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Abstract 1 

Visual working memory is critical for goal-directed behaviour as it maintains continuity 2 

between previous and current visual input. Functional neuroimaging studies have shown that 3 

visual working memory relies on communication between distributed brain regions, which 4 

implies an important role for long-range white matter connections in visual working memory 5 

performance. Here, we characterised the relationship between the microstructure of white 6 

matter association tracts and the precision of visual working memory representations. To that 7 

purpose, we devised a delayed estimation task which required participants to reproduce visual 8 

features along a continuous scale. A sample of 80 healthy adults performed the task and 9 

underwent diffusion-weighted MRI. We applied mixture distribution modelling to quantify the 10 

precision of working memory representations and guess rates, both of which contribute to 11 

observed responses. Latent components of tract-specific microstructural indices were identified 12 

by principal component analysis. Higher working memory precision was associated with lower 13 

bulk diffusion across ten tracts of interest and higher directionality of diffusion in a group of 14 

frontoparietal-occipital tracts. Importantly, there was no association between guess rates and 15 

any of the structural components. Our findings suggest that microstructural properties of white 16 

matter tracts connecting posterior and frontal brain regions mediate, in a functionally specific 17 

manner, the precision of visual working memory. 18 

Keywords: visual working memory, delayed estimation task, mixture distribution modelling, 19 

white matter microstructure, principal component analysis, brain-behaviour associations.  20 
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1. Introduction 1 

Visual working memory involves active maintenance and manipulation of visual 2 

information over a short period of time. It supports a range of cognitive functions and 3 

contributes to goal-directed behaviour (Awh & Jonides, 2001; de Fockert et al., 2001; 4 

Gathercole et al., 2004; Henderson et al., 2014). Functional magnetic resonance imaging 5 

(fMRI) and positron emission tomography (PET) studies have shown that visual working 6 

memory relies on a widespread network of brain regions including the lateral prefrontal 7 

cortex, anterior insula, posterior parietal cortex, inferior temporal cortex, and early visual 8 

cortex (Daniel et al., 2016; Owen et al., 2005; Rottschy et al., 2012; Wager & Smith, 2003). 9 

Recent studies using network-based approaches have shown increased global efficiency and 10 

decreased modularity of functional networks during working memory compared with rest, 11 

potentially supporting coordinated neural activity (Dagenbach, 2019). The idea that visual 12 

working memory relies on communication across a large-scale network implies a critical role 13 

for long-range white matter connections that support information transmission in the brain 14 

(Düzel et al., 2010; Pajevic et al., 2014). Here, we characterised the relationship between 15 

white matter microstructure and visual working memory performance in a large sample of 16 

neurotypical adult humans. 17 

Previous studies have related visual working memory performance to white matter 18 

microstructure in several long-range association tracts (Lazar, 2017). In particular, the 19 

superior longitudinal fasciculus (SLF), a major pathway that connects the parietal and frontal 20 

lobes (Makris et al., 2005), has been related to visual working memory performance (Darki & 21 

Klingberg, 2015; Vestergaard et al., 2011). The SLF can be further divided into dorsal (SLF 22 

I), middle (SLF II), and ventral components (SLF III), with different patterns of connectivity 23 

to other brain regions and, arguably, distinct functional specialization (Makris et al., 2005; 24 

Parlatini et al., 2017; Thiebaut de Schotten et al., 2011). Further, the inferior frontal-occipital 25 

fasciculus (IFOF), a tract that mediates direct communication between occipital and frontal 26 

lobes (Forkel et al., 2014), has also been associated with visual working memory (Krogsrud 27 

et al., 2018; Peters et al., 2014; Walsh et al., 2011). Finally, the inferior longitudinal 28 

fasciculus (ILF), a temporal-occipital tract that runs more superficially and ventrally than the 29 

IFOF (Herbet et al., 2018), also plays a role in modulating visual working memory function, 30 

based on evidence from healthy children and case studies of focal lesions (Krogsrud et al., 31 

2018; Shinoura et al., 2007). In the current study, we focused on the relationship between 32 
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visual working memory performance and five critical tracts-of-interest (TOIs): the SLF I, 1 

SLF II, SLF III, IFOF and ILF.  2 

Conceptually, participant responses in visual working memory tasks can reflect a true 3 

but noisy memory representations of target items or random guesses originating from 4 

attentional lapses, poor task compliance or other factors. Unfortunately, previous 5 

investigations that aimed to relate visual working memory performance to white matter 6 

microstructure did not distinguish these sources of behavioural variability (Darki & 7 

Klingberg, 2015; Krogsrud et al., 2018; Nagy et al., 2004; Peters et al., 2014; Vestergaard et 8 

al., 2011; Walsh et al., 2011). The overarching goal of the current study was to use 9 

computational modelling of behaviour to independently characterise contributions of white 10 

matter microstructure to these theoretically distinct components of visual working memory 11 

performance. 12 

To evaluate visual working memory performance, we developed a novel version of 13 

the delayed estimation paradigm (Emrich et al., 2013; Gorgoraptis et al., 2011; Taylor & 14 

Bays, 2020), which required participants to encode three visual gratings that varied in both 15 

their spatial location and orientation. After a short delay period, participants reproduced, on a 16 

continuous scale, either the location or orientation of only one of the gratings, as indicated by 17 

a probe which appeared after the memory maintenance period. The different features to be 18 

retrieved (location and orientation) were included to test the extent to which brain-behaviour 19 

associations are similar across the spatial and non-spatial domains of visual working memory. 20 

