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ABSTRACT: Neocortical activity is thought to mediate volun-
tary control over vocal production, but the underlying neural
mechanisms remain unclear. In a highly vocal rodent, the Al-
ston’s singing mouse, we investigate neural dynamics in the oro-
facial motor cortex (OMC), a structure critical for vocal behav-
ior. We first describe neural activity that is modulated by com-
ponent notes (approx. 100 ms), likely representing sensory feed-
back. At longer timescales, however, OMC neurons exhibit di-
verse and often persistent premotor firing patterns that stretch
or compress with song duration (approx. 10 s). Using compu-
tational modeling, we demonstrate that such temporal scaling,
acting via downstream motor production circuits, can enable vo-
cal flexibility. These results provide a framework for studying
hierarchical control circuits, a common design principle across
many natural and artificial systems.

Correspondence: mlong@med.nyu.edu

Introduction
Many species exert voluntary control over vocal production,
allowing rapid flexibility in response to conspecific partners
or other environmental cues [1, 2]. Neocortical activity ob-
served across a range of species [3-8] has been proposed to
be important for executive control of vocalization [9-12]. For
instance, cortical neurons are preferentially active when non-
human primates vocalize in response to a conditioned cue
[6]. In contrast, the primary vocal motor network consist-
ing of evolutionarily conserved brain areas in the midbrain
and brainstem [10-14] is sufficient to generate species-typical
sounds. Pioneering work in squirrel monkeys [15] and cats
[16] as well as recent studies in laboratory rodents [17-19]
have identified many such areas, including the periaqueduc-
tal grey and specific pattern generator nuclei in the reticular
formation. While these subcortical vocal production mech-
anisms have been well-characterized, much less is known
about how cortical activity contributes to vocal production
and flexibility.
To address this issue, we focus our attention on the highly
tractable vocalizations of a Costa Rican rodent [20]: the Al-
ston’s singing mouse (Scotinomys teguina, Fig. 1a). Singing
mice produce a temporally patterned sequence of notes (ap-
prox. 20 to 200 ms) that become progressively longer over
many seconds (e.g., Fig. 2a), henceforth referred to as a
song. Singing mice can flexibly adjust their song duration

in response to many internal [21] and external [22] factors,
including social context [20]. Recently, we discovered that a
specific forebrain region, the orofacial motor cortex (OMC),
is crucial for vocal behavior in this species [20]. Electrical
stimulation of OMC disrupted or paused ongoing singing,
and its pharmacological inactivation abolished vocal interac-
tions and significantly reduced variability in song duration
[20]. A major gap in understanding, however, concerns the
nature of the cortical activity that drives this ethologically
relevant vocalization. We therefore performed the first elec-
trophysiology recordings in singing mice to assess the impact
of OMC dynamics on vocal production and flexibility.

Results
High-density silicon probe recordings in freely behaving
singing mice
We recorded OMC neural activity during vocal production in
four adult male S. teguina using high-density silicon probes
(Cambridge NeuroTech or Diagnostic Biochips) (Fig. 1b,
c). Electrodes were inserted to a final depth of 600-1000 µm,
such that most recording sites were in the ventral portion
(i.e., motor output layers) of OMC. We used this approach
to monitor neural activity continuously over 3 to 20 days,
and 13 sessions with robust vocal behavior (duration: 10.4
± 5.7 hours, mean ± SD) were analyzed further. During
these recording sessions, singing mice produced songs both
spontaneously (n = 226) and in response to the playback of
a conspecific vocalization (n = 79). For this study, which
focuses on vocal production, we combined data across these
conditions, yielding a total of 23 ± 17 (mean ± SD) songs
per session (range: 8 to 72). In total, we recorded from 375
neurons (29 ± 11 per session, mean ± SD) whose spiking
was stably monitored throughout those recording sessions
(see Methods).

OMC spiking is modulated during vocal production
We began by examining whether OMC neural activity was re-
lated to singing behavior. Although song-related spiking pat-
terns often differed across neurons (e.g., Fig. 1c), we found
that the ensemble activity of simultaneously recorded OMC
neurons was similar across song epochs compared to non-
singing periods (Fig. 1d, e). Since each session consisted of
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Fig. 1. Reliable cortical population activity during singing in S. teguina. (a) S. teguina singing (Photo credit: Christopher Auger-Dominguez). (b) Schematic of S.
teguina brain highlighting the recording site (i.e., orofacial motor cortex, or OMC) as well as the positioning of electrodes (gray shaded region). (c) Spiking activity from
23 simultaneously recorded OMC neurons during song production. The sonogram at top depicts S. teguina song. Neurons with mean firing rates less than 1 spikes/s are
excluded for visualization purposes. (d and e) Firing rates of OMC neural ensemble from (c) during three singing epochs (d) compared with equally timed epochs recorded
outside of song (e). For plots (c) through (e), green and red dashed lines mark the beginning and end of the song, respectively. (f) and (g) For the example session, pairwise
correlations of the joint activity of the OMC ensemble recorded across all singing (f) and nonsinging (g) epochs. Dimensions of this matrix reflect the total number of songs in
this session (n = 29). (h) Correlation values across all songs are significantly higher during singing compared with nonsinging (one-sided Welch’s t-test, p = 3.0 x 10-139). (i)
Average correlation values for each recording session (mean ± S.E.M., n = 13 sessions, 4 mice). Red point refers to example session shown in (c)-(h).

