particularly challenging where all
technologies missed variants like H19, which has one substitution (C/G) in position 1,996,209
chr11 that none of the three technologies managed to detect; KRTAP1-1, wherein both
long-read technologies (HiFi and ONT) did not call any variants, while Illumina called two
false-positive substitutions; and MDK, where ONT did correctly recall variants, but the other
technologies called false-positive variants.

Interestingly, all the genes that ONT detected variants with low F-score were caused by uncalled
indels (max three indels) like FLAD1 and PIGV (Supplement Table S7 shows in more details
genes names and F-score and number of identified variant per technology). Finally, we

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.23.525236doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525236
http://creativecommons.org/licenses/by-nd/4.0/


compared the identified SVs between tissues and extraction in these samples (Figure 4D) in
the medically relevant genes. As we can see, bars 8 and 9 show the unique variants in AoU
samples T662828295 and T668639440 supported by different tissue sources and extraction
methods; likewise, bar 10 shows the effect of low coverage on sample T668639440 Whole
Blood Chemagen as it lost around 4.4% of SVs that should share among all tissues and
extraction methods.

Discussion
In support of ongoing cutting-edge research in the All of Us project, in this paper we evaluate
the potential use of long-read for All of Us participants. We focus on the advantages and
drawbacks of each sequencing technology across different tissues and extraction methods.
Likewise, we evaluated methods to call short variants (point mutations, small insertions,
deletions) and structural variants and if using them separately or through a merging process will
lead to better results. We carried out this analysis across both a set of non-repetitive medically
relevant genes and more complex, challenging medically relevant genes including the ACMG
list. From these comparisons, we conclude long-reads have widespread value for establishing
the most complete and accurate variant calls for All of Us and potentially for many other
projects.

When comparing the different sequencing technologies, one must consider both the data
characteristics (coverage, read length, error rate, etc.) and the analytical methodologies used.
Even though PacBio currently produces the lowest coverage runs per sample (usually around
6x to 8x), we could nevertheless use it to accurately identify a majority of SNV and SV calls47. In
contrast, Illumina-based samples had a much higher coverage (>30x coverage) but suffered
from major inherent biases in SV detection, in accordance with previous publications37. Thus,
simple comparisons of raw sequencing coverage or other simple metrics are not sufficient to
evaluate the utility of a sequencing technology. Also, across the two long-read platforms, we
found read lengths were not a major distinguishing feature for our variant analysis. For complex
variants and extended repetitive regions, it is of course the case that read length is an important
factor, which is highlighted by the comparison to the Illumina data sets6,25. Nevertheless, when
comparing the two long read technologies, ONT average read length (N50) was sometimes
larger than that from PacBio, as driven by the tight length distribution for HiFi versus a highly
variable distribution from ONT, yet this had marginal to no improvement in variant calling
accuracy. Interestingly, while read length is frequently suggested as a dominant factor that may
favor ONT, our results demonstrate that the benefits of read length are overshadowed by the
higher sequencing accuracy of the HiFi technology while read length is frequently suggested as
a dominant factor that may favor ONT, our results demonstrate that the benefits of read length
are overshadowed by the higher sequencing accuracy of the HiFi technology. While this is
subject to change given sequencing technology updates from ONT and future computational
methods, it is still interesting to note that single read accuracy today has a larger impact on
variant calling ability.
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To improve the variant calling accuracy and accessibility across long read cohorts, we release
the cloud-based pipeline in Terra (and make the underlying code publicly available on GitHub).
Previously, we developed a framework called PRINCESS47 that phases and calls all types of
genomic variants, including SNVs, indels, SVs, and methylation; however, here, we wanted to
develop a deliverable pipeline that is cloud accessible. Using the cloud, we were able to
optimize variant calling strategies as well as leverage the aspect of running multiple callers,
which can be computationally burdensome without elastic computing resources. These
pipelines are available for use in the All of Us workbench, along with other instances of Terra,
such as the NHGRI AnVIL48. They can also be run on institutional servers using a WDL compute
engine such as Cromwell (https://cromwell.readthedocs.io/en/stable/) or Miniwdl
(https://miniwdl.readthedocs.io/).