Having participants respond on a continuous scale allowed us to calculate error magnitudes 21 

that could be modelled using mixture distribution modelling to independently estimate the 22 

precision of “true” working memory responses and the proportion of responses arising from 23 

random guessing (Bays et al., 2009; Zhang & Luck, 2008). To decrease dimensionality of the 24 

white matter microstructural data, we used a two-step principal component analysis (PCA) to 25 

estimate latent components over different measures and different tracts. If the microstructure 26 

of long-range white matter tracts selectively affects the precision of visual working memory 27 

representations, then the structural components should correlate exclusively with response 28 

precision but not with random guess rates. Additionally, if the brain-behaviour relationships 29 

are common for different features in visual working memory, there should be no difference 30 

between the location and orientation tasks for any of the observed associations. 31 

2. Methods 32 
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2.1. Participants 1 

Eighty-seven healthy adult volunteers were recruited from The University of 2 

Queensland through an online volunteer system. Seven participants were excluded from 3 

subsequent analyses due to data corruption (n = 4) or incomplete MRI data (n = 3). The final 4 

sample included 80 participants aged from 18 to 38 years (M = 24.24, SD = 4.61; 39 5 

females). All participants completed safety screening questionnaires and provided written 6 

informed consent before the experimental sessions. Participants were reimbursed at a rate of 7 

$20 per hour. The study was approved by the Human Research Ethics Committee of The 8 

University of Queensland.  9 

2.2. Experiment 10 

2.2.1. Apparatus 11 

Stimuli were displayed on an LCD monitor (VG248QE) with a resolution of 12 

1920×1080 pixels and a refresh rate of 60 Hz. Participants were seated approximately 60 cm 13 

from the monitor in a dimly illuminated room, with their head position maintained with a 14 

chinrest. The experiment was implemented under MATLAB R2018a (MathWorks, Natick, 15 

MA) using Psychtoolbox (Brainard, 1997; Pelli, 1997). Eye position was recorded using a 16 

desk-mounted eye-tracking system sampled at 120 Hz (iView RED-m infrared eye tracker, 17 

SensoMotoric Instruments, Teltow, Germany). The eye-tracker was calibrated and validated 18 

before each experimental block using a five-point calibration grid. The experiment was 19 

performed concurrently with electroencephalography (EEG) recording but the EEG data are 20 

not reported in this manuscript. 21 

2.2.2. Visual Working Memory Experiment 22 

The location and orientation versions of the visual working memory tasks were 23 

presented in separate blocks in random order for each participant (Fig. 1). In each trial, 24 

participants were first presented with a black central cross (size: 1.32 degrees in visual angle 25 

[dva]; RGB: 0, 0, 0; line thickness: 0.13 dva) and a black arrow (RGB: 0, 0, 0; width: 2.64 26 

dva; height: 0.66 dva) located 2.64 dva above the fixation for 300 ms, reminding the 27 

participants to encode only items on the left or right side of the screen. The “Cue” display 28 

was followed by the “Encoding” display presented for 400 ms and comprising six oriented 29 

gratings (radius: 2.64 dva). The gratings were randomly arranged on an invisible circle 30 

(radius: 10.55 dva) with respect to their centre. Any two adjacent gratings were separated by 31 
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at least 20° and maximally 90° centre-to-centre offset and no grating was presented within 1 

±15° range from the vertical midline. The grating orientations were randomly sampled over a 2 

0°-179° range in increments of 2°. Following the encoding display, the “Maintenance” 3 

display appeared for 900 ms, comprising only the central fixation. Next, depending on the 4 

task, a “Probe” display showing either the location or orientation of one of the memorized 5 

gratings on the cued side was presented for 700 ms. Participants were instructed to maintain 6 

fixation until the “Response” display. If an eye movement or blink was detected, a trial was 7 

discarded and replayed at the end of the block. 8 

 9 

Figure 1. Schematic Illustration of the Location and Orientation Tasks. At the start of each 10 
block, an instruction message appeared to indicate the subsequent task. At the beginning of 11 
each run, a message appeared on a black background to remind participants to encode items 12 
presented on either the left side or right side. In each trial, six gratings were presented during 13 
the encoding period. After a 900 ms delay period, participants provided a response based on 14 
the probe information. 15 

For the location task, one of the memorized gratings on the cued side was presented in 16 

the centre of the probe display. This probe item displayed the orientation of one of the three 17 

presented gratings on the cued side, independently of its location. Simultaneously with probe 18 

disappearance, a white response circle appeared in the “Response” display in the middle of 19 

the screen (radius: 10.55 dva; RGB: 255, 255, 255; line thickness: 0.13 dva). Participants 20 

reported the location of the target grating on the response circle using a computer mouse. At 21 

the beginning of the response display, the mouse cursor was set to the centre of the screen. 22 

Immediately after participants moved the cursor, a smaller black circle (radius: 2.64 dva; 23 

RGB: 0, 0, 0) was revealed with a red dot (radius: 0.66 dva; RGB: 255, 0, 0) placed at its 24 

centre. While moving the mouse, both circle and red dot were locked to the cursor movement 25 

to allow participants to adjust their response. A maximum of 3500 ms was set for the 26 
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response period. Once a response was made, or at the end of the response period, a green 1 

feedback circle (radius: 2.64 dva; RGB: 0, 255, 0) representing the correct location of the 2 

probed item was shown for 1000 ms.  3 

For the orientation task, a black circle outline (radius: 2.64 dva; RGB: 0, 0, 0) 4 

corresponding to the exact location of one of the three gratings on the cued side was 5 

presented in the probe display. This probe item displayed the spatial location of one of the 6 

three presented gratings on the cued side, independently of its orientation. Simultaneously 7 

with probe disappearance, a white response circle appeared in the “Response” display in the 8 

middle of the screen (radius: 2.64 dva; RGB: 255, 255, 255; line thickness: 0.13 dva). 9 