multiple songs, we calculated the correlation values of OMC
ensemble activity across all pairs of songs and found them
to be significantly greater compared to nonsinging epochs in
the example session (Fig. 1f-h) as well as across all record-
ing sessions (Corrsinging = 0.61 ± 0.11, Corrnonsinging = 0.44
± 0.12, p = 2.76 x 10-6, paired t-test) (Fig. 1i). Taken to-
gether, we find that OMC population activity is consistently
modulated during song production.
Since OMC ensemble activity displayed reliable neural
dynamics during singing, we next proceeded to characterize
song-related spiking in individual OMC neurons. Each song
is composed of a series of notes (Fig. 2a, b); therefore,
neural activity could a priori be related to the production of
each note at a fast timescale (approx. 100 ms), or it could
follow slower dynamics at timescales comparable to the
entire song (approx. 10 s). By statistically comparing neural
activity during vocal production (versus nonsinging epochs),
we found that 29.6 percent of neurons (111 out of 375) were
correlated with notes (Extended Data Fig. 1a-c, Fig. 2c)
while 35.5 percent (133 out of 375) of neurons displayed
dynamics spanning the entire song (Extended Data Fig.
1d-f, see Methods), and 13.1 percent were active at both
timescales. Therefore, more than half of individual OMC
neurons were significantly modulated with some aspect of
singing behavior.

Note-related responses of OMC neurons
Cortical activity has been shown to represent relevant kine-
matic features (e.g., velocity and force of effector muscles)
for many movements [23]. Applying this framework to vocal
production, we would expect OMC neurons to show phasic

activity patterns preceding each note. To determine the re-
lationship of OMC firing and note production, we linearly
warped spiking activity to both the onset and offset of notes
(Fig. 2d). A close inspection of note-related neurons re-
vealed a diverse relationship between spike timing and note
duration. For instance, in some cases, there appeared to be
a systematic shift in the spike timing as note durations in-
creased (e.g., Fig. 2di), which may arise from systematic
offsets between neural activity and note production. Specif-
ically, if this shift were due to a motor delay, or the timing
needed for premotor signals to result in a behavioral change,
activity would precede the production of notes [24]. Con-
versely, if the timing shift were due to sensory feedback, spik-
ing activity would lag note production [25].
To explore these possibilities, we systematically varied the
timing of spikes with respect to the audio recordings (Fig.
2d, Extended Data Fig. 2a, b) and determined the time
lag that resulted in the most consistent alignment with notes
(Fig. 2e, see Methods). Among the population of note
modulated neurons, shifts resulted in significantly better
alignment between neural activity and note phase in 25 cases
(Fig. 2e, f, bootstrap p < 0.01, see Methods). Of these, 23
were consistent with sensory shifts and only 2 with motor
offsets (Fig. 2f, Extended Data Fig. 2e). Based on the
relative timing of neural activity and behavior, less than 1
percent (2 out of 375) of all recorded OMC neurons have a
response profile consistent with a motor command for note
production. Therefore, while we find phasic note-related
activity in OMC, it is unlikely to be directly involved in the
production of individual notes.
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Fig. 2. Note-related activity of OMC neu-
rons. (a) At top, singing behavior in a single
S. teguina example song. At bottom, an ex-
panded view of 7 notes from the above ex-
ample. Horizontal lines represent the timing
of notes, and the durations for each note (in
ms) are provided below. (b) Histogram of
note (n = 30,540) and song (n = 305) du-
rations plotted on a logarithmic axis across
all recorded mice in this study (n = 4). (c)
Spiking activity corresponding to note tim-
ing for an example neuron. For visualiza-
tion, the spike raster plot was restricted to
notes within a range of 55 to 65 ms (full
range: 31.4 to 175.9 ms). Green and red
ticks indicate the onset and offset of notes,
respectively. (d) Spiking activity of an ex-
ample neuron linearly warped to a common
note duration (onsets indicated by dashed
green lines). Rasters (top) and spike proba-
bility density plots (bottom) are provided for
the recorded spike trains (i) and after impos-
ing a ‘sensory’ (- 30 ms) (ii) or ‘motor’ (+
30 ms) (iii) offset. (e) Modulation strength
and offset values for three example neu-
rons. Gray circles and roman numerals in
plot for Cell 36 refer to the corresponding
panels depicted in (d) (see Methods). (f)
Summary plot showing the best-fit latency
(restricted to ± 50 ms) corresponding to the
maximum note modulation strength for 96
neurons. Gray symbols represent cases
that are not significantly different from zero,
and red (n = 15) and blue (n = 2) symbols
represent points with sensory and motor off-
sets, respectively. The three example cells
depicted in (e) are indicated.

Precise temporal scaling of OMC neural dynamics with
song duration
We next explored an alternative schema based on hierarchical
control in which OMC population dynamics is dominated by
a set of motor primitives (i.e., distinct patterns of neural ac-
tivity) which do not directly represent movement kinematics
[26]. In this view, motor commands for note production are
determined by downstream vocal pattern generators driven
by time-varying OMC activity spanning the duration of the
song, a dynamical systems framework that has been proposed
in other motor control studies [27, 28]. Therefore, we broad-
ened our view to examine the extent to which neural activ-
ity relates to the structure of the produced song at timescales
comprising the entire song duration (approx. 10 s).
We tested how OMC neural dynamics covaries with song du-
ration, which can substantially differ across renditions (Fig.
3a). The activity of individual neurons may evolve with iden-
tical timing regardless of song duration and therefore be cor-
related with ‘Absolute Time’ (Fig. 3b). Consequently, dy-
namics associated with shorter songs would simply look like
truncated versions of those observed during longer songs. Al-
ternatively, OMC neurons could reflect ‘Relative Time’ (Fig.
3c), in which neural activity expands and contracts to track
the progression through longer and shorter songs, respec-
tively. To test these models, we analyzed trial-to-trial dif-
ferences in song duration across renditions (average varia-
tion: 139.9 percent, n = 13 sessions, e.g., Fig. 3a) and used
a similarity analysis to compare the firing patterns of each

modulated neuron after the timing of activity had been lin-
early warped to align the onset and offset of song (Fig. 3d,
e, Extended Data Fig. 3). The Absolute Time model would
predict a higher degree of correlation when maintaining orig-
inal timing and comparing initial portions of longer songs
to shorter songs, while the Relative Time model suggests the
opposite (i.e., higher correlation after warping). We therefore
directly compared these two scenarios and found that the ex-
plained variance of single trial firing rates was significantly
greater in the warped condition compared with the unwarped
condition (p = 7.5 x 10-7, one-sided paired t-test) (Fig. 3f),
supporting the Relative Time model of OMC neural dynam-
ics.

