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Limits on Inferring Gene Regulatory Networks Subjected to Different
Noise Mechanisms

Michael Saint-Antoine! and Abhyudai Singh?

Abstract— One of the most difficult and pressing problems in
computational cell biology is the inference of gene regulatory
network structure from transcriptomic data. Benchmarking
network inference methods on model organism datasets has
yielded mixed results, in which the methods sometimes perform
reasonably well and other times fail to outperform random
guessing. In this paper, we analyze the feasibility of network
inference under different noise conditions using stochastic
simulations. We show that gene regulatory interactions with
extrinsic noise appear to be more amenable to inference than
those with only intrinsic noise, especially when the extrinsic
noise causes the system to switch between distinct expression
states. Furthermore, we analyze the problem of false positives
between genes that have no direct interaction but share a
common upstream regulator, and explore a strategy for dis-
tinguishing between these false positives and true interactions
based on noise profiles of mRNA expression levels. Lastly, we
derive mathematical formulas for the mRNA noise levels and
correlation using moment analysis techniques, and show how
these levels change as the mean mRNA expression level changes.

I. INTRODUCTION

In what is known as the “central dogma” of molecular
biology, information encoded in DNA is transcribed into
strands of messenger RNA (mRNA), which are then trans-
lated into proteins, which then carry out various functions
within the cell. Sometimes the function of a protein from
one gene involves regulating the expression of other genes.
When a protein increases the expression of another gene, we
refer to this as “activation.” When a protein decreases the
expression of another gene, we refer to this as “repression.”
Intricate networks of these positive and negative regulatory
interactions between genes (called gene regulatory networks
or GRN5s) give rise to much of the complexity of life [17],
[27]. Understanding the roles and functionality of GRNs
is a pressing problem for cell biologists, especially since
malfunctions of GRNs can have disastrous medical impacts
on human health, leading to diseases like cancer, for example
[19].

In this paper, we present models of different noise con-
ditions related to regulatory interactions between genes. In
this context, intrinsic noise refers to the inherent stochasticity
in the processes of transcription, translation, and the degra-
dation of mRNA and proteins, and is especially prevalent in
cases of low copy number fluctuations of these molecules. By
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contrast, extrinsic noise refers to the impact of other factors,
such as upstream regulators, external stimuli, or changes in
cell state that affect the regulatory interaction [6], [13], [32],
[36], [38].

A specific challenge for computational biologists studying
GRNs is network inference — that is, the attempt to infer the
structure of a GRN from gene expression data [29]. Although
modern high-throughput next generation sequencing (NGS)
experiments like RNA-seq have led to an abundance of
gene expression data, the challenge of network inference is
still quite difficult. Part of the reason for this difficulty is
that NGS transcriptomic experiments like RNA-seq involve
destroying each cell to sequence its RNA content. So, each
cell provides only a single time point of data, rather than a
timeseries dataset.

Most network inference methods attempt to infer regula-
tory interactions between genes based on statistical relation-
ships between their expression levels (typically quantified by
mRNA abundance). Some examples of these methods include
correlation [45], linear or non-linear regression [11], [14],
[37], information theory [4], [5], [7], [24], [25], Bayesian
techniques [8], [44], and others [1]-[3], [15], [18], [43], [46].

An excellent introductory review of the topic of gene
regulatory network inference can be found in Huynh-Thu and
Sanguinetti 2018 [16]. Recent theoretical work on models of
gene expression and regulation can be found in [22], [39]-
[41].

II. EFFICACY OF NETWORK INFERENCE METHODS

Although the problem of gene regulatory network infer-
ence has been widely studied for more than a decade, there
are still questions about the efficacy of these methods and
whether network inference from transcriptomic data is a
feasible goal. A key point of skepticism is that these methods
typically assume that mRNA abundance measurements can
be used as a reliable proxy for protein abundance. Typically,
the protein (not the mRNA) produced by a gene is what
regulates the expression of other genes, but it is often
mRNA abundance data that we have access to, so most GRN
inference methods take mRNA data as an input.

