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ABSTRACT

Many processes in biology and medicine have been modeled using Markov decision processes which
provides a rich algorithmic theory for model analysis and optimal control. An optimal control problem
for stochastic discrete systems consists of deriving a control policy that dictates how the system will
move from one state to another such that the probability of reaching a desired state is maximized.
In this paper, we focus on the class of Markov decision processes that is obtained by considering
stochastic Boolean networks equipped with control actions. Here, we study the effect of changes
in model parameters on optimal control policies. Specifically, we conducted a sensitivity analysis
on optimal control policies for a Boolean model of the T-cell large granular lymphocyte (T-LGL).
For this model, we quantified how the choice of propensity parameters impacts the effectiveness of
the optimal policy and then we provide thresholds at which the effectiveness is guaranteed. We also
examined the effect on the optimal control policies of the level of noise that is usually added for
simulations. Finally, we studied the effect on changes in the propensity parameters on the time to
absorption and the mixing time for a Boolean model of the Repressilator.

Keywords Boolean networks ·Markov decision processes · Optimal control · Time to absorption ·Mixing time

1 Introduction

Boolean network (BN) models are becoming increasingly popular and have been successfully used to model important
biological systems such as the bistable behavior of the lac operon [1], the yeast-to-hyphal transition of the yeast Candida
albicans [2], the interaction of pancreatic cancer cells with their microenvironment [3, 4], and they have been proposed
as appropriate models for understanding the evolution of cellular differentiation [5]. Furthermore, there is a growing
collection of BN models in the Cell Collective database [6] covering processes such as signaling, regulation, and cancer.

To account for the stochasticity in various molecular processes, several versions of stochastic Boolean networks exist
including Probabilistic Boolean networks (PBN) [7, 8], perturbed Boolean networks (BNp) [9, 10], and Probabilistic
Edge Weights operators (PEW) [11]. This paper will focus on the stochastic framework that was introduced in [12]
referred here as Stochastic Discrete Dynamical Systems (SDDS). The stochasticity usually originates from the updating
schedule or from an added perturbation to the functions. Standard updating schedules include synchronous update
where all nodes are updated at the same time, and asynchronous update, where a random set of nodes are updated at
each time step. Consequently, a synchronous update produces a deterministic dynamics, while an asynchronous update
generates stochastic dynamics. The SDDS framework introduces stochasticity by assigning two propensity parameters
to each function in the Boolean network. The PBN framework considers multiple functions for each node where one
function is selected at each step using a probability distribution.
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(a) Wiring Diagram

x1 = S1P, x2 = FLIP,
x3 = Fas, x4 = Ceramide,
x5 = DISC, x6 = Apoptosis.

f1 = x4 ∧ x6,
f2 = x5 ∧ x6,
f3 = x1 ∧ x6,
f4 = x3 ∧ x1 ∧ x6,
f5 = (x4 ∨ (x3 ∧ x2)) ∧ x6,
f6 = x5 ∨ x6.

(b) Nodes and functions

Figure 1: Reduced T-LGL network adapted from Saadatpour et al., PLoS Comput Biol., 7(11), 2011.

A Markov decision process (MDP) is a mathematical modeling framework for decision making [13, 14]. An optimal
control policy for an MDP provides an action for each state of the system such that certain optimality criterion is
achieved. Many methods exist for obtaining optimal control policies such as the infinite-horizon method with a discount
factor [15, 16]. The optimal control policies are usually obtained using the value iteration method for approximating
the solution of Bellman’s equation [17, 18].

The main contributions of this paper will be presented in the Results section, which is divided in two parts. In the
first part, we study the effects of changes in the propensity parameters of the SDDS framework on the optimal control
policies for a Boolean model of the T-cell large granular lymphocyte (T-LGL) [19]. For this model, we show how
the choice of propensity parameters impacts the effectiveness of the optimal policy and then we provide thresholds
for which the effectiveness is guaranteed. We also examined the effect of the level of noise that is usually added for
simulations on the optimal control policies. In the second part of the Results section, we discuss the effects of the
propensities on the long-term dynamics of a Boolean model of the Repressilator. For this model, we studied the effect
on changes in the propensity parameters on the time to absorption and the mixing time.

This paper is structured in the following way. In Section 2, we introduce the modeling framework SDDS and their
associated Markov decision processes. In Section 3.1 we present the results of the effects of changes in the propensities
on control policies for the T-LGL model. In Section 3.2, we discuss the long term dynamics effects of propensities on a
Boolean model of the Repressilator. In Section 4 we discuss our main findings and provide some conclusions.

2 Methods

In this section we describe the stochastic modeling framework SDDS and the optimal control method that we will use
in this paper.

2.1 Stochastic Discrete Dynamical Systems

Consider variables x1, . . . , xn that can take values in finite sets X1, . . . , Xn. Let X = X1 × · · · ×Xn be the Cartesian
product. An SDDS in the variables x1, ..., xn is defined as a collection of n triples

F̂ =
{
fk, p

↑
k, p
↓
k

}n
k=1

, (1)

where for k = 1, ..., n,

• fk : {0, 1}n → {0, 1} is the update function for xk,

• p↑k ∈ [0, 1] is the activation propensity,

• p↓k ∈ [0, 1] is the degradation propensity.