Participants reported the orientation of the target grating using the mouse. Similar to the 10 

location task, the mouse cursor was set to the centre of the screen. As soon as participants 11 

started moving the cursor, a yellow line (RGB: 255, 255, 0; line thickness: 0.13 dva) inside 12 

the response circle was revealed and locked to the cursor movement. This helped the 13 

participants to adjust their response within a maximum response period of 3500 ms. 14 

Immediately following the response, or at the end of the response period, a green feedback 15 

line (RGB: 0, 255, 0; line thickness: 0.13 dva) representing the correct orientation was shown 16 

for 1000 ms. 17 

Prior to the main experiment, all participants completed one practice block for each 18 

task with four trials per cued side (2 tasks × 2 cues × 4 trials = 16 trials). The main 19 

experiment consisted of four randomized blocks so that each of the tasks was presented 20 

twice. Each block contained two runs in which participants were cued to encode items on the 21 

left side of the screen, and two runs in which participants were cued to encode items on the 22 

right side, and these alternated with each other. The runs were counterbalanced across 23 

participants, with some participants always starting with right-side cues, and others with left-24 

side cues. Each block comprised 120 trials, with 30 trials per run. A total of 480 trials were 25 

collected from each participant.  26 

2.3. Behavioural Analysis 27 

To examine the quality of behavioural data, response error magnitude in each trial 28 

was computed as the angular difference between the participant’s response and the 29 

objectively correct location or orientation of the cued item. The error magnitude for the 30 

orientation task ranged between 0° and ±90°. In the location task, by contrast, the error 31 

magnitude ranged between 0° and ±180°, with errors larger than ±90° indicating that 32 
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participants selected a location in the uncued hemifield. Initial data inspection indicated that 1 

participants never made such “hemifield-swap” errors, so subsequent analyses considered 2 

location in the same manner as orientation, with error magnitudes ranging between 0° and 3 

±90°. For both tasks, the error magnitudes were transformed from degrees to pi radians (prad) 4 

with 0° and ±90° mapped to 0 prad and ±1 prad, respectively. The error distribution for each 5 

participant was then compared against a uniform distribution using the Kolmogorov-Smirnov 6 

test (Massey, 1951). A uniform distribution is expected if a participant guesses in a majority 7 

of experimental trials. Based on this criterion, eight participants were excluded from further 8 

analyses, leaving a total of 72 participants (36 females; 18-38 years; M = 24.31, SD = 4.77) 9 

for the following analyses. 10 

To quantify performance on the task, a probabilistic model introduced by Bays et al. 11 

(2009) was applied to trials where participants made a response. This model attributes 12 

response error to a mixture of three components: (a) the von Mises distribution for the target 13 

orientation/location, (b) the von Mises distribution for the non-target orientations/locations, 14 

and (c) a uniform distribution for random guesses. Technical details of this model have been 15 

described elsewhere (Bays et al., 2009). In brief, the model is defined as the probability of 16 

reporting the target item (PT), the probability of reporting the non-target items (PNT), the 17 

probability of random guessing (PG), and the concentration parameter 𝜅 of the von Mises 18 

distribution that described the variability around the target value. The non-target items in both 19 

the location and orientation tasks were defined as the two unprobed items presented on the 20 

cued side. The maximum likelihood estimates of the parameters were obtained separately for 21 

each participant in each task and cued side using an expectation-maximization algorithm. The 22 

fitted von Mises 𝜅 was converted to circular standard deviation (svM) as defined by Fisher 23 

(1995), giving a measure of response precision which reflects the precision of representations 24 

stored in visual working memory (Bays, Gorgoraptis, et al., 2011; Bays, Wu, et al., 2011; 25 

Pratte et al., 2017). PG measures the random guess rates which reflect the proportion of 26 

responses originating from task-irrelevant factors. 27 

A preliminary repeated-measures ANOVA on response precision, with task (location, 28 

orientation) and cued side (left, right) as the within-subject variables, showed no significant 29 

main effect of cued side and no significant interaction between task and cued side (all ps >> 30 

0.05). Therefore, the mixture model was refitted to error distributions with trials aggregated 31 

across cued sides. Paired-samples t-tests were then performed to compare svM and PG 32 
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between the location and orientation tasks. The task effect on PNT, or so-called “swap errors” 1 

describing a feature binding anomaly in working memory where a non-target feature is 2 

“swapped in” for the target feature (Bays, 2016; Schneegans & Bays, 2017) was also 3 

investigated. The mixture distribution modelling was performed in MATLAB R2020a using 4 

the Analogue Report Toolbox (Bays et al., 2009; Schneegans & Bays, 2016). All statistical 5 

analyses were carried out using R v4.1.0 (R Core Team, 2021). 6 

2.4. Neuroimaging Analysis 7 

2.4.1. Image Acquisition 8 

Participants underwent MRI scans using a Siemens Magnetom Prisma 3T system at 9 

the Centre for Advanced Imaging at The University of Queensland. T1-weighted structural 10 

scans were obtained with a magnetisation-prepared two rapid acquisition gradient echo 11 

(MP2RAGE) sequence (Marques et al., 2010), with 240 mm field-of-view (FoV), 176 slices, 12 

0.9 mm isotropic resolution, TR = 4000 ms, TE = 2.92 ms, TI 1 = 700 ms, TI 2 = 2220 ms, 13 

first flip angle = 6°, second flip angle = 7°, and 5-6 minutes of acquisition time. Diffusion-14 

weighted image (DWI) series were acquired using an echo-planar imaging (EPI) sequence 15 

with FoV of 244 mm, 70 slices, 2 mm isotropic resolution, TR = 4100 ms, TE = 84 ms, in 16 

106 diffusion-sensitization directions. Diffusion weightings of b = 0, 200, 500, 1000, and 17 