Relatedly, we demonstrated that variant calling methods that adopt machine learning or deep
learning approaches (e.g., DeepVariant and Clair) are generally superior to other software that
do not (e.g., Longshot). Even more fundamentally, because Longshot does not call indels, it
suffers from overall poor recall and poor precision. Furthermore, for maximal accuracy, we
recommended using a combination of two SNV callers (e.g., Pepper and Clair3). Utilizing both,
we developed a merging strategy that yielded high accuracy across both long-read platforms by
leveraging the genotypes produced by Clair3, as these were found to be more reliable.
Nevertheless, it is worth noting that running both programs also resulted in a large increase in
runtime for a marginal improvement in precision (0.0001 for DeepVariant and 0.0004 for Clair3)
but not the overall F-score. Still, our pipeline is now capable of producing high-quality SNV and
indel calls across the long read platforms. The latter was previously considered a major
limitation of long-reads, but our work shows it is now possible to capture this important class of
variation, as it is now well established that indels have a major role in many diseases 49. For SV
detection, we confirmed previous reports showing that long-read platforms improved the
detection compared to short reads by essentially every metric. As often discussed, this is mainly
due to the complexity of SV being larger (50bp+) than the Illumina reads itself 6.

We have further showcased the accuracy of long reads across 386 challenging medically
relevant genes that are otherwise hard to assess with short reads alone. As previously
postulated, we could confirm a substantial improvement in variant calling accuracy and
completeness for these genes with long reads 20. Assessing the true clinical significance of this,
however, will require much larger sample sizes, as it is clear they harbor a high degree of
polymorphism 50. Beyond these most difficult genes, we also present the interesting result that
long-reads can effectively recover genetic information from a general set of 5000 medically
relevant genes. Does the recovery of genetic information from 386 genes justify the use of long
reads at scale? In this paper, we also present the interesting result that long-reads can
effectively recover genetic information from a general set of 5000 medically relevant genes. In
contrast to the 386, these 5000 are not all as challenging yet we that long reads yield
measurable value across several metrics. This also holds for the ACMG gene list that is highly
important for the medical field.
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Thus, the question is what technology is the most appropriate to use at scale within All of Us.
Based on our results, all three platforms have tradeoffs. From a production sequencing lab
standpoint, Illumina is the only technology demonstrated to scale to 1 million clinical-grade
genomes. However, our work here as well as other projects31,51–53 demonstrate that long-read
technologies are not far behind. For long reads to advance to the scale of millions of genomes,
several major considerations must be addressed including costs, throughput, robustness of
software cycles, and predictable/variable yields from sequence components or DNA quality
fluctuations. Nevertheless, we believe that the long-read technologies are advancing rapidly in
these directions so that All of Us and the genomics community at large can now confidently
begin such large scale initiatives.

As we and other recent works show, long-reads have matured significantly over the past 1-2
years, reaching high accuracies for variant identification and also delivering the promises of
phasing and methylation (data not shown here). Likewise, in the ACMG36, which represents a
crucial list of genes in the medical field, long-read sequencing demonstrated its efficiency in
sequencing those genes and reporting variants more accurately compared to short reads, which
is currently the de facto approach for analyzing this gene set. Longer term, the question rises if
we have entered the age of using long-reads exclusively. We conclude that despite currenrly
scaling and costs considerations, we should continue developing population-scale cohorts
sequenced with long reads only. Currently, the primary remaining downside to this approach is a
slight reduction in accuracy across small indels, which we anticipate will soon disappear given
improvements to the sequencing platforms and their associated computational methods.

Thus, this study shows the strong value of long-reads for simple and complex medically relevant
genes and gives clear indications that long-reads are on par with if not better than the
short-reads. All of Us and other population-scale projects should investigate the usage of
long-reads at scale and how to utilize and understand the clinical relevance of the so-obtained
novel alleles in the setting of larger short-read cohorts.