There are some reasons to question the assumption that
mRNA abundance data can be used as a reliable proxy for
protein abundance. For example, Mahajan et al. 2022 [21]
shows though theoretical analysis and stochastic simulations
that, under conditions of only intrinsic noise, the correlation
between mRNA abundance and protein abundance even for
the same gene becomes quite weak if there is a large
difference between the mRNA stability and protein stability.
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TABLE I

ACTIVATION MODEL, NO EXTRINSIC NOISE
Event Count Update Propensity
mRNAT production M — My +1 | k1
mRNAI degradation | My — M; —1 | v1 M,
Protein production P—P+1 kp M1
Protein degradation P—-P—-1 Yp P
mRNA2 production Mo — Mo +1 | ko c"{;:;’"
mRNA?2 degradation | My — Mo —1 | v2M>

Additionally, Liu et al. 2016 [20] reviews the literature and
reports a similar finding, that the correlation between mRNA
levels and protein levels can be weak in some scenarios,
and knowledge of mRNA transcript abundance alone is not
always sufficient to predict protein abundance levels.

So how well do these network inference methods actually
work? There have been several attempts to test the efficacy
of network inference methods by benchmarking them on
data from model organisms, such as E. coli, S. cerevisiae,
and mice [23], [26], [28]. In these benchmarking studies,
the underlying structure of the gene regulatory network
is already known from experimental investigation, so the
predictions of network inference methods can be checked
against the correct answers. The most famous of these
benchmarking attempts is Marbach et al. 2012 [23]. The
results of this benchmarking study were mixed. When tested
on a S. cerevisiae dataset, network predictions failed to
substantially outperform the accuracy that would be expected
by random guessing. However, when tested on E. coli data,
the network predictions performed substantially better than
random guessing.

So, our current understanding of the efficacy of gene
regulatory network inference is quite murky and uncertain.
It seems that network inference from transcriptomic data
cannot be considered entirely feasible or unfeasible. Rather,
it seems to be feasible under some conditions and unfeasible
under other conditions. In this paper, we attempt to shed light
on this topic, investigating through stochastic simulations
which noise conditions may be more or less amenable to
network inference from transcriptomic data.

III. STANDARD ACTIVATION MODEL, NO EXTRINSIC
NOISE

In this section, we briefly review and replicate results
from Mahajan et al. 2022 [21], which studied the feasibility
of network inference from mRNA abundance data under
conditions of only intrinsic noise. We consider a system
with two genes: Gene 1 and Gene 2. Gene 1 is transcribed
into mRNA1, which is then translated into the Protein.
The Protein then activates the transcription of Gene 2 into
mRNA2. We refer to this as the Activation scenario. A
diagram of this scenario is shown in Figure 1.

We define the integer-valued random processes M (¢),
P(t), and M(t) to track the counts of the mRNA1, Protein,
and mRNAZ2 respectively. For the sake of simplicity, we will
refer to these processes as My, P, and My from now on.

TABLE I
ACTIVATION MODEL PARAMETERS
Parameter | Description Value
k1 mRNA1 production rate 4
Y1 mRNA1 degradation rate 2
kp Protein production rate 2
Yp Protein degradation rate %
ko mRNA2 maximum production rate | 4
Y2 mRNA?2 degradation rate 2
n Hill coefficient 3
c Hill function parameter 1
Protein
P T
\
kp M 1 !
MRNAT , MRNA2 Y2 Mo
@/ ‘_M N i -~ —P /@/
1M1
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Fig. 1. Activation Model, No Extrinsic Noise — M/; tracks the count
of mRNAI, which is produced with a constant rate, and also degrades
with some rate. P tracks the count of the Protein, which is produced
from mRNA1, and also degrades with some rate. The Protein activates the
production of mRNA2, which also degrades with some rate. We track the
count of mRNA2 with the variable Ms.

The stochastic model is described in Table I. The model
consists of six events that occur probabilistically with rates
given in the third column. When the event occurs, the counts
for the variables are updated according to the reset map in
the second column. Descriptions of the parameters, as well as
the values we used in our simulations, are listed in Table II.
With this setup, we can simulate the model using Gillespie’s
stochastic simulation algorithm (SSA) [9].