3000 s/mm2 were applied in 10, 6, 10, 20, and 60 directions, respectively. In addition, 11 b = 18 

0 s/mm2 images were acquired with reverse phase encoding. The DWI sequence lasted 19 

approximately 7-8 minutes. 20 

2.4.2. Image Pre-processing 21 

Image pre-processing was conducted using tools in MRtrix3 (v3.0_RC3; Tournier et 22 

al., 2019) and FSL (v6.0.4 FMRIB Software Library; Smith et al., 2004). DWI were denoised 23 

and corrected for susceptibility induced field, subject movement, eddy-current induced 24 

distortions, and signal intensity inhomogeneities (Andersson & Sotiropoulos, 2016; Cordero-25 

Grande et al., 2019; Veraart et al., 2016; Zhang et al., 2001). A binary whole-brain mask was 26 

generated from the pre-processed DWI using the Brain Extraction Tool (BET; Smith, 2002). 27 

T1-weighted images were brain extracted with the HD-BET algorithm, a new tool that has 28 

been validated on several large datasets and multiple MR sequences (Isensee & Hucho, 29 

2019). Compared with similar tools, HD-BET provided a better automated extraction of our 30 

T1 images. Manual editing of the extracted brain mask was applied when necessary. Finally, 31 
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the DWI were registered to the MNI 152 standard space with the B0-to-T1 and T1-to-standard 1 

transforms (Jenkinson et al., 2002). 2 

2.4.3. Probabilistic Tractography 3 

The SLF I, SLF II, SLF III, IFOF, and ILF in both hemispheres were reconstructed 4 

according to a standardised protocol using probabilistic tractography as implemented in the 5 

XTRACT toolbox in FSL (Fig. 2; de Groot et al., 2013; Warrington et al., 2020). To guide 6 

tractography, a ball-and-stick, crossing-fibre model was applied to the pre-processed DWI to 7 

estimate multiple fibre orientations in each voxel (Behrens et al., 2007; Jbabdi et al., 2012). 8 

Model parameters were estimated using a Bayesian Monte Carlo sampling technique. 9 

Probabilistic fibre tracking was then achieved by drawing sample streamlines from a seed 10 

along a diffusion orientation sampled from the posterior distribution at each voxel. A large 11 

number of samples built up a fibre probability distribution that reflected the number of 12 

streamlines connecting any single voxel to the seed masks (Behrens et al., 2007; Behrens et 13 

al., 2003). All parameters that constrained streamline propagation were set as default: 14 

curvature threshold = ±80°, maximum streamline steps = 2000, step size = 0.5 mm 15 

(Warrington et al., 2020). To minimize the impact of partial volume contamination, diffusion 16 

tensor images corrected for cerebrospinal fluid (CSF) were obtained with a bi-tensor model 17 

as described in Pasternak et al. (2009). The resultant CSF-corrected images were used to 18 

generate diffusion tensor maps, from which the estimated mean of fractional anisotropy 19 

(FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were 20 

extracted for all TOIs.  21 

 22 

Figure 2. Probabilistic Tractography of Five Tracts of Interest in Both Hemispheres. 23 
Normalised streamline density maps from a representative participant were converted to 3D 24 
meshes for the purpose of visualization. Abbreviations: SLF, superior longitudinal fasciculus; 25 
IFOF, inferior frontal-occipital fasciculus; ILF, inferior longitudinal fasciculus. 26 

2.4.4. Principal Component Analysis on Tractography Data 27 
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The tract-specific microstructural measures derived from each participant yielded a 1 

total of 40 variables (4 diffusion tensor measures ´ 5 tracts ´ 2 hemispheres). To decrease 2 

dimensionality of the microstructure data, PCA was applied to the tractography dataset. To 3 

identify principal components (PCs) that reflected features in both the measure and tract 4 

spaces, PCA was performed in a two-step fashion (Fig. 3). The first PCA was performed on 5 

the concatenated data with participants and white matter tracts as observations (rows) and the 6 

four diffusion tensor metrics as features (columns). The second PCA was performed on each 7 

of the PCs extracted from the first PCA with the ten white matter tracts as features and 8 

participants as observations. Two statistical tests were performed before each PCA to 9 

determine whether the data were suitable for structure detection. The Kaiser-Meyer-Olkin 10 

(KMO) Statistic measures the proportion of variance that might be caused by underlying 11 

factors. High KMO values generally suggest the suitability of applying PCA (Kaiser & Rice, 12 

1974). A KMO value lower than 0.5 is considered to render PCA inappropriate (Dziuban & 13 

Shirkey, 1974). Bartlett’s Test of Sphericity determines whether variables in a dataset are 14 

correlated; if all variables were unrelated, a PCA would be inappropriate (Bartlett, 1951). The 15 

above analyses were conducted using the ‘REdaS’ package (Maier, 2015). To obtain PCA 16 

scores and loadings, singular value decomposition was applied to the mean-centred, z-17 

transformed data matrix using the ‘mdatools’ package (Kucheryayskiy, 2020). PCs with 18 

eigenvalue > 1 were retained (Cattell, 1966). Individual variables were considered to 19 

contribute substantially to a PC if they explained more variance than that would be equally 20 

explained by each variable (PC loading > 1/number of variables).  21 

 22 
Figure 3. Schematic Illustration of Two-step Principal Component Analysis (PCA). The 23 
measure space PCA aimed to capture covariations across different diffusion metrics with 24 
participant and tract data as observations. Scores of the extracted components were then re-25 
structured for the tract space PCA which captured covariations across white matter tracts.  26 