Methods
Variant Detection Coverage Analysis

For this analysis we considered an idealized scenario where reads are error free and always
correctly mapped so that we could isolate the impact of coverage and read length. Following
widely used approximations54, the sequencing coverage is modeled using the Poisson
distribution centered on a given overall coverage level. We further assume that a variant must
be covered by at least two reads (e.g. min_support=2), and the coverage will be evenly
distributed across maternal and paternal haplotypes following the binomial distribution with
p=0.5. We then model the recall of variants as the fraction of genomic positions having
coverage with at least 2x coverage. For this, we use the Poisson cumulative density function in
R and plot using ggplot. This provides a theoretical upper bound for variant detection for
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substitutions, deletions, and other small variants where all or nearly all bases of the read align to
the reference genome.

We next consider insertion variants where the length of the variant is an appreciable fraction of
the read length. This requires additional consideration over deletions or small variants since the
insertion sequence will generally not align to the reference genome, at least not at the position
of the insertion. In contrast, deletions will have split read alignments, so can be more easily
spanned for any length. For this analysis, we consider HiFi-like reads that are all uniformly
20kbp long with a given amount of coverage overall, and at least 2 reads must span the
insertion to recall it. For this analysis we again use the Poisson cumulative distribution function
in R, but we reduce the effective coverage by the fraction of the insertion length compared to the
read length. To derive this, consider N is the total number of reads, G is the length of the
genome, R is the length of each read, L is the length of the insertion, and C is coverage. Note
by definition, C=NR/G. The probability that a given read spans the insertion is (R-L)/G, so the
total number of reads that span the insertion is N(R-L)/G. This can be refactored as
(NR/G)(1-L/R) and since (NR/G) defines coverage C this reduces to C(1-L/R). For example if a
variant is half as long as the read length (10kbp insertion with 20kb reads), it will effectively
reduce the available coverage in half. This over simplifies the analysis since in practice the read
needs to span more than the insertion to be confidently aligned, but establishes an upper bound
on recall. As plotted, the recall represents the recall of homozygous variants, although
heterozygous variants follow the same distribution as a function of the haplotype specific
coverage. The full model and additional simulations are available at:
https://github.com/mschatz/coverage_analysis

Long Read Library Preparation, QC, and sequencing methods
The following was performed by HudsonAlpha Discovery, a division of Discovery Life Sciences.
For all long read assays, stock DNA concentration was measured using the Picogreen assay
(Invitrogen), and the DNA size was estimated using the Fragment Analyzer (Agilent). Post DNA
QC, approximately 5 µg of stock DNA was sheared to a target size of 20-30 kb on a Megaruptor
3 (Diagenode). The DNA was then purified using 0.45x Ampure XP PB beads with a final elution
of 40 µL Elution Buffer (EB; Qiagen). Post purification, the concentration of the sheared and
purified DNA was measured using the Qubit DNA HS assay (Invitrogen), and the DNA size
estimation was done using the Fragment Analyzer. Sheared DNA was then size selected using
the Pippin HT instrument (Sage Science) with a target range between 15-22 kb. Post size
selection, the DNA was then purified using 0.45x Ampure XP PB beads with a final elution of 50
µl EB . Post purification, the concentration of the size-selected and purified DNA was measured
using the Qubit DNA HS assay, and the DNA size estimation was done using the Fragment
Analyzer. Independent aliquots of the fragmented, purified and size-selected DNA were used in
library preparation methods for the Pacific Biosciences Sequel IIe and Oxford Nanopore
PromethION platforms For the Pacific Biosciences platform, DNA was taken into circular
consensus sequencing (CCS) library prep using the SMRTBell Express Template Prep Kit 2.0
and Enzyme Cleanup Kit 1.0 (PacBio). Each library was barcoded using PacBio Barcoded
Overhang Adapters 8A and 8B (PacBio). Post enzyme cleanup, the libraries were purified 2
times using 1x and 0.6x Ampure XP PB beads with a final elution in 22 µL EB. Post library prep,
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the concentration of the library DNA was measured using the Qubit DNA HS assay, and the
DNA size estimation was done using the Fragment Analyzer. The library concentration and size
were entered into SMRTLink (PacBio) for each of the libraries. The target loading concentration
was 85 pM with Adaptive loading and no pre-extension with a 30 hours movie time. The library
annealing, binding, and loading plate worksheet was generated automatically from SMRTLink.
Final library binding was done using the Sequel II Binding Kit 2.2 with Sequencing Primer v5.
Sequel II DNA Internal Control Complex 1.0 was added to each sample as per manufacturer’s
recommendation. Sequencing was done on PacBio Sequel IIe running SMRT Link Version
10.1.0.119588.