We model the activation of Ms production by P as the
Hill function kg%, where P is the level of the Protein,
n is the Hill coefficient (which determines how linear or
nonlinear the activation is), ¢ is a constant parameter that
affects the saturation dynamics of the Hill function, and
ko is the maximum production rate. As P increases, the
fractiogl % saturates and approaches 1, so the entire term
ko 5= approaches k.

Part of the analysis in [21] involved calculating the corre-
lation between the mRNA levels under different assumptions
about the relative stability of the mRNA and protein. In our
case, we are interested in the correlation between M; and
M5 under different assumptions about the relative stability
of mRNAI1 and the Protein. The stability of mRNA1 is the
reciprocal of its degradation rate: % The stability of the
Protein, likewise, is: =-. So, the ratio of Protein stability to
mRNAL stability can be expressed as 3—; We refer to this
stability ratio as 7.

A key finding in [21] was that in this model with only
intrinsic noise, correlation between the mRNA levels is quite
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Fig. 2. Plot of the Pearson correlation coefficient between M7 and M> for
different ratios of Protein stability to mRNAT1 stability, which we define in
terms of the degradation rates as X1 Error bars show one standard deviation.

Simulations were run using the parameter values shown in Table II.

TABLE III

CASCADE MODEL WITH EXTRINSIC NOISE
Event Count Update Propensity
Extrinsic Factor production Z = Z+p k.
Extrinsic Factor degradation | Z2 — Z — 1 Y2 Z
mRNA1 production M; — M, +1 kl%
mRNA1 degradation My — My —1 | 1My
Protein production P—-P+1 kyp M1
Protein degradation P—-P—-1 Yp P
mRNA2 production Mo — Mo +1 | ko c"i; =
mRNA?2 degradation Mo — Mo —1 | y2Ma

weak, and gets weaker as the ratio of stability between the
protein and mRNA increases. Figure 2 shows our replication
of this result: the correlation between M; and My is quite
weak, and drops to nearly O as the ratio of stability between
the Protein and mRNA1 increases.

This result seems to give a bleak outlook for the challenge
of network inference. If there is weak or zero correlation
between mRNA abundance for genes that regulate each other,
how can we hope to infer gene regulatory network structure
from transcriptomic data? However, as noted in the previous
section, attempts to benchmark network inference methods
on real data have yielded mixed results. In some cases,
the network inference methods sometimes have performed
reasonably well, and in other cases they have failed to
outperform random guessing. In the next section, we will
modify the model in a way that could explain this mixed-
feasibility of network inference.

IV. CASCADE MODEL WITH EXTRINSIC NOISE

In the previous section, we analyzed a model that included
only intrinsic noise in the processes of transcription and
translation. However, a more realistic model of the biological
system might include extrinsic noise, which could come from
environmental stimuli, changes to the internal cell state, or
regulation from another upstream gene. In this section, we
introduce a new component to the model, which we refer

TABLE IV
CASCADE MODEL PARAMETERS

Parameter | Description Value
k- Extrinsic Factor production rate i
Yz Extrinsic Factor degradation rate 0.1
k1 mRNAI maximum production rate | 4
Y1 mRNA1 degradation rate 2
kp Protein production rate 2
Yp Protein degradation rate %
ko mRNA2 maximum production rate | 4
Y2 mRNA?2 degradation rate 2
n Hill coefficient 3
c Hill function parameter 1

to as the Extrinsic Factor, to represent the extrinsic noise
source. We track the level of the Extrinsic Factor with the
integer-valued random process Z(t). From now on we will
refer to Z(t) as simply Z for the sake of simplicity.

In this model, Gene 1 is transcribed mRNA1 (with counts
tracked by M) which is then translated into the Protein (with
counts tracked by P), which then activates the transcription
of Gene 2 into mRNA2 (with counts tracked by M>).
However, unlike the model in the previous section, in this
model the production mRNAT is activated by the Extrinsic
Factor. We purposely define the Extrinsic Factor in vague
biological terms, so that it can be thought of as an upstream
transcription factor, external stimulus, or any other source of
extrinsic noise affecting the transcription of mRNA1. We
refer to this as the Cascade scenario. A diagram of this
scenario is shown in Figure 3.