2.5. Statistical Analysis 27 
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To examine brain-behaviour relationships, linear mixed effects models were used to 1 

separately regress response precision (svM) and random guess rates (PG) on the identified PCs 2 

using R packages ‘lme4’ (Bates et al., 2015) and ‘lmerTest’ (Kuznetsova et al., 2017). The 3 

white matter underpinning of swap errors (PNT) was also investigated. To find the most 4 

parsimonious model that provided the best fit to the data, we adopted a step-up model 5 

building approach. This procedure starts with the construction of a base model, followed by 6 

the stepwise addition of predictor variables. Every new model is evaluated against a simpler 7 

model via the likelihood ratio test (LRT). In the present study, we tested fixed main effects of 8 

task (location vs. orientation) and all extracted PCs characterising white matter connectivity 9 

as well as their interactions. In the case of significant interactions, the corresponding main 10 

effect terms were also retained, even if the main effects were not statistically significant. 11 

Significant interactions were followed up using simple slope analysis as implemented in the 12 

‘reghelper’ package (Hughes, 2021). Significance level was set at p < 0.05; p-values for fixed 13 

effects were calculated using Satterthwaite approximations. 14 

3. Results 15 

3.1. Behavioural Results 16 

Distributions of error magnitudes were unimodal and centred on zero for both tasks 17 

(Fig. 4), indicating that participants were successful in reporting features of the target item. 18 

On average across participants, the estimated response precision was higher for the location 19 

task than for the orientation task (svM = 0.40/0.01 [M/SEM] vs. 0.74/0.03, t(71) = -10.40, p < 20 

0.001). The estimated random guess rates were lower for the location task than the orientation 21 

task (PG = 0.02/ 0.01 vs. 0.36/0.03, t(71) = 13.20, p < 0.001). Finally, the estimated swap 22 

errors were higher for the location task than the orientation task (PNT = 0.34/0.01 vs. 23 

0.03/0.01, t(71) = -28.10, p < 0.001). 24 
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 1 
Figure 4. Distributions of Response Errors in Visual Working Memory Tasks. Results of the 2 
a) location task and b) orientation task are shown. Proportion of trials within each bin is 3 
averaged across participants. Error bars in each bin denote standard errors of the mean.  4 

3.2. Principal Component Analysis on Tractography Data 5 

The PCA over diffusion tensor measures identified two PCs that collectively 6 

accounted for 99.73% of the variance (KMO: 0.50; Bartlett’s Test: c2 = 8389.99, p < 0.001). 7 

The first component (PC1) explained 74.5% of the variance, with FA and AD loading 8 

negatively and RD loading positively (Table S1). As higher scores on PC1 reflect a lower 9 

extent of anisotropic diffusion (Basser, 1995; Beaulieu, 2002), PC1 therefore represents 10 

decreases in directionality. The loading profile of PC1 was replicated by a complementary 11 

PCA on the three eigenvalues of the diffusion tensor (see Supplementary Results). The 12 

second PC (PC2) explained 25.2% of the variance, with MD loading negatively (Table S1). 13 

PC2 was therefore considered to represent the bulk mean magnitude of the diffusion process 14 

(labelled as “bulk diffusion”). To facilitate subsequent analysis, scores of PC2 were multiplied 15 

by −1 to represent increases in bulk diffusion. In brief, the measure-space PCA yielded a 16 

two-component solution, each of which represents a distinct aspect of the diffusion process. 17 

Participant scores for each of the extracted PCs from the measure-space PCA were 18 

next submitted to the tract-space PCA to capture covariance across TOIs. For directionality, 19 

the tract-space PCA extracted three orthogonal PCs (eigenvalues > 1) which collectively 20 

explained 63.1% of the variance (KMO: 0.69; Bartlett’s Test: c2 = 219.17, p < 0.001), and 21 

loaded onto three distinct groups of tracts (Fig. 5; Table S1). For bulk diffusion, the tract-22 

space PCA yielded a clear single component that explained 71.5% of the variance (KMO: 23 

0.92; Bartlett’s Test: c2 = 726.50, p < 0.001), with all TOIs loading equally and positively on 24 
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the extracted component (Fig. 5; Table S1). To summarize, four structural components, 1 

namely PCDIR,1, PCDIR,2, PCDIR,3, and PCBULK, were extracted from the tractography data. 2 

 3 
Figure 5. Loading Profile of the Four Extracted Components. Percentages on the left denote 4 
the proportion of variance in the whole tractography dataset explained by each principal 5 
component. Abbreviations: SLF, superior longitudinal fasciculus; IFOF, inferior frontal-6 
occipital fasciculus; ILF, inferior longitudinal fasciculus. 7 

3.3. Associations between Structural Components and Behavioural Performance  8 

The model comparison and selection processes for all dependent variables are 9 

summarized in Tables S2-S4. The best-fitting model of response precision showed that 10 

PCBULK correlated positively with svM indicating that higher bulk diffusion across all TOIs 11 

was associated with lower response precision (Fig. 6a; Table 1). No significant interaction 12 

between task and PCBULK was found, suggesting that the relationship between svM and 13 

PCBULK was similarly strong across the location and orientation tasks. In addition, there was a 14 

statistically significant interaction between PCDIR,1 and PCDIR,3 (Fig. 6b; Table 1). This 15 

interaction was followed up by using the simple slope analysis with PCDIR,1 as the main 16 

predictor and PCDIR,3 as a moderator variable. The analysis showed that lower scores in 17 

PCDIR,1 were related to lower svM across tasks when PCDIR,3 scores were high (p = 0.003). 18 