To further quantify the magnitude of time scaling for each
neuron, we generated a consensus neural activity profile for
songs with similar durations (Fig. 3g, Extended Data Fig.
3a-c, see Methods). For each pair of blocks, we compared
the neural activity profiles to determine the scaling factor that
maximized the pairwise correlation (e.g., Fig. 3h), which
we call the neural scaling factor (Sneural). If the optimal
neural scaling (i.e., the ratio of activity profiles leading to the
highest correlation value) matched the relative ratio of asso-
ciated song durations (Sbehavioral), then the Sneural/Sbehavioral
slope is expected to be 1 (equivalent to the Relative Time
model). When Sneural was plotted against the behavioral
scaling factor (i.e., ratio of the associated song durations,
Sbehavioral), we found them to be linearly proportional (Fig.
3i, j). Across all the neurons, the neural scaling/behavioral
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Fig. 3. Scaling of neural activity with
song duration. (a) Duration of all songs (n
= 143) produced from one example mouse
(left). Raw waveforms for three example
songs of different durations (right). (b and
c) Hypothetical time-varying neural activity
from a single neuron as predicted by the Ab-
solute Time (b) and Relative Time (c) mod-
els for three songs of varying durations. (d)
and (e) Spiking responses for a single neu-
ron across 29 songs aligned to the start of
the song (d) or temporally warped to the
beginning and end of the song (e). (f)
Comparison of explained variance for 133
song-modulated neurons across trials us-
ing recorded song times (Model 1, x-axis)
and following temporal warping (Model 2,
y-axis). Data are better fit by Model 2
(one-sided paired t-test, p = 3.95 x 10-7).
(g) Peri-song time histograms (PSTHs) for
three example neurons. Each trace repre-
sents an average of 4-21 similarly timed tri-
als. Cell 19 is the same neuron shown in
(d) and (e). Song blocks used to calcu-
late consensus firing rate profiles are indi-
cated by numbers and vertical lines. (h)
Two example pairwise comparisons of the
instantaneous firing plots from (g). For each
pair, the black arrow indicates scaling fac-
tor with maximum correlation (Sneural), and
the gray arrow shows the ratio of song times
(Sbehavioral). (i) and (j) All pairwise compar-
isons (n = 10) of Sneural and Sbehavioral for the
example neuron (i) (colored circles refer to
panels in (h)) and for the entire population
(n = 105 neurons, x-axis bin size: 0.05) (j)
The error bars refer to the standard error of
the median estimated by bootstrapping.

slope was 1.01 ± 0.01 (n = 659 pairs, 105 neurons, Fig. 3j,
see Methods). For comparison, the Absolute Time model
would predict a slope of 0. This result demonstrates that
activity of individual OMC neurons linearly stretches or
compresses by a magnitude determined by the ratio of the
song durations, enabling OMC activity to precisely track the
proportion of elapsed song.

Diverse individual neuron dynamics in OMC
What are the motor primitives observed in OMC during
vocalization? Since OMC circuit activity precisely scales
with song duration, we linearly warped the firing rates of
song-modulated neurons to both the onset and offset of
song. Using this strategy, we observed diverse firing patterns
within the OMC during vocalization (Fig. 4). To quantify
this heterogeneity, we performed hierarchical clustering (Fig.
4a, see Methods) and found that 28.6 percent of neurons
increased firing during song production while the remainder
were suppressed. Further analyses of their response profiles
revealed 8 distinct clusters of neurons (Fig. 4a, b). We
observed that some neurons exhibited transient responses
coincident with song onset (Cluster 7), song offset (Cluster
6), or both (Cluster 2), and other neurons showed more
persistent increases (Clusters 1, 3) or decreases (Clusters
4, 5, 8) in neural activity during singing. Overall, neurons
were responsive throughout the duration of the song and

not just at song initiation and termination, consistent with
moment-by-moment control of ongoing song production.
We conclude that the population of OMC neurons that keep
track of Relative Time (i.e., phase) shows diverse firing
patterns during song production.

Computational model of vocal motor control
To understand how motor commands for note timing can be
generated from the motor primitives described above (Fig.
4), we next constructed a data-driven hierarchical model that
makes experimentally testable behavioral predictions. In this
model, OMC does not determine note timing directly (con-
sistent with a lack of ‘premotor’ timing in Fig. 2), but vo-
cal motor control is instead shared by cortical and down-
stream circuits. Inspired by our data, we posit that cortex
dictates the moment-by-moment song phase and overall du-
ration (Fig. 3), while the motor command for individual notes
is generated by midbrain/brainstem areas comprising the pri-
mary vocal motor network (Fig. 5a, Extended Data Fig.
4). In the model, OMC activity provides descending synap-
tic drive, which influences the rate of note production in the
subcortical song pattern generator (Fig. 5b). To account for
the decreasing rate of note production with time, the synaptic
drive onto the downstream note pattern generator may de-
crease throughout the song. We accomplish this in our model
through linear weighting of OMC activity profiles directly
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Fig. 4. Diverse categories of OMC firing patterns during singing. (a) A hi-
erarchical clustering plot describing the response profiles of OMC neurons whose
activity was modulated during singing (see Methods, n = 105 neurons). Individ-
ual clusters are indicated by colored bars on the right. (b) Spiking responses for
each cluster displayed as average firing rate plots. The mean activity profile of each
neuron is represented with gray lines, and colored lines are average waveforms for
each cluster corresponding to categories from (a). Black vertical bars indicate a
normalized firing rate (z-score) of 1. Gray shaded blocks denote song epochs, with
green and red arrows marking song starts and stops respectively.