This stochastic model is described in Table III. Unlike the
other variables, which update with increases and decreases
of 1, the production of the Extrinsic Factor occurs with a
burst of size 3, which is drawn from a random geometric
distribution with mean /3. With this setup, increasing /3 while
holding the mean of Z constant increases the noise level
of Z. In this section, we will report results for different
mean burst sizes of B, ranging 1 to 20. In all of these cases,
the mean burst size /3 is changed, and the parameter k, is
updated so that the mean of Z over time is held constant.
We model the degradation of the Extrinsic Factor with the
parameter 7,. In this model, the production of mRNALI is
activated by the Extrinsic Factor via a Hill function, with a
maximum production limit of k;. The Hill function parame-
ters ¢ and n are the same for both the activation mRNAI1
transcription and the activation of mRNAZ2 transcription.
Other than these changes, we model the degradation of
mRNAI, the production and degradation of the Protein, and
the production and degradation of mRNA2 the same as in
the previous section.

Figures 4, 5, and 6 show three scenarios in which the mean
of Z is held constant, but the burst size mean B is varied. In
Figure 4, the burst size is only 1, and in this simulation the
correlation between M; and M, is 0.109. In Figure 5, the
mean burst size is 10, and in this simulation the correlation
between M7 and M, is 0.334. In Figure 6, the mean burst
size is 20, and in this simulation the correlation between My
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Fig. 3. Cascade Model with Extrinsic Noise — We introduce an Extrinsic
Factor (tracked by Z) to the model, which we purposely define in abstract
terms so that it can refer to an upstream transcription factor, environmental
stimulus, or something else. The Extrinsic Factor activates the production of
mRNAT1 (tracked by M), which also degrades with some rate. The Protein
(tracked by P) is produced from mRNA1, and also degrades with some rate.
The Protein activates the production of mRNA2 (tracked by M2), which
also degrades with some rate.

Extrinsic Factor Mean Burst Size: 1
Correlation(M,,M;)=0.109

0 100 200 300 400 500
Time

Fig. 4. Simulation using parameter values listed in Table IV, with mean
B8 = 1, meaning that 8 = 1 with no variation. This simulation yielded a
correlation coefficient between M7 and Mo of 0.109.

and M> is 0.469.

Figure 7 shows the general relationship between the mean
burst size B and the correlation between M; and M, and
confirms what we could see visually in Figures 4, 5, and 6:
higher mean burst size £ leads to higher levels of correlation
between M7 and Ms. Figure 8 shows this correlation for both
different mean burst sizes of B and different Protein/mRNA1
stability ratios (7). Here, correlation levels for the Cascade
scenario are compared to the Activation scenario results
from Figure 2. Under conditions of extrinsic noise with high
bursts of Extrinsic Factor production, the level of correlation
between M7 and M, persists more than in the scenario with
no extrinsic noise, although it becomes slightly weaker.

In this section, we purposely defined the Extrinsic Factor
in abstract terms without a definite biological meaning.
However, it is interesting to consider possible biological
implications of these results. Note that as we increase the
burst size of Extrinsic Factor production, the model begins to
resemble a system with distinct transcriptional states, rather

Extrinsic Factor Mean Burst Size: 10
Correlation(M,,M;)=0.334

0 100 200 300 400 500
Time

Fig. 5. Simulation using parameter values listed in Table IV, with Extrinsic
Factor burst size 5 drawn from a geometric distribution with mean 3 = 10.
This simulation yielded a correlation coefficient between M7 and M2 of
0.334.

Extrinsic Factor Mean Burst Size: 20
Correlation(M,,M;)=0.469

o FLM

Time

Fig. 6. Simulation using parameter values listed in Table IV, with Extrinsic
Factor burst size 3 drawn from a geometric distribution with mean 3 = 20.
This simulation yielded a correlation coefficient between M7 and M2 of
0.469.

than stochastic fluctuations around a single steady state, as
in the Activation scenario with only intrinsic noise. For
example, in Figure 6, the system could be thought of as
representing the switching between two expression states (an
ON state and an OFF state in this case). This phenomenon of
transient switching between distinct gene expression states is
thought to play a role in many biological systems, including
drug resistance in cancer [30], [31], so it is interesting to
note that GRN inference from mRNA abundance data may
be more feasible under these conditions than under a single
steady state condition.