The activation parameter p↑k represents the probability that an activation of xk occurs, given that fk would activate xk.
That is, if xk(t) = 0, and fk(x1(t), ..., xn(t)) = 1 then xk(t+ 1) = 1 with probability p↑k. The degradation propensity
p↓k is defined similarly.
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Figure 2: Heatmap of stationary distributions given all propensities are 0.9 using single-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.8 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

Figure 3: Heatmap of the stationary distribution given all propensities are 0.5 using single-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The
policies for these choice of parameters are always ineffective.
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Figure 4: Heatmap of the stationary distribution given propensities from Table 1 using single-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The
policies for these choice of parameters are always ineffective.

We can represent an SDDS as a Markov chain with the transition probability for x to y is given by

ax,y =
n∏
i=1

Prob(xi → yi). (2)

where Prob(xi → fi(x)) is the probability that xi will change its value and is given by

Prob(xi → fi(x)) =


p↑k, if xi < fi(x),

p↓k, if xi > fi(x),

1, if xi = fi(x).

(3)

The probability that xi will maintain its current value is given by

Prob(xi → xi) =


1− p↑k, if xi < fi(x),

1− p↓k, if xi > fi(x),

1, if xi = fi(x),

(4)

for all i = 1, ..., n. Note that Prob(xi → yi) = 0 for all yi /∈ {xi, fi(x)}. The transition matrix is

A = (ax,y)x,y∈S (5)

2.2 Markov Decision Processes

Here we will describe a Markov Decision Process associated to the SDDS framework [18]. To use tools from Markov
Decision Processes with SDDS, we consider the underlying Boolean network F and corresponding wiring diagram G

associated with the SDDS F̂ . The wiring diagram G has nodes x1, ..., xn, and there is a directed edge from xi to xj if
fj depends on xi. The edge and node controls can be encoded in the Boolean network F = (f1, ..., fn) : F

n
2 → Fn2 .
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Let U be the set of all possible control inputs, where 0 represents no control. We encode the edge and node controls
using the function F : Fn2 × U → Fn2 such that F(x, 0) = F (x) returns the original Boolean network. To include
control in an SDDS, we replace the functions of fk for Fk : {0, 1}n × U → {0, 1}. With edge control, ui,j refers to
control of the edge xi → xj . For node control, ui refers to node xi. In both edge and node control, setting u to zero
represents an inactive control and setting u to one represents removal of the corresponding edge or node.

A control action a is a combination of control edges and nodes being applied to the Boolean network simultaneously at
a given time step. A set E of control edges and set V of control nodes can be used to define a as an array of binary
elements of size |U | = |E|+ |V |. Let A = {0, 1}|U | be the set of all possible actions.

Now, we define an MDP for the SDDS F̂ using these control actions. A Markov decision process for SDDS has four
components: the set of states S, the set of control actions A, the transition probability P ax,y associated with action a at
state x will lead to state y, and the associated costs C(x, a, y).

The new SDDS resulting from the application of action a is F̂a
′
= {Fak , p

↑
k, p
↓
k}
n
k=1. The transition probability P ax,y

from state x to y associated with action a is computed with equation 2 where fk is replaced by Fak . The cost function
C(x, a, y) describes the penalties for going from state x to y using action a. Thus the cost is given as the sum of the
cost for the action and one for the state:

C(x, a, y) = Ca + Cy. (6)

The action cost Ca = cvNv + ceNe where cv and ce are the penalties for the control nodes and edges respectively, and
Nv and Ne are the number of applied control nodes and edges in the given action a. The state cost

Cy =

N∑
k=1

wk|yk − s∗k|, (7)

where s∗ is the desired state and wk are the weights of each edge.

2.3 Optimal Control for SDDS

This section reviews a method for optimal control for Markov decision processes called the infinite-horizon method
with a discounting factor as presented in [18].

A deterministic control policy π is a set π = {π0, π1, ...} where each πt associates a state x(t) to an action a at time
step t. Given a state x ∈ S, a control policy π and a discounting factor γ ∈ (0, 1), the cost function V π associated with
π is defined as

V π(x) = IE

[ ∞∑
t=0

γtC(x(t), a)

]
, (8)

where C(x(t), a) represents the expected cost at time step t for executing the policy from state x. The cost at step t is
defined by

C(x(t), a) = IE [C(x, a, y)] =
∑
y∈S

P ax,yC(x, a, y). (9)

The optimal cost function V ∗(x) associated with the optimal policy π∗ is

V ∗(x) = min
a∈A
{C(x, a) + γIE [V ∗(y)]}. (10)

Because this function satisfies Bellman’s equation, we can use the value iteration algorithm to calculate the optimal
control policy. The equation for the value iteration algorithm is

Vt(x) = min
a∈A

C(x, a) + γ
∑
y∈S

P ax,yVt−1(x)

 . (11)
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x1 x2 x3 x4 x5 x6
p↑i 0.4792 0.4826 0.7098 0.3911 0.0549 0.0314
p↓i 0.0274 0.9602 0.5195 0.7758 0.8373 1.0000

Table 1: Propensity values computed with a genetic algorithm in [18].