For the Oxford Nanopore platform, approximately 1ug of fragmented, purified and size-selected
DNA in a volume of 47ul was used in the SQK-LSK109 library preparation protocol per
manufacturer’s instructions. This is a ligation-based protocol for the production of libraries
compatible with the nanopore sequencing platform. Briefly, the DNA was end-repaired using the
NEBNext FFPE DNA Repair Mix and NEBNext Ultra II End Repair / dA-tailing Module reagents
in accordance with manufacturer’s instructions and placed on ice. The polished DNA was then
purified with AMPure XP beads (1:1 vol ratio) and eluted to a final recovered volume of 60ul.
The purified, polished DNA was ligated to sequencing adaptors in a 100ul volume using
adapters provided in the LSK109 library preparation kit. Following ligation, the ligated DNA was
purified with AMPure beads and using the Oxford Long Fragment Buffer per the manufacturer’s
direction. Following purification and elution in 51ul total volume, 1 ul of sample was used to
prepare a 1:10 dilution for sample QC using High Sensitivity Qubit and dsDNA Fragment
Analysis. Resulting final library yield was 1.2-2.2 ug per sample. Samples were loaded onto the
Promethion Flowcells with 20 femto Molar loading. After 24 hours, all samples were nuclease
washed and reloaded with 20 fM of library. Data was collected on the PromethION platform for
a total of 72 hours over the sequencing run.

Pipeline description/method (ONT and HiFi)
Aligning and coverage
PacBio data were aligned with pbmm2 (1.4.0) with the parameters (--preset ccs --strip
--sort --unmapped); MD tag are then added by the samtools 55 calmd command
(samtools 1.10). ONT data were aligned with minimap2 (2.17-r941) 56 with the parameters
(--aYL --MD -x map-ont). Aligned bams of each flow-/SMRT-cell are then merged by
sample with samtools merge (samtools 1.10). We calculated coverage at the sample level
using mosdepth (0.3.1)57 and per gene average coverage also collected by mosdepth.
Additionally, we calculated per-base coverage using samtools depth (1.15.1) with the
parameters (-a).

Calling SNVs
We used Clair343 (v0.1-r6) for each sample, calls are made per chromosome with default
parameters, and then merged, and followed with bcftools sort (bcftools 1.13) 58.
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We additionally applied PEPPER-Margin-DeepVariant59 for CCS data. For computational
efficiency, we parallelized execution per chromosome arm. We then executed the Pepper
pipeline42 (from official docker image kishwars/pepper_deepvariant:r0.4.1) in the following way:
run_pepper_margin_deepvariant call_variant --ccs --phased_output.
The haplotagged bam output by the previous step is then used by then DeepVariant (from
official docker image   google/deepvariant:1.2.0) via
/opt/deepvariant/bin/run_deepvariant --model_type=PACBIO
--use_hp_information. The per-chromosome VCFs and gVCFs are then merged by
bcftools concat (bcftools 1.13), and followed with bcftools sort (bcftools 1.13). The
single sample VCF is then phased with MarginPhase (from docker image
kishwars/pepper_deepvariant:r0.4.1) via margin phase
/opt/margin_dir/params/misc/allParams.phase_vcf.json -M.
For ONT data, for each sample, the bam is first split in a way that balances the interval sizes.
Then Pepper (from official docker image kishwars/pepper_deepvariant:r0.4.1) is run the
following way: run_pepper_margin_deepvariant call_variant --gvcf --phased_output --ont. The
per-chromosome VCFs phased VCFs, and gVCFs are then merged by bcftools concat
(bcftools 1.13), and followed wiith bcftools sort (bcftools 1.13).
Finally, for Longshot 41, calls are made on each chromosome with version 0.4.1 and default
parameters, and then merged, and followed with bcftools sort (bcftools 1.13).
For phasing We used MarginPhase, phasing is done (using docker
kishwars/pepper_deepvariant:r0.4.1) via margin phase
/opt/margin_dir/params/misc/allParams.phase_vcf.json -M.