When scores of PCDIR,3 were low, however, there was no statistically significant association 19 

between PCDIR,1 and svM (p = 0.300). A post hoc model that included a three-way interaction 20 

between PCDIR,1, PCDIR,3, and task did not significantly improve the model fit, suggesting that 21 

the interaction between PCDIR,1 and PCDIR,3 did not differ between the location and orientation 22 

tasks (Tables S5-S6). 23 
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 1 
Figure 6. Brain-behaviour Associations Revealed by Linear Mixed Models. In the best-2 
fitting model of response precision, a) significant effects of PCBULK and b) significant 3 
interaction between PCDIR,1 and PCDIR,3 were found. Note that higher values in svM represent 4 
lower response precision. Higher values in PCDIR,1 and PCDIR,3 relate to lower extent of 5 
diffusion directionality. In the best-fitting model of swap errors, c) significant interaction 6 
between PCDIR,1 and PCDIR,3 was found. Asterisks in plots b) and c) denote significant simple 7 
effects. 8 

Table 1. The Best-fitting Model of Response Precision. 9 
Fixed Effects Estimate SE t 95% CI p 
Intercept (Orientation) -0.74 0.02 30.49 [0.69, 0.78] < 0.001 
Task (Location) -0.34 0.03 -10.41 [-0.41, -0.28] < 0.001 
PCBULK 0.02 0.01 2.25 [0.00, 0.03] 0.028 
PCDIR,1 0.02 0.01 1.50 [0.00, 0.03] 0.138 
PCDIR,3 0.02 0.02 1.30 [-0.01, 0.05] 0.200 
PCDIR,1 × PCDIR,3 0.03 0.01 3.02 [0.01, 0.04] 0.004 

 10 
The best-fitting model of random guess rates, by contrast, did not show any 11 

significant effect of the structural components (all ps >> 0.05), suggesting that the brain-12 

behaviour associations we observed are functionally specific to the precision of visual 13 

working memory independently of random guessing. 14 
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The best-fitting model of swap errors revealed a statistically significant interaction 1 

between PCDIR,1 and PCDIR,3 (Fig. 6c; Table 2). The interaction was followed up in the same 2 

way as in the model of response precision to investigate the relationship between PCDIR,1 and 3 

swap errors at high and low levels of PCDIR,3. The analysis showed that lower scores in 4 

PCDIR,1 were related to lower probability of swap errors when scores of PCDIR,3 were higher (p 5 

= 0.011). When scores of PCDIR,3 were lower, there was no association between PCDIR,1 and 6 

swap errors (p = 0.440). A post hoc model that included a three-way interaction between 7 

PCDIR,1, PCDIR,3, and task did not significantly improve the model fit (Tables S7-S8).  8 

Table 2. The Best-fitting Model of Swap Errors. 9 
Fixed Effects Estimate SE t 95% CI p 
Intercept (Orientation) 0.03 0.01 3.31 [0.01, 0.05] 0.001 
Task (Location) 0.31 0.01 28.06 [0.29, 0.33] < 0.001 
PCDIR,1 0.01 < 0.01 1.42 [0.00, 0.01] 0.162 
PCDIR,3 0.01 0.01 1.77 [0.00, 0.02] 0.082 
PCDIR,1 × PCDIR,3 0.01 < 0.01 2.44 [0.00, 0.01] 0.018 

 10 

4. Discussion 11 

The principal aim of the current study was to characterise the relationship between 12 

distinct aspects of visual working memory performance and the microstructure of major 13 

white matter tracts in the healthy adult brain. We found that components of tract-specific 14 

microstructural properties were associated with the precision of visual working memory but 15 

not with occasional random guesses made by participants during the tasks. Higher response 16 

precision was associated with lower bulk diffusion shared across all reconstructed tracts. 17 

Higher response precision, as well as lower swap errors, were associated with higher 18 

directionality in a set of bilateral frontoparietal-occipital tracts in individuals with decreased 19 

directionality in particular right frontoparietal tracts. 20 

In the best-fitting model of response precision, we found that lower scores on PCBULK, 21 

most likely reflecting lower bulk diffusion across white matter tracts, were associated with 22 

higher precision in both the location and orientation tasks. It is noteworthy that the models of 23 

swap errors and random guess rates, by contrast, showed no effect of PCBULK, suggesting that 24 

the general bulk diffusion of white matter tracts specifically mediates the precision of visual 25 

working memory and not task-irrelevant factors such as attention lapses. A previous study in 26 

children has shown that higher capacity in visual working memory task was associated with 27 

decreased MD in the IFOF and ILF (Krogsrud et al., 2018). A recent study in older adults 28 
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identified a negative association between global MD of whole-brain white matter and the 1 

sensitivity index in visual working memory task (Conley et al., 2020). Our findings go 2 

beyond this work by showing a specific relationship between general bulk diffusion and 3 

precision of memory representations rather than merely the overall capacity or accuracy of 4 

working memory. This finding also suggests that the precision of working memory 5 

representations may rely on a general, trait-like property of white matter tracts that is 6 

reflected by individual differences in bulk diffusion. Axon density, for example, is one 7 

possible candidate. This property, being negatively related to MD, determines how much 8 

information can be carried by the white matter tract (Alexander et al., 2007; Alexander et al., 9 

2019; Beaulieu, 2002). Increases in axon density in young adulthood across all major 10 

pathways and global white matter are much slower than those in childhood and adolescence 11 

(Chang et al., 2015). Axon density may therefore serve as a relatively static, trait-like 12 

property in our sample by imposing resource limitations on visual working memory. In this 13 

case, our findings suggest that people with higher axonal density have more precise responses 14 

when reproducing features from visual working memory. It should be noted, however, that 15 

the measure of bulk diffusion/MD is also sensitive to other microstructural attributes such as 16 

axonal diameter and membrane permeability (Jones et al., 2013). Future research could 17 

extend our work using more sophisticated DWI models such as the neurite orientation 18 

dispersion and density imaging (NODDI) model (Zhang et al., 2012). 19 

The model of response precision also showed a significant interaction between PCDIR,1 20 

and PCDIR,3. Higher scores on these components describe a lower extent of directional 21 

diffusion along the axonal fibres, which is generally found in white matter tracts that are less 22 

myelinated or less coherently packed (Alexander et al., 2007; Beaulieu, 2002; Jones et al., 23 