measured in our recordings (Extended Data Fig. 4a) which
sum up to produce synaptic drives with varying slopes (Fig.
5b). We model the workings of the note pattern generator
such that individual notes are produced upon reaching a fixed
firing rate threshold (see Methods), akin to an integrate-and-
fire module. Appropriate time-scaling of cortical activity will
thus result in songs of different durations without the need for
modifying the note-generating mechanism (Fig. 5b). Impor-
tantly, this role of OMC is robust to the choice of the precise
means by which note generation is implemented in the note
pattern generator, either via postsynaptic adaptation mecha-
nisms or synaptic drive from another brain region (Extended
Data Fig. 4b, c).
We next test a specific behavioral prediction of our hierar-
chical model to assess its validity. Our model predicts that
songs become longer by incorporating more notes and not
by increasing the duration of individual notes (Fig. 5b, c).
Alternately, if note timing were directly triggered by note-
modulated OMC activity (Fig. 2), longer songs would have
the same number of notes with their durations proportion-
ately stretched, as observed in the songbird [29, 30]. We
tested these predictions by examining the structure of songs
produced with different durations and found that the number
of notes systematically increased as a function of song du-
ration (n = 13 animals, 4 from this study and an additional
9 from a published data set [20]) (Fig. 5d), a finding that
strongly agrees with our hierarchical model.
We considered a directed circuit perturbation to assess
whether the relationship between notes and song duration
relies upon activity within OMC. We reanalyzed a data set

in which OMC was focally cooled in 9 mice [20]. Previous
experimental [29, 31-33] and theoretical [34] work predicts
that mild focal cooling should dilate the temporal profile of
OMC neural activity thereby slowing the progression of sub-
cortically controlled note production. For each animal, OMC
cooling resulted in an increase in both song duration (control:
8.0 ± 0.3 s, cooled: 9.3 ± 0.4 s, p = 0.002, paired t-test) as well
as the number of notes (control: 92.8 ± 3.2, cooled: 103.9 ±
3.5, p = 0.004, paired t-test) (Fig. 5e). Therefore, OMC-
cooled songs became longer by incorporating more notes,
further supporting the role of OMC activity in our hierarchi-
cal model. In sum, these results suggest that cortical activity
can generate the necessary vocal motor commands to account
for natural variability in behavior.

Discussion
In this study, we observed robust modulation of motor cor-
tical activity during vocalization corresponding to two be-
haviorally relevant timescales: (1) phasic responses during
note production (approx. 100 ms) and (2) persistent song-
related dynamics (approx. 10 sec). We found that many
neurons modulated at the faster timescale exhibited a delay
between note timing and spiking that could represent either
sensory feedback or efference copy signals (Fig. 5f). Sen-
sory feedback is known to be important in animal and hu-
man vocal motor control [35-38], and a systematic perturba-
tion of sensory streams (e.g., auditory, proprioceptive) [39]
could test whether these signals are important in similar con-
trol processes in the singing mouse. Nevertheless, our time-
shift analysis, modeling, and perturbation results confirm that
these fast-varying responses in OMC do not reflect vocal
motor commands to produce individual notes. At the slow
timescale, responses were heterogeneous (e.g., transient at
song onsets, ramping responses, etc.) and appear to reflect a
set of motor primitives related to the control of song duration
and the rate of note production. Future work will determine
whether these spiking profiles map onto specific neuronal cell
types in the OMC defined by critical circuit features, such as
their output targets, as seen in motor cortical circuits in the
laboratory mouse [40-42].
These results provide a striking example of how motor corti-
cal dynamics can modulate song production, perhaps reflect-
ing a voluntary mechanism of generating adaptive vocal flex-
ibility. To accomplish this moment-to-moment control, our
cortical recordings support a model in which OMC acts hi-
erarchically via downstream song pattern-generator circuits
(Fig. 5f, Extended Data Fig. 4b, c), likely correspond-
ing to regions that have been recently characterized in the
laboratory mouse [17-19] and appear to be highly conserved
across vocalizing species [10, 11]. The hierarchical model
proposed here is consistent with our previous work, where
we found that OMC inactivation did not abolish singing but
significantly reduced the variability in song durations [20],
suggesting that activity in OMC is providing necessary in-
put to the brainstem to generate socially appropriate vocal-
izations (Extended Data Fig. 4b, c). Future work is needed
to determine the full song circuit in the singing mouse and
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Fig. 5. Hierarchical model of vocal mo-
tor control. (a) Schematic depicting shared
control of vocal production, where OMC con-
trols song duration and rate of progression
while individual notes are produced by a
downstream note pattern generator. The
synaptic drive to the note pattern generator
is derived from OMC neural activity (see Ex-
tended Data Fig. 4). (b) Activity profiles
of four model OMC neurons for a long song
(purple) compared to a short song (cyan).
Linear summation of neural activity creates
the synaptic drive to the note pattern gen-
erator. The note pattern generator is mod-
eled as an integrate-and-fire module, such
that the rate of note production depends
upon the strength of the OMC synaptic in-
put. (c) Model output using seven different
values of time-scaling, leading to a predic-
tion in which the number of notes linearly co-
varies with song duration. Cyan and purple
indicate examples from (b). (d) The number
of notes scales with song duration in an ex-
ample mouse (n = 144 songs, left) as well as
across the population (n = 13 mice, right).
Diagonal lines at right represent linear re-
gression fits for each individual animal. Red
line indicates data from the example at left.
(e) Cooling OMC results in a shift in both
song duration and number of notes in one
example animal (Mouse 4, left). The aver-
age change in song duration and number of
notes as the result of cooling for each ani-
mal (n = 9 mice, right). Across all animals,
OMC cooling significantly increased average
song durations (control: 8.0 ± 0.3 s, cooled:
9.3 ± 0.4 s, p = 0.002, paired t-test) as well
as average number of notes (control: 92.8 ±
3.2, cooled: 103.9 ± 3.5, p = 0.004, paired
t-test). Red line indicates data from Mouse
4 (left). (f) Hierarchical model of vocal motor
control, wherein OMC confers flexibility to a
downstream song pattern generator.