V. DISTINGUISHING BETWEEN CASCADE AND
COREGULATION
Another key finding from Mahajan et al. 2022 [21] related
to the difficulty of distinguishing between scenarios in which
one gene regulates another and scenarios in which both genes
are regulated by a common upstream regulator. Both of these
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TABLE V
COREGULATION MODEL
051 Event Count Update Propensity
’ Extrinsic Factor production Z—Z+pB k-
® Extrinsic Factor degradation | Z — Z — 1 Y2 Z
EN 0.4 s ¢ ¢ mRNAI production M; — M; +1 klﬁ
E-—"c ¢ mRNAT1 degradation My — My —1 | y1M;
= ¢ mRNA2 production My — My +1 [ ka2
.g 0-31 ® mRNA?2 degradation My — My —1 | vo Mo
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Fig. 7. Simulations using parameter values listed in Table IV, with 8 drawn N Gene 1 _ - y Gene 2
from geometric distributions with means ranging from 2 to 20 (as shown ’ -7
on the horizontal axis). The stochastic model for the Cascade scenario is V=2 Extrinsiéf - -7
described in Table III. Error bars show one standard deviation. j%} <_Factor
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Fig. 8. Simulations using parameter values listed in Table IV, with 3

drawn from geometric distributions of 1, 5, 10, and 20, and stability ratios
(t) of 0.5, 1, 2, and 4. Error bars show one standard deviation. The
“Activation” bars show correlation levels for the Activation scenario with no
extrinsic noise (shown previously in Figure 2). The bars labeled “Cascadel,”
“Cascade5,” “Cascadel0,” and “Cascade20” show the correlation levels for
tpe Casgade scenario,A with mean Extrinsic Factor burst sizes of § = 1,
B =5, =10, and 8 = 20, respectively.

scenarios can yield a correlation between the mRNA levels,
so there is a possibility of a false positive network inference
error in the latter scenario. In this section, we analyze a
situation in which rather than Gene 1 regulating Gene 2,
instead Gene 1 and Gene 2 are both regulated by the Extrinsic
Factor. We will attempt to distinguish between this scenario
and the previous scenarios in which Gene 1 directly regulated
Gene 2.

In this new model, we continue using the Extrinsic Factor
(tracked by Z) to model extrinsic noise, which can be
thought of as an upstream regulator in this case. However,
instead of the Extrinsic Factor activating Gene 1, which
then activates Gene 2, in this model the Extrinsic Factor
activates both Gene 1 and Gene 2 directly, with no direct

k4

Fig. 9. Coregulation Model — We can think of the Extrinsic Factor (tracked
by Z) as an upstream regulator in this case. The Extrinsic Factor activates
the transcription of mRNA1 (tracked by M7) and mRNA2 (tracked by M>),
both of which also degrade with some rate. In this model, we no longer
track the level of the Protein, because we do not need this information to
model the production of mRNA2.

regulation between Gene 1 and Gene 2. We refer to this
as the Coregulation scenario. A diagram of this scenario is
shown in Figure 9.

The stochastic model is described in Table V. We model
the production and degradation of the Extrinsic Factor the
same as in the last section, with production occurring in
bursts of size 3, drawn from a geometric distribution with
mean B As in the last section, the transcription of both
mRNA1 and mRNA?2 is modeled with Hill functions, and
the Hill function parameters c and n are the same for both.
However, unlike in the previous section, the transcription of
mRNA?2 is now activated by the Extrinsic Factor, not by
the Protein. The Protein is left out of this model since we no
longer need to track its abundance to model the transcription
of mRNA2.

Figure 10 shows the correlation between M; and M> for
different burst sizes in the Coregulation scenario, compared
to the correlation in the Cascade scenario that we simulated
in the previous section. As you can see, it is very difficult to
distinguish between the Cascade scenario and the Coregula-
tion scenario based on only the correlation between the two
mRNA levels.