Calling SVs
For each sample, Sniffles (1.0.12) 12 calls are made per chromosome with cutom parameters
(-s 2 -r 1000 -q 20 --num_reads_report -1 --genotype), and then merged
by bcftools concat (bcftools 1.13), and followed wiith bcftools sort (bcftools 1.13).
Pbsv: for each sample, PBSV (2.6.0) 60 calls are made per chromosome, and then merged, and
followed with bcftools sort (bcftools 1.13).

Illumina analysis
We used Dragen pipeline (v3.4.12) to call variants for Illumina with the default parameters, and
we called SVs using Manta 45 (v1.6.0) with the default parameters. Furthermore, we calculated
the genome coverage using mosdepth (v0.3.2) with four threads, and we set --by to 10kbp
and --mapq to 20. Additionally, we used mosdepth to calculate per gene coverage using bed
file of genes coordinate with the --by option and for the normalized gene converge we divided
the average gene coverage from the previous step with the average genome coverage of the
sample.

Calculate mappability
We intersected the gene coordinate for both genes groups (386 and 5027) with the mappability
track from the GIAB project (version 2) available at
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(ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GR
Ch38/mappability/GRCh38_lowmappabilityall.bed.gz) using bedtools 61 (version 2.30.0)
intersect -wo where -a is the genes and -b is the mappability track, and sum all intersect
lengths within the gene divided by gene length to calculator the gene mappability intersect
percentage.

Filter SNVs
We calculated the number of variants (SNVs and indels) for each tool (Clair3, DeepVariant, and
Longshot) and technology (HiFi and ONT) before and after filtering, using AWK and Bcftools
view 58. To select SNVs we used `  bcftools view -H -v snps`, `bcftools view -i
'strlen(REF)<strlen(ALT)' -H -v indels` for insertions, and `bcftools view -i
'strlen(REF)>strlen(ALT)' -H -v indels` for deletions. Later, we filter the identified
variant and choose only pass variants using bcftools `bcftools view -Oz -i
'FILTER="PASS"'`, and count them as mentioned earlier.
We benchmark identified variant (calculate precision, recall, and F-score), for sample
“NA24385/HG002” using available truth set from GIAB and RTG 62 tools version 3.12.1 using
baseline and bed file supported from GIAB, and for the medical relevant genes (386) we used
the specified bed files for these genes from GIAB. For the rest of HapMap samples (HG00514,
HG00733, and NA19240) we benchmarked the variant (SNVs and Indels) using the truth set
available from Chaisson et al.,44 with RTG tools as mentioned previously. Later, to identify the
best combination of technology and tool, we merged the detected SNVs between the two
technologies and three tools using Bcftools `bcftools merge -Oz --threads 2
--force-samples --merge all` and updated the variant ID with bcftools `bcftools
annotate -Oz --set-id '%CHROM\_%POS\_%REF\_%ALT'`. Furthermore, we
identified the permutation for all technologies and tools in the VCF file using `bcftools
query -f '%ID\t[%GT\t]\n'` and awk, followed by extracting each permutation by ID
using bcftools `bcftools view -Oz -i ID=@IDs.txt`. Additionally, we benchmarked
each permutation using RTG and truth set from GIAB for sample “NA24385/HG002” and for the
rest of HapMap sample (HG00514, HG00733, and NA19240), first we identified regions in which
the truth set did not call variant in it using in house script where SNVs absent in 500bp or more,
later, we removed these regions from our call set and benchmarked them with RTG and
appropriate truth set and tools the average of recall, precision, and F-score as an indicator for
performance.
For samples T662828295 and T668639440, we agreed to use HiFi data with and merge
variants from Clair3 and DeepVariant for each tissue and extraction method using bcftools
merge `bcftools merge --threads 2 --force-samples --merge all `. To
identify which GT to use from the merge, we benchmarked GT for Clair3 and DeepVariant
against the truth set using sample NA24385; first, we merged Clair3 calls with DeepVariant as
mentioned above and updated their IDs, later, we selected only variants that both tools agreed
on using bcftools `bcftools view -Oz -i 'count(GT="RR")==0 &&
count(GT="mis")==0'`, then we merged it with the truth set from GIAB NA24385 sample,
and selected unmissed variant `bcftools view -i 'count(GT="mis")==0'` and
compared the GT between Clair3, DeepVariant, and truth set. We found that Clair3 agrees more
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with the truth set; thus, we selected it to represent the GT for further analysis. Later, we applied
that to samples T662828295 and T668639440 to merge GT before phasing using MarginPhase.
Additionally, we calculated the number of substitutions and indels per gene by intersecting the
identified variants with the Bed file for each group of genes (386 and 5,027) using bedtools
intersect.