elucidate the synaptic mechanisms by which OMC influences
downstream vocal production circuits.
The singing mouse vocal control network appears to operate
in a partially autonomous hierarchical configuration – a suc-
cessful design principle for biological and artificial systems
– wherein a higher order modulator (i.e., OMC) extends
the capabilities of lower-level motor controllers (i.e., note
production circuitry) without being necessary for generating
the basic motor program [43-45]. Such an arrangement
enables behavioral flexibility without relying upon synaptic
plasticity in downstream motor patterning circuits. Similar
mechanisms have been observed when animals are trained to
keep track of time [46-51] or in primate cortex during cycling
tasks at different speeds [52]. Our results extend the scope
of this temporal scaling algorithm over an expanded time
window (approx. 10 s) and to a new domain: controlling
vocal flexibility in mammals. Despite its ubiquity, the
neural mechanisms contributing to temporal scaling are not
well-understood, though several ideas have been proposed,
including feedback loops [46, 51] and neuromodulatory gain
control [53]. The OMC circuit in the singing mouse offers
a valuable opportunity to examine these and other circuit
features for generating motor flexibility in the context of an

ethologically-relevant behavior.
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MATERIALS AND METHODS 

 

Animals  

All procedures were conducted in accordance with protocols approved by the Institutional Animal 

Care and Use Committee of NYU Langone Medical Center. Animals used in the study were adult 

(> 3 months) male laboratory-reared offspring of wild-captured Scotinomys teguina from La 

Carpintera and San Gerardo de Dota, Costa Rica. Mice were maintained at 22 ± 3 °C with a 12:12 

L:D cycle. 

 

Behavioral recordings 

S. teguina were housed in individual recording chambers (Med Associates) lined with sound 

insulation foam (Soundproof Cow). Vocalizations were recorded using a condenser microphone 

(Avisoft Bioacoustics CM16/CMPA) placed within home cages. Acoustic signals were sampled 

at 250 kHz and digitized with Avisoft UltraSoundGate 116Hb. For playback experiments, we used 

an ultrasonic tweeter (Vifa), as described previously [1]. To precisely align the audio and 

electrophysiology signals, each data stream was additionally recorded continuously into an 

INTAN recording system at a fixed sampling rate between 20-30 KHz. 

 

Silicon-probe recordings 

Chronic recordings were performed using either 64-channel (Cambridge Neurotech, E-1) or 

integrated 128-channel high-density silicon probes (Diagnostic Biochips, 128-5). Prior to surgery, 

probes were mounted to a plastic microdrive (NeuroNexus, d-XL) and a stainless-steel ground 

wire (0.001”, A-M systems) was soldered to the reference of the headstage, which was held in 

place by a custom-made 3D printed enclosure (Formlabs). For all surgical procedures, mice were 

anesthetized with 1-2% isoflurane in oxygen and placed in a stereotaxic apparatus. Neural activity 

of freely moving singing mice was recorded using an electrically assisted commutator (Doric 

Lenses) and the RHD USB Interface Board or RHD Recording Controller (Intan Technologies). 

For all chronic recordings, silicon probes were implanted directly into the OMC using the 

following stereotaxic coordinates: +2.25 mm anterior to bregma, +2.25 mm lateral to the midline. 

This location represents the center of the OMC region identified by electrical microstimulation 

[1]. The ground wire was inserted between the skull and the dura above the visual cortex or 

cerebellum contralateral to the probe implantation. Silicon elastomer (Kwik-Cast, WPI) was 

applied to the craniotomy once the probe was inserted to the desired depth (1 mm for OMC). The 

microdrive and the enclosure were secured to the skull with dental acrylic and Metabond cement 

(Parkell). Animals were monitored and allowed to recover for three to seven days prior to the start 

of electrophysiology experiments. Spike detection and clustering were performed using KiloSort 

software [2] and manual post-processing (merging/ splitting of clusters) was performed using phy 

[3]. Clusters that drifted during the recording session were not included in further analyses. Spike 

times of all clusters were aligned to onsets and offsets of individual notes or songs as specified 

below. 
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Behavioral annotation of acoustic parameters 

We analyzed song structure using custom software (MATLAB) as described previously [1]. 

Briefly, we first smoothed the sound waveform with a 4-ms sliding window. We then identified 

individual notes, which typically exhibited an absolute intensity threshold corresponding to 25-40 

dB below the mouse’s loudest note. Exact note start times and stop times were calculated based 

on the maximum intensity of each note, such that onsets and offsets were first and last crossings 

of 1% (20 dB quieter) of each note’s maximum intensity. Note duration was calculated as the 

difference between the offset and the onset for each note. Song duration was defined as the 

difference between the offset of the last note and the beginning of the first note. For each song, the 

number of notes was plotted against the overall song duration. For each animal, linear regression 

(MATLAB function: polyfit) was used to describe how the number of notes vary as a function of 

song duration. For reanalysis of the previously published cooling data set [1], the number of notes 

for each song was plotted against the song duration for both control and cooled conditions. A small 

minority of songs shorter than five seconds, which often had breaks, were ignored. To summarize 

the effect of cooling, for each animal, the difference between the average number of notes before 

and after cooling was plotted against the difference of song durations before and after cooling. 