However, it may be possible to distinguish between these
scenarios based on the noise profiles of M; and Ms. Figure
11 shows the ratio % in both scenarios, for burst
sizes ranging from 2 to 20. C'V here is the coefficient of
variation, or the standard deviation of the sample divided by
the mean of the sample. It appears that we can distinguish
between the scenarios using this noise ratio, even though
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Fig. 10. Simulations using parameter values listed in Table IV, with 3

drawn from geometric distributions with means ranging from 2 to 20 (as
shown on the horizontal axis). The stochastic model for the Cascade scenario
is described in Table III. The stochastic model for the Coregulation scenario
is described in Table V. Blue dots show the correlation between M7 and
My levels for the Cascade scenario, and red dots show the correlation for
the Coregulation scenario. Error bars show one standard deviation.
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Fig. 11.  Simulations using parameter values listed in Table IV, with

B drawn from geometric distributions with means ranging from 2 to 20
(as shown on the horizontal axis). In this case, rather than plotting the
correlation between M7 and Ma, we plot the noise ratio g\‘;EJI\V/IIS where
C'V is the coefficient of variation. Blue dots show the noise ratio for the
Cascade scenario, and red dots show the noise ratio for the Coregulation
scenario. Error bars show one standard deviation.

both scenarios have similar levels of correlation. In the
Coregulation scenario, M; and M, have similar noise, so
their CV ratio is close to 1. However, in the Cascade scenario,
M has lower noise than M, leading to a lower CV ratio.

VI. FURTHER ANALYSIS

In the previous sections, we used stochastic simulations
of different scenarios to study the correlation between M;
and M5 under different noise conditions. While stochastic
simulations are a valuable tool for analysis, it can also
be helpful to have a mathematical framework for analysis
that does not rely on simulations. In this section, we
analyze simplified linear models of the three previously

TABLE VI

LINEAR ACTIVATION MODEL
Event Count Update Propensity
mRNA1 production My — M +1 k1
mRNAI degradation | My — M; —1 | vM;
Protein production P—P+1 kp My
Protein degradation P—-P—-1 vP
mRNA2 production Mo — Mo +1 | koP
mRNA?2 degradation | My — Mg —1 | vM>

described scenarios, and derive formulas for the coefficients
of variation of M; and M5, and the correlation between
M, and M> for each scenario.

Activation We begin with the first scenario in which
Gene 1 regulates Gene 2, with no extrinsic noise. In our
previous model for this scenario, we used a nonlinear Hill
function to describe the activation of Gene 2 by Gene 1.
However, in this section, we will make the simplifying
assumption of a linear regulatory relationship between Gene
1 and Gene 2, in order to make the model more amenable
to mathematical analysis. We also make the simplifying
assumption that mRNAI1, Protein, and mRNA2 all have
the same degradation rate, which we call . After making
these assumptions, the stochastic model for this scenario is
described in Table VI.

Our eventual goal is to derive a formula for the correlation
between M7 and Ms in this model, as well as formulas for
the coefficients of variation for both M; and Ms. In order
to do this, we start by deriving the first and second order
steady state moments for all of the variables. For the rest of
this section, we will use angle brackets to signify expected
value. For example, (M;) will denote the expected value of
M, (also called the first order moment of M), and (M?)
will denote the expected value of M (also called the second
order moment of M7).

With this simplified linear Activation model, we can use
standard moment analysis techniques [10], [12], [33]-[35],
[42] to solve for the first and second order steady state
moments of M; and Ms:

() =2 M
kikok

(M) = % )
k k

(M2) = 1(”; ) 3)

_ k1kak, (4’}/2(2’)/ + kz) + k‘zk‘p(?)’}/ + Skl))

(M) e )
kikak 4k
<M1M2> = 12174(34+1) 5)

The coefficient of variation for a random variable can be
written in terms of its first and second and order moments.
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TABLE VII

LINEAR CASCADE MODEL
Event Count Update Propensity
Extrinsic Factor production Z—7Z+1 k.
Extrinsic Factor degradation | 2 — Z — 1 Y2 Z
mRNA1 production My — M +1 k172
mRNA1 degradation My — My —1 | vM;
Protein production P—-P+1 kyp My
Protein degradation P—-P—-1 ~vP
mRNA?2 production Mo — Mo +1 | koP
mRNA2 degradation Mo — Mo —1 | yMa