Filter SVs
We called SVs using Sniffles and pbsv (methods section above). We counted the SVs before
filter, later, we filtered SVs based on SV size, where 50 bp is the minimum SV size and
considered only pass SVs in case of pbsv using bcftools `bcftools view -Oz -i
'(SVLEN>=50 | SVLEN<=-50 | SVLEN=0 | SVLEN=1 | SVLEN=".") &
(FILTER="PASS")'` and we counted them after that. For Sniffles, we further used an in
house script to select ~25k SVs based on coverage. Likewise, we selected only deletions and
insertions using bcftools `bcftools view -i 'SVTYPE="DEL" | SVTYPE="INS"', then
we merged the identified SVs from technologies (HiFi and ONT) and tools (pbsv and Sniffels)
using `SURVIVOR merge` with the following parameters `1000 1 1 0 0 50`. Afterwards, we
benchmarked each permutation by filtering them using `bcftools view -i
"SUPP_VEC~'X'"`, where X is the permutation we wanted to benchmark, and we used
Truvari 63 version 3.0.0 with the following parameters ` --multimatch --passonly -r
2000 --includebed`. For samples, T662828295 and T668639440, we merged the SVs from
HiFi call using SURVIVOR merge 64 with the following parameters `1000 2 1 0 0 50`.

Source of pathogenic variant and extraction
We downloaded the ClinVar variants (SNVs and indels) from
“https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar_20220320.vcf.gz”. We selected
only pathogenic variant that have a provided criterion, multiple submitters, and no conflict using
bcftools `bcftools view -i 'CLNSIG="Pathogenic" &
CLNREVSTAT="criteria_provided\,_multiple_submitters\,_no_conflicts" &
CHROM!="X" & CHROM !="MT"'` (hereafter referred to as pathogenic variants). Further, we
renamed the chromosomes to match our data using `bcftools annotate -Oz
--rename-chrs`. Later, we intersected the variant with both gene groups (386 and 5,027) bed
files using bedtools intersect.
To calculate coverage, we transform the pathogenic variant VCF file to bed using bedops 65

vcf2bed, for deletions `vcf2bed --deletions`, insertions `vcf2bed --insertions`,
SNVs `vcf2bed --snvs` and lastly we merged them all using bedops --everything,
then intersect it with per-base coverage file for each gene group using bedtools intersect
`bedtools intersect -wo` and -a is the pathogenic variant and `-b` is per-base
coverage.
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Data access
In this manuscript, we have used public data from the All of Us workbench for our analysis. All
data are available through the All of Us workbench.
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