2013). Critically, both components were related to some but not all TOIs in our study, which 24 

suggests the presence of shared microstructural properties in specific groups of tracts. PCDIR,1 25 

represents directionality in a set of bilateral frontoparietal-occipital tracts (i.e., SLF II, SLF 26 

III, and IFOF in both hemispheres). Two of these tracts (i.e., the right SLF II and right SLF 27 

III) also contributed substantially to PCDIR,3. We found that higher directionality in the 28 

frontoparietal-occipital tracts was associated with higher memory precision in both location 29 

and orientation tasks in individuals with decreased directionality in the right SLF II and right 30 

SLF III. Previous studies have shown that increased FA in the SLF and IFOF was associated 31 

with better performance in visual working memory tasks (Darki & Klingberg, 2015; Peters et 32 

al., 2014; Vestergaard et al., 2011; Walsh et al., 2011). Our result further extends the previous 33 
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findings by showing a specific relationship between diffusion directionality and the precision 1 

of visual working memory, independently of occasional random guesses originating from 2 

task-irrelevant factors. The interaction effect between PCDIR,1 and PCDIR,3 also reveals the 3 

interdependence of different sets of white matter tracts when predicting response precision in 4 

visual working memory tasks. This observation suggests that individual differences in 5 

working memory precision are modulated by the complex interplay between subsets of tracts 6 

across a wider working memory network.  7 

The interaction between PCDIR,1 and PCDIR,3 was also associated with swap errors. 8 

Higher directionality in the frontoparietal-occipital tracts predicted lower swap errors across 9 

tasks in individuals with relatively low directionality in the right SLF II/III. The estimate of 10 

swap errors reflects a specific anomaly in feature binding between the probed and reported 11 

features (Schneegans & Bays, 2017). Previous studies of visual working memory have 12 

implicated the superior parietal area, inferior intraparietal sulcus, and lateral occipital regions 13 

in feature binding (Parra et al., 2014; Shafritz et al., 2002; Xu & Chun, 2006). White matter 14 

microstructure in the inferior frontal cortex has also been associated with feature binding 15 

performance (Parra et al., 2015). Binding deficits have been selectively associated with 16 

lesions in the left somatosensory cortex (Lugtmeijer et al., 2021). Our results further extend 17 

previous work by showing that binding errors that occur during visual working memory tasks 18 

are modulated by the microstructure of long-range white matter tracts that connect the frontal, 19 

parietal, and occipital regions. 20 

The fact that we observed a significant interaction between PCDIR,1 and PCDIR,3 when 21 

modelling both response precision and swap errors implies common neural substrates for 22 

these distinct components of visual working memory performance. A recent study suggests 23 

that both response variability and swap errors are caused by stochastic noise in neural activity 24 

(Schneegans & Bays, 2017), for example, variability in neural spike timing (Faisal et al., 25 

2008). Although the presence of noise is universal in the nervous system, some individuals 26 

may benefit from a relatively high signal-to-noise ratio, which can be modulated by, for 27 

example, the level of axonal myelination. When compared with unmyelinated axons, those 28 

insulated by myelin sheaths can modulate the speed of impulse conduction and thereby 29 

facilitate optimal synchronization among neural assemblies in distant regions (Fields & 30 

Bukalo, 2020; Nunez et al., 2015; Pajevic et al., 2014). Individuals with more myelinated 31 

axons in general may have more fine-grained modulation on conduction speed, which in turn 32 

allows a wider spectrum of synchronized oscillations. Since long-range, inter-areal 33 
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synchronization during visual working memory tasks has been found for a wide range of 1 

frequency bands (Daume et al., 2017; Palva et al., 2010; Sato et al., 2018), greater 2 

myelination might therefore contribute to more precise responses and lower swap errors by 3 

boosting signal resolution. 4 

One other interesting observation of the interaction effects is that people with lower 5 

scores on PCDIR,3 tended to have overall higher response precision and lower swap errors 6 

(Fig. 6b-c, blue lines). Such good performance was not related to scores on PCDIR,1, which 7 

suggests that higher directionality along the right SLF II and SLF III operates as a protective 8 

factor, shielding visual working memory from effects arising in the set of bilateral 9 

frontoparietal-occipital tracts. When such protection is weak, that is, when microstructure of 10 

the right SLF II/III is somehow suboptimal, individual differences in task performance were 11 

found to covary strongly with differences in directionality in the bilateral frontoparietal-12 

occipital network. The strong reliance on long-range white matter tracts across a large 13 

bilateral network may impose a higher degree of susceptibility to disturbance in visual 14 

working memory perhaps due to focal lesions in white matter arising from neurological 15 

diseases. To speculate more broadly, our findings also suggest that swap errors occur, at least 16 

in a significant portion of trials, when the precision of the maintained representation is low, 17 

which in turn increases confusability between different features stored in visual working 18 

memory. This claim is consistent with previous finding that elevated swap errors were 19 

observed when the target item was more similar to the non-target distractors (Schneegans & 20 