For example, the coefficient of variation for M; can be
written as:

(MT) — (My)*
(M)

Since we already have expressions for the first and second
order moments of M, and Ms, we can write the coefficients
of variation for these variables in terms of the model param-
eters:

CV (M) = (6)

CV(My) = %kl (7)

_ \/’ykf1k}2]€p(4’y(2’y + /452) + 3/@‘2]4}[,)
22k ok,

We note that, based on Equation 7, the variation in M;

1 .
1/W. We can also write

the correlation between M; and M5 in terms of the first and
second order moments:

CV(My)

®)

is Poissonian, since CV (M;) =

(M Mz) — (Mq)(Mz)

Cor(My, Ms) := )
VME) — (M1)2\/(M3) — (M2)?
We can write this in terms of the model parameters:
COT(Ml,Mg) = \/Ek@kp
V2\/kikaky (4727 + k2) + Shaky) o

Cascade We use the same approach to derive formulas for
these measures in the Cascade model, in which the Extrinsic
Factor activates Gene 1, which then activates Gene 2. Again,
we make the simplifying assumptions of linear activation
rather than nonlinear activation via a Hill function, and
that the mRNAI1, Protein, and mRNA2 all have the same
degradation rate, which we call 7. Also, we no longer model
Extrinsic Factor production as a burst, so the Z production
count update is now Z — Z + 1, not Z — Z + f.
After making these assumptions, the stochastic model for
the Cascade scenario is shown in Table VII.

We can use the same moment analysis techniques de-
scribed in the previous section to write formulas for the coef-
ficients of variation and correlation in the Cascade scenario.
The coefficient of variation for M; is:

TABLE VIII
LINEAR COREGULATION MODEL
Event Count Update Propensity
Extrinsic Factor production Z—7Z+1 k.
Extrinsic Factor degradation | Z — Z — 1 Y2 Z
mRNA1 production My — M +1 k172
mRNA1 degradation My — My —1 | vM;
mRNA?2 production Mo — Mo +1 | koZ
mRNA?2 degradation Mo — Mo —1 | yMa
Yyzkiks (y+y=+k1)
Ytz
CV (M) = (11
kik,

The coefficient of variation for M5 and the correlation

between M; and My are shown at the top of the next page
because of their large size.
Coregulation Once again, we use the same approach for the
Coregulation scenario, in which the Extrinsic Factor activates
both Gene 1 and Gene 2. We again make the simplifying
assumptions that this is linear activation, rather than acti-
vation via Hill function, and that the mRNA1, Protein, and
mRNA? all have the same degradation rate, which we call ~.
Again, we no longer model Z production as a burst, so the Z
production count update is now Z — Z+1, not Z — Z+f.
After making these assumptions, the stochastic model for the
Coregulation scenario is shown in Table VIIL

We use the same moment analysis techniques as in the
previous sections to write expressions for the coefficients of
variation and correlation for M; and Ms:

Y+=

kik.

CV (M) = (14)

YYzkoks (Y+ys+ka)
Y+vz

kok,

CV(My) = (15)

Cor(My, My) = F1ksk
b ? \/klkz(’)’"’_’}/z +k1)\/k2kz(7+"/z +(]1€é;

Analytical Results For this part of the analysis, we set
the parameters so that (M;) = (Ms), and so that this
mean mRNA level is the same across all three scenarios.
We then vary the mean mRNA level, and observe how the
correlation and coefficients of variation change. In Figure
12, we show that as the mean mRNA level increases, the
correlation between M, and M increases in the Cascade
and Coregulation scenarios, but decreases in the Activation
scenario. In Figure 13, we show that as the mean mRNA
expression level increases, the ratio of M; noise to My noise
holds steady at 1 in the Coregulation scenario, drops only
very slightly before stabilizing in the Cascade scenario, and
drops off quite steeply in the Activation scenario.