Since the average song duration varies for individual animals, the difference between cooled and 

control conditions (Δ notes and Δ song duration) were plotted as opposed to the absolute values.  

 

Correlation analysis of neuronal ensembles during singing 

We performed a correlation analysis for each session individually. We estimated the firing rates 

from the spike trains using a Gaussian kernel (𝜎 = 0.2 s). For correlation analyses, we chose the 

window size based on the longest song duration 𝑇max in that session. To better capture the 

modulation at the onset and offset, we included 2 s before the song onset and 2 s after the song 

offset, so the total window size is 𝑇max + 4 𝑠. In this time window, for each song in the session, 

we sampled every 200 ms from the estimated firing rates to construct the peri-song time histograms 

(PSTHs). We concatenated the PSTHs from all the neurons for each song into a single vector. The 

correlation matrix was then constructed by taking the correlation between all pairs of songs. For 

nonsinging epochs, we performed the same analysis but with song timing (onsets) replaced by 

control epochs set to be 30 seconds after the song offsets. For each session we averaged the off-

diagonal elements in the correlation matrix and performed a one-sided paired t-test to determine 

the significance. 

 

Selection of note and song modulated neurons 

Note modulated neurons: Within a song, consecutive notes usually have short gaps between them 

(~1/3 of note duration, e.g., Fig. 2a). We define a note cycle (𝑇cycle) as the time between the 

subsequent note onsets. Some songs may have short pauses. To distinguish actual note cycles from 

pauses, we required the note cycle duration to be less than 3 times the note onset-offset duration. 

All the analyses on notes shown in this paper were performed with note cycles that passed the 
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above criterion. We verified that our results are robust if we change note cycles to be the time from 

note onset to offset or the time between the offsets of successive notes. Because notes have variable 

durations, our analyses were carried out after warping spiking activity to align onsets and offsets, 

which enabled the calculation of phase tuning. We defined note phase as the relative time within 

a note cycle, 𝜙(𝑡) ≡
𝑡−𝑡onset

𝑇cycle
. To select note-modulated neurons, we summarized the spike phases 

for all the notes and used the Rayleigh 𝑧-test (𝛼 = 0.01) to test against the null hypothesis that the 

spikes within each note cycle were uniformly distributed.  

 

Song modulated neurons: We selected the song-modulated neurons initially without warping, i.e., 

in Absolute Time. Because each song within a session has a different duration, and the different 

durations could affect estimations of variance, we used the same window size for all songs. 

Specifically, we chose the window size based on the shortest song duration 𝑇min in that session. 

We performed statistical tests twice: once for song onset alignment and once for song offset 

alignment (Extended Data Fig. 1d). To better capture the modulations at song onsets or offsets, 

we include 2 s before the song onsets or 2s after the song offsets. For song onset alignment, we 

calculated the averaged firing rates within the time window by counting the spikes between 2 s 

before the song onsets and 𝑇min after the song onsets. For song offset alignment, we calculated the 

averaged firing rates within the time window by counting the spikes between 𝑇min before the song 

offsets and 2 s after the song offsets. As a control, we created a baseline nonsinging epoch for each 

song by counting the spikes from 10 s to 70 s after the song offset. In rare cases when another song 

appeared in this time window, we excluded the song period and extended the time window to 

include a total of 60 s of baseline activity. We then performed a two-sided paired 𝑡-test (𝛼 = 0.01) 

to test the null hypothesis that the firing rates within a song were the same as baseline firing rates.  

 

Analysis of note-related neural activity 

We found that for many neurons the time course of modulation by notes had a peak that shifted 

with note duration (e.g., Fig. 2di). One possible explanation is that there exists a latency in absolute 

time between the behavioral recordings and neural activity. To quantify this offset, we reasoned 

that the optimal latency should give the strongest modulation that is characterized by the 𝑝-value 

of the Rayleigh 𝑧-test. We defined the modified phase as �̃�(𝑡, 𝑇cycle, Δ𝑇) ≡
𝑡−𝑡onset+Δ𝑇

𝑇cycle
, where Δ𝑇 

is the fixed latency in absolute time, 𝑇cycle is the note cycle duration, and 𝑡onset is the note onset. 

We performed the Rayleigh 𝑧-test in this modified phase frame and obtained the 𝑝-value as a 

function of the latency Δ𝑇. The optimal latency was determined from Δ𝑇op ≡ argmin
Δ𝑇

𝑝(Δ𝑇). To 

calculate the modulation strength, we first defined the modulation vector as �⃑⃑� ≡

(
1

𝑛
∑ sin 2𝜋�̃�𝑖𝑖 ,

1

𝑛
∑ cos 2𝜋�̃�𝑖𝑖 ), where 𝑛 is the total number of spikes in all the note cycles. We 

estimated the standard error of the 𝐿2 norm of the modulation vector and denoted it as  Δ‖�⃑⃑� ‖2. 

The modulation strength is then defined as 
‖�⃑⃑⃑� ‖2

Δ‖�⃑⃑⃑� ‖2
.  
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To check whether the latency was sensory- or motor-like, we first selected neurons that had a 

latency that significantly differed from 0 based on bootstrapping; we randomly sampled the note 

cycles 1000 times to get the distribution for inferred optimal latency. We then selected neurons 

which had an optimal latency distribution significantly different from 0 (two sides, 𝛼 = 0.01). We 

define song modulation strength by the larger absolute 𝑡-value of the two 𝑡-tests (i.e., performed 

on onset- and offset-aligned data). 

 

Analysis of song-related neural activity 

To differentiate between the absolute time and relative time models, we constructed a mean 

template and compared the variance explained by each model. We estimated the firing rates from 

the spike trains using a Gaussian kernel (𝜎 = 0.2 s) and denoted this continuous function as 𝑟𝜎(𝑡).  