Bays, 2017). 21 

The observed effect of PCBULK and the interaction between PCDIR,1 and PCDIR,3 did not 22 

show any notable differences between the location and orientation tasks, even though we 23 

observed robust differences between tasks when we analysed behavioural data only. In 24 

addition, our study comprised a relatively large sample, suggesting that we should have been 25 

able to detect even small differences between tasks in brain-behaviour relationship should 26 

these differences exist. The location and orientation tasks in our study involved a common 27 

encoding display but in which participants were instructed to reproduce either the spatial or 28 

non-spatial features. Previous studies using EEG recording have shown that the contralateral 29 

delay activity (CDA) tracks different features stored in visual working memory. When 30 

participants were presented with an identical array of items, greater CDA was found when 31 

participants were tested on the orientations or shapes of the items, compared with when they 32 

were tested on the colours of the items (Luria et al., 2010; Woodman & Vogel, 2008). This 33 
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feature-specific difference, however, was not apparent in the microstructural properties in 1 

long-range white matter tracts in our study. Recent studies have argued that human cognition 2 

arises from dynamic interactions within and between large-scale networks rather than coming 3 

from several discrete, specialised brain regions (Bassett & Sporns, 2017; Bressler & Menon, 4 

2010; Park & Friston, 2013). Anatomical connections between different brain areas, 5 

comprising relatively invariant white matter fibres, predict but do not fully determine the 6 

dynamic repertoire of cognitive functions (Honey et al., 2009; Suarez et al., 2020). The 7 

functional differences between the location and orientation tasks may therefore arise from 8 

neural mechanisms that are not constrained by or sensitive to white matter microstructure. 9 

In this study, we applied a two-step PCA to the tractography data which extracted 10 

four orthogonal PCs that encompassed critical information in both the measure and tract 11 

spaces. This approach addressed problems that were overlooked in previous studies 12 

investigating the relationship between visual working memory and white matter tracts. For 13 

example, Krogsrud and colleagues (2018) failed to find associations between visual working 14 

memory performance and the tract-based FA measures after correcting for multiple 15 

comparisons. The fact that Krogsrud et al.’s study did not replicate otherwise reproducible 16 

findings (e.g., Darki & Klingberg, 2015; Nagy et al., 2004; Peters et al., 2014; Vestergaard et 17 

al., 2011; Walsh et al., 2011), raises an issue of high dimensionality in the predictor space. 18 

The use of PCA in our study helped achieve data reduction while maintaining maximal 19 

information in the tractography dataset. In addition, although all studies have made claims 20 

that certain tracts are related to visual working memory, few studies have controlled for the 21 

general effect of individual differences in white matter microstructure (Krogsrud et al., 2018; 22 

Vestergaard et al., 2011; Walsh et al., 2011), leading to inconclusive results regarding tract 23 

specificity. The “global” microstructure can explain up to 73% of the variance and therefore 24 

become non-negligible in some datasets (Clayden et al., 2012; Johnson et al., 2015; Penke et 25 

al., 2010). The application of tract-space PCA effectively identified the global microstructural 26 

component (PCBULK) in our dataset, which helped find effects that are above and beyond the 27 

general differences in bulk diffusion. To summarize, the two-step PCA approach in our study 28 

highlights the fact that the modulating influence of white matter microstructure goes beyond 29 

the level of individual metrics or tracts.  30 

5. Conclusions 31 
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In the present study, we observed brain-behaviour associations between visual 1 

working memory and white matter microstructure that were functionally specific to the 2 

precision of representations in visual working memory, both spatial and non-spatial. Higher 3 

response precision was associated with lower bulk diffusion across all reconstructed white 4 

matter tracts. Response precision was also positively related to diffusion directionality in a 5 

particular group of bilateral frontoparietal-occipital pathways, but these associations 6 

depended on microstructural properties of another group of tracts. Our findings suggest that 7 

individual differences in the precision of visual working memory reflect inter-subject 8 

variability in both widespread and regional properties of white matter microstructure, which 9 

in turn show evidence of interaction effects across the wider working memory network.   10 
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Figure Captions 1 

Figure 1. Schematic Illustration of the Location and Orientation Tasks. At the start of each 2 

block, an instruction message appeared to indicate the subsequent task. At the beginning of 3 

each run, a message appeared on a black background to remind participants to encode items 4 

presented on either the left side or right side. In each trial, six gratings were presented during 5 

the encoding period. After a 900 ms delay period, participants provided a response based on 6 

the probe information. 7 

Figure 2. Probabilistic Tractography of Five Tracts of Interest in Both Hemispheres. 8 

Normalised streamline density maps from a representative participant were converted to 3D 9 

meshes for the purpose of visualization. Abbreviations: SLF, superior longitudinal fasciculus; 10 

IFOF, inferior frontal-occipital fasciculus; ILF, inferior longitudinal fasciculus. 11 

Figure 3. Schematic Illustration of Two-step Principal Component Analysis (PCA). The 12 

measure space PCA aimed to capture covariations across different diffusion metrics with 13 

participant and tract data as observations. Scores of the extracted components were then re-14 

structured for the tract space PCA which captured covariations across white matter tracts. 15 

Figure 4. Distributions of Response Errors in Visual Working Memory Tasks. Results of the 16 

a) location task and b) orientation task are shown. Proportion of trials within each bin is 17 

averaged across participants. Error bars in each bin denote standard errors of the mean.  18 

Figure 5. Loading Profile of the Four Extracted Components. Percentages on the left denote 19 

the proportion of variance in the whole tractography dataset explained by each principal 20 

component. Abbreviations: SLF, superior longitudinal fasciculus; IFOF, inferior frontal-21 

occipital fasciculus; ILF, inferior longitudinal fasciculus. 22 

Figure 6. Brain-behaviour Associations Revealed by Linear Mixed Models. In the best-23 

fitting model of response precision, a) significant effect of PCBULK and b) significant 24 

interaction between PCDIR,1 and PCDIR,3 were found. Note that higher values in svM represent 25 

lower response precision. Higher values in PCDIR,1 and PCDIR,3 relate to lower extent of 26 

diffusion directionality. In the best-fitting model of swap errors, c) significant interaction 27 

between PCDIR,1 and PCDIR,3 was found. Asterisks in plots b) and c) denote significant simple 28 

effects.  29 
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