These results have some interesting biological implica-
tions. They seem to suggest that the difference in feasibility
of network inference between the Activation and Cascade
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kykokp (87249772 +342)

Yvzki1kokpkz (

CV(Mgy) =

(v+vz

7 +47(2’v+k2)+3k2kp> a

Cor(My, My) =

2V2kykokpkz

kikakphs (k1 (492 4+ 377z +92) + (v +72)3)

—— Activation
—— Cascade
0.81 —— Coregulation
’7\7
g
= 061
=
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Fig. 12. Correlation formula results for all three scenarios. We keep the

mean mRNA abundance levels equal between M7 and M2, and equal across
all three scenarios, and plot the correlation as we vary this mean mRNA
expression level. Activation refers to the regulatory scenario described in
Figure 1. Cascade refers to the regulatory scenario described in Figure 3.
Coregulation refers to the regulatory scenario described in Figure 9.

scenarios is more pronounced in high copy number situations
compared to low copy number situations, and that there is
also more of a false positive threat from Coregulation sce-
nario in high copy number situations. They also suggest that
the differences in noise profiles between the direct regulation
scenarios (Activation and Cascade) and the Coregulation
scenario persist in high copy number situations.

VII. DISCUSSION

In this paper, we have analyzed the feasibility of network
inference under different noise conditions through stochastic
simulations, considering both intrinsic and extrinsic noise.
We began by replicating a key result from Mahajan et al.
2022 [21] which suggests that under conditions of only
intrinsic noise, the correlation between mRNA abundance
levels for two genes in an activation relationship is quite
weak, and gets weaker as the ratio of protein stability to
mRNA stability increases. Under these conditions of only
intrinsic noise, network inference from transcriptomic data
would be very difficult.

Next, we investigated a scenario in which an extrinsic
noise source activates the expression of a gene, which
then activates the expression of another gene. Under these
conditions, we found that the correlation between mRNA
abundance levels for the two genes gets stronger as the
extrinsic noise begins to resemble a state variable. We also

V2(v + v2)VEikz (v F vz F kl)\/klekpkz (kzkp (kl (8'y2 + 9z +37§) +3(y +’Yz)3) +4v(y + 72)3 2y + kg))

(13)

1.0

0.91

0.8 1

0.71

M, and M, CV Ratio

— Activation
—— Cascade
0.34 — Coregulation

T

2.5 5.0 75 100 125 150 175 200
Mean of M; and M,

Fig. 13. We keep the mean mRNA abundance levels equal between M7 and

. . . CV(My)
Mo, and equal across all three scenarios, and plot the noise ratio TV (M)

as we vary this mean mRNA expression level. Activation refers to the
regulatory scenario described in Figure 1. Cascade refers to the regulatory
scenario described in Figure 3. Coregulation refers to the regulatory scenario
described in Figure 9.

found that the correlation persists (although it becomes
weaker) even as the ratio of protein stability to mRNA
stability increases. A biological takeaway from this result
is that if a cell has distinct transient expression states,
resulting from external factors or internal regulatory network
dynamics, then under those conditions the task of network
inference from transcriptomic data seems more tractable
than under conditions of intrinsic noise only. This result is
notable because transient state-switching between different
gene expression states is thought to play a role in various
biological phenomena, including drug resistance in cancer
[30], [31].

We then considered a scenario in which two genes are
coregulated by a common upstream gene. Under these con-
ditions, we still observe a correlation between the mRNA
abundance levels of the two genes, potentially leading to a
false positive error in the task of network inference. However,
simulation results suggest that even though this scenario
yields similar levels of correlation to the Cascade scenario,
we may be able to distinguish between the two scenarios
using the noise profiles of the mRNA levels.

Finally, we provided a mathematical framework for further
analysis of simplified linear models of each of the noise
scenarios. We used moment analysis techniques to derive
expressions for the coefficients of variation of the mRNA
levels, as well as the correlation between them, and explored
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how these measures change with changes in mean mRNA
levels. This allows us to make predictions about the differ-
ence between the feasibility of network inference in low copy
number and high copy number situations, for each of the
three noise scenarios.

Future work will include further theoretical analysis of
these models. Additionally, goals for future work include
testing the predictions made in this paper on real biological
datasets, using data from single cell RNA-seq experiments, as
well as further benchmarking of network inference methods
on data model organisms and synthetic gene regulatory
circuits.
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