For the absolute time model, we set the time window to be the shortest song duration 𝑇min in that 

session and sampled every 200 ms in this window from 𝑟𝜎(𝑡) to construct the PSTHs. This gave a 

matrix 𝑹abs, which is of size  (𝑛song, 5 ∗ 𝑇min ). For each neuron, the mean template was then 

constructed by taking averages across the rows (i.e., song dimension). We then computed the 

explained variance (𝜌abs
2 of the PSTHs about the mean template. For the relative time model, we 

sampled the same number (5𝑇min) of points evenly from the firing rate function 𝑟𝜎(𝑡) of each 

neuron after linear warping of time between song onset and song offset. Explicitly stated, 𝑹𝑖𝑗
rel =

𝑟𝜎 (𝑡onset
𝑖 +

𝑡offset
𝑖 −𝑡onset

𝑖

5𝑇min
𝑗), where 𝑡onset

𝑖  and 𝑡offset
𝑖  denote the onset and offset for the ith song in 

the session. Following this, identical to above, we computed the mean template and the explained 

variance using 𝑹rel in place of 𝑹abs.  

 

To further quantify the degree of stretching and compression in the relative time model, we 

performed the following scaling analysis. For each session, we first grouped songs of similar 

durations using the Jenks Natural Breaks method [4]. We required a valid cluster to have at least 

four songs and chose the number of clusters to maximize the total number of valid clusters in each 

session. We then averaged the neural firing rates within each song cluster, 𝑟𝜎
(𝑐)(𝑡) =

1

|𝒮𝑐|
∑ 𝑟𝜎(𝑡𝑜𝑛𝑠𝑒𝑡

𝑗
+ 𝑡)𝑗∈𝒮𝑐

, where the superscript (𝑐) denotes the cluster, and 𝒮𝑐 denotes the set of 

song indices in cluster c. For any two clusters (e.g., 𝑐1 and 𝑐2), the goal was to find the scaling 

factor 𝑠𝑛𝑒𝑢𝑟𝑎𝑙 that gave the largest correlation between the two cluster-averaged firing rates 

𝑟𝜎
(𝑐1)(𝑡) and 𝑟𝜎

(𝑐2)(𝑡). Formally, for a given scaling factor 𝑠, we first chose the window size 

𝑇𝑤(𝑠) = max (
𝑇(𝑐1)

𝑠
, 𝑇(𝑐2)) , where 𝑇(𝑐𝑖) is the average song duration in that cluster. We then 

computed the correlation between the two cluster-averaged firing rates along the time dimension 

using 31 sampling points from 0 to 𝑇𝑤(𝑠). The optimal neural scaling is defined by 𝑠𝑛𝑒𝑢𝑟𝑎𝑙 =

arg max
0.4≤𝑠≤2.5

𝜌 (𝑟𝜎
(𝑐1), 𝑟𝜎

(𝑐2), 𝑠). We get the behavior scaling factor from 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 ≡
𝑇(𝑐1)

𝑇(𝑐2). If the neural 

firing rates can be explained by relative time, we would get 𝑠𝑛𝑒𝑢𝑟𝑎𝑙 ≈ 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙. Depending on 

whether 𝑇(𝑐2) is longer or shorter than 𝑇(𝑐1), the behavior scaling factor 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 would be either 
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larger or smaller than 1. To eliminate the ambiguity of these two choices of orders, we required 

𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 ≤ 1, i.e., we chose the order such that 𝑇(𝑐1) is smaller than 𝑇(𝑐2). For a single neuron, 

we performed the scaling analysis on all possible combinations of the cluster pairs. To perform 

this analysis, two valid clusters per session were required (12/13 sessions met this criterion). 

Scaling analyses were only performed on song modulated neurons whose firing rates exceeded 1 

Hz either within the song or within the control. To summarize the results, we binned 𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 

(bin size = 0.05) and plotted the median of 𝑠𝑛𝑒𝑢𝑟𝑎𝑙 within each bin. The best fit line was estimated 

using quantile regression without intercept.   

 

Hierarchical Clustering 

We estimated firing rates from spike trains using a Gaussian kernel (𝜎 = 0.2 s) and denoted this 

continuous function as 𝑟𝜎(𝑡). For the song-modulated neurons, we linearly warped their absolute 

time firing rates to the relative time firing rates and take the mean across songs, �̅�𝜎(𝜃) =
1

𝑛𝑠𝑜𝑛𝑔𝑠
∑ 𝑟𝜎 ((𝑡𝑜𝑓𝑓𝑠𝑒𝑡

𝑖 − 𝑡𝑜𝑛𝑠𝑒𝑡
𝑖 )𝜃 + 𝑡𝑜𝑛𝑠𝑒𝑡

𝑖 )𝑖 . We then transformed �̅�𝜎(𝜃) to its 𝑧-score. For each 

neuron, we sampled 𝑧(𝜃) from -0.2 to 1.2 with an interval of 0.01, which composes the vector 

representation of the neural modulation with the song. Agglomerative clustering was carried out 

on those vector representations. We used Euclidean distance as the affinity function. We chose the 

distance threshold to be 25. An average template was computed for each cluster by averaging 

across the neurons within the cluster.  

 

Computational Model 

We constructed a two-step model for hierarchical vocal motor control in the singing mouse. We 

assumed that a note pattern generator integrates synaptic input and fires upon reaching a fixed 

threshold using the leaky integrate-and-fire equation:  

𝜏
𝑑𝑉

𝑑𝑡
=  −𝑉 + 𝑆 ∗ 𝑟 

where V = Instantaneous voltage of the note pattern generator and S = synaptic drive onto the 

pattern generator. r and 𝜏 are the membrane resistance and the membrane time-constant 

respectively, with units chosen appropriately. V was initialized and reset to 0 mV whenever it 

reached a particular threshold voltage (Vth = 50 mV). This constituted the motor command for 

producing each note.  

 

Since the rate of note production per unit time steadily decreases as the song progresses, the overall 

synaptic drive was required to have a negative slope. In the simplest version of the model, we 

assumed that the synaptic drive is entirely derived from OMC population activity. The synaptic 

drive was estimated using a linear combination of synaptic weights from the empirical neural data. 

The synaptic weights were calculated for one standard song duration (~8 s) close to the average 

song duration in this species. Notice that the shape of the synaptic drive (sloping down) does not 

require individual OMC neurons to do so. This should be interpreted as the effective influence of 

OMC on the note pattern generator. To generate songs of different durations (e.g., T = 4 to 16 s), 
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OMC neural activity was time-scaled by the exact ratio of the song durations (i.e., T/8) based on 

our empirical result without modifying the synaptic weights. This generates steeper slopes for 

songs shorter than 8 s and shallower slopes for songs longer than 8 s. This model predicts that the 

total number of notes corresponding to each song duration increases linearly, which is 

recapitulated by the behavioral and cooling data. We find that this key result holds for large ranges 

of the values of the model parameters (V, Vth, S, r, 𝜏) 

 

Currently, mechanistic details of the pattern generator circuit are unknown. Thus, we explore an 

alternative scenario by relaxing the assumption that the synaptic drive is entirely driven by OMC 

without any loss of generality. Its origin can be either entirely driven by OMC, or a combination 

of OMC and other brain areas. Moreover, the downward sloping synaptic drive can in practice 

result from a combination of a time-scaled duration signal and spike-frequency adaption 

(Extended Data Fig. 4).  
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EXTENDED DATA FIGURES 

 

 

 

 
 

Extended Data Fig. 1. Determination of significant note- and song-related responses. (a and b) 

Example neurons with (a, Cell #19) and without (b, Cell #1) significant note modulation. Rasters (top) and 

spike probability density plots (bottom) for example neurons whose activity profiles have been linearly 

warped to a common note duration (onsets indicated by green lines). At right, polar plots describing the 

tuning of spike times with respect to the relative phase of note production. Dashed lines indicate a uniform 

distribution. (c) Histogram of note modulation (see Methods) for significantly note-modulated neurons (n 

= 111) compared with the same analysis applied to nonsinging epochs. (d) Song modulation analysis 

protocol. Neural activity for songs (black rectangles) are aligned either to their starts (top) or stops (bottom). 

The evaluation window (song epoch) begins and ends two seconds before and after the shortest song 

duration of that session. (e) The relative firing rate difference between the song-aligned spiking activity and 

a nonsinging period for a modulated (left, Cell #169) and unmodulated (right, Cell #187) neuron. 72 song 

trials are represented by separate lines for each neuron. Significance determined by bootstrap resampling 

(***: p < 0.01, n.s.: not significant). (f) Histogram of song modulation values (see Methods) for all song 

modulated neurons (n = 133) and those not modulated by song (n = 242).  
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Extended Data Fig. 2. Further characterization of note-related responses. (a and b) Spiking activity of 

two example neurons – Cell #5 (a) and Cell #19 (b) - linearly warped to a common note duration (onsets 

indicated by dashed lines). At right, the alignment of spikes under normal conditions and after imposing a 

‘sensory’ (- 30 ms) or two different ‘motor’ (+ 30 ms) and (+ 60 ms) offsets. Examples in (a) and (b) relate 

to analyses in Fig. 2e. (c) Spiking activity corresponding to note timing for an example neuron (Cell #180 

from Mouse #4). For visualization, analysis was restricted to notes of prespecified durations (top: 55 to 60 

ms; bottom: 150 to 200 ms, sample note sonograms provided for each range). For long note durations, 

robust spiking emerges near the end of each note. Green and red ticks indicate the onset and offset of notes, 

respectively. (d) Spiking activity from Cell #180 linearly warped to a common note duration (onsets 

indicated by dashed lines). Timing shifted by a best fit latency of 110 ms (sensory-like shift). (e) Summary 

plot (extension from Fig. 2f) showing the latency resulting in the maximum note modulation strength for 

all note modulated neurons (n = 111). Gray symbols represent cases that are not significantly different from 

zero, and red (n = 23) and blue (n = 2) symbols represent points with sensory and motor offsets, respectively.   
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Extended Data Fig. 3. Song-modulated neurons. (a-c) Spiking raster plots for three example neurons – 

Cell #19 (a), Cell #5 (b), and Cell #176 (c) – across all trials. At right, a peri-song time histogram (PSTH) 

for song blocks representing the shortest and longest songs in the session (indicated by cyan and magenta 

vertical lines on right of raster plots). Black curve represents temporally compressed PSTHs from longest 

trials as a comparison. The magnitude of compression was chosen to match the ratio of the song durations. 

(d-f) Spike times of neurons in (a-c) after temporally warping to the beginning and end of song. Green and 

red lines indicate the onset and offset of songs, respectively. 
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Extended Data Fig. 4. Details of the computational model. (a) Inferred weights (shown at left) for each 

song-modulated OMC neuron (shown in middle) which leads to a descending synaptic drive (shown at 

right) to the downstream note pattern generator. (b) An alternative implementation of the hierarchical 

model, in which the note pattern generator produces a song by combining an unscaled step-like input with 

a characteristic time-dependent adaptation. These inputs could be intrinsic to the pattern generator or could 

be inherited from a different brain area. In both cases, time-scaled OMC activity can interface with the 

existing note generating mechanism to produce adaptive behavioral variability. (c) In the absence of the 

OMC input, the note pattern generator can produce notes but loses flexibility resulting in songs with higher 

stereotypy, consistent with a partially autonomous motor control system.  
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