For any initial bounded cost function V0, the recursion will converge to V ∗.

2.4 Time to Absorption

Consider the transition matrix of a Markov chain in canonical form,

A =

(
Q 0
R I

)
where 0 is the zero block matrix and I is the identity submatrix. The fundamental matrix N is defined as the inverse of
(I −Q). That is, N = (I −Q)−1. The time to absorption for a transient state j is defined as the expected number of
steps before absorption and can be calculated as the sum of the jth row of N (see Theorem 11.5 of [20]).

2.5 Mixing Time

The mixing time tmix of a Markov chain is the number of steps required for the chain to be within a fixed threshold of
its stationary distribution [21]. More precisely, we define

tmix(ε) = min{t : d(t) ≤ ε}

where d(t) is the total variation distance which is defined by d(t) = max
x∈S
|| P t(x, ·)− π ||TV . The maximum in the

previous formula is taken over all states in the state space S, P represents the transition matrix, and π denotes the
stationary distribution.

Several estimates and bounds exist for mixing times of Markov chains. For irreducible Markov chains, one can show
that (see Chapter 12 of [21])

tmix(ε) log

(
1

λ∗

)
≥ log(

1

2ε
) (12)

where λ∗ is the eigenvalue with the second highest absolute value. In this paper, we will use the following estimate
which can be obtained from Equation 12

tmix ≈ −1/ log(λ∗).

3 Results

In this section we provide results from our analysis using a Boolean model where optimal control policies have been
calculated. We will apply the optimal control method described in Section 2.3 and study its effectiveness at different
propensities and discount factors. We will also study the effect of changes in the level of noise for simulations.

3.1 T-LGL model

Here we consider the reduced model of the T-cell large granular lymphocyte (T-LGL) [19] with nodes and functions
described in Figure 1. This model has two fixed points: 000001 and 110000. The state 000001 represents the desired
state and 110000 represents the disease state. The optimal control problem here is that we want to obtain a policy to
ensure the system transitions to the desired state.

Given a Boolean network model, different methods for phenotype control can be used to identify edge and node controls
including [22, 23, 24]. For the T-LGL model discussed in this section, we used the approach in [22] to identify control
nodes that can stabilize the system into one of its attractors. Specifically, we will use the control node S1P = OFF .
The application of this control (i.e, setting the node S1P to 0) will result in a controlled network with a single desired
fixed point (i.e., 000001). Thus, at each state of the system, we will get access to two actions: (1) no intervention and
(2) knock-out of S1P . Here we say that a policy is effective if this always leads the model to the fixed point 000001.
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Figure 5: Heatmap of stationary distributions given all propensities are 0.9 using single-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal policy.
The discount factor was fixed to 0.9 for all policies, the stationary distribution consistently goes to state 2 (000001), so
changing the noise in this case does not affect the effectiveness of the policies.

Figure 6: Heatmap of the stationary distribution given all propensities are 0.5 using single-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal
policy. The discount factor was fixed to 0.9 for all policies. For noise level of 0.05 or smaller, the stationary distribution
consistently goes to state 2 (000001), so small levels of noise the policies becomes effective.
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Figure 7: Heatmap of the stationary distribution given propensities from Table 1 using single-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal
policy. The policies for these choice of parameters are always ineffective, so changing the noise in this case does not
affect the ineffectiveness of the policies.

In our first result, shown in Figure 2, we have set all propensities p↑k and p↓k to 0.9. Allowing the discounting factor to
vary, we see the policy becomes effective when the discount is at least 0.8. This coincides with a change in the action at
the disease node 110000 (state 49 in the horizontal axis) that indicates that the intervention is active.

Setting the propensities p↑k and p↓k to 0.5 as in Figure 3, we see that the policy is never effective. Note that the action at
state 110000 (state 49 in the horizontal axis) does not change to include the control node (i.e., action number 2) for any
discounting factor.

For our third case, we considered a set of propensity parameters given in Table 5.3 of [18] (we reproduced these
propensities here in Table 1). These propensities were obtained from a genetic algorithm to maximize the probability of
reaching state 110000. When the value iteration is applied to the model with these propensities as in Figure 4, we see
that the policy is never effective. We also note that the action at state 110000 (state 49 in the horizontal axis) does not
change to include both interventions for any discounting factor.

Next, we examined the effect of the noise in the results shown in Figures 2-4. In Figures 5-7 we changed the level of
noise when calculating the optimal policies. In the first case, when we set all propensities p↑k and p↓k to 0.9, allowing the
noise level to vary while maintaining the discount factor fixed at 0.9, we see that the policies are still effective as shown
in Figure 5. Thus, changing the noise level in this case does not affect the effectiveness of the policies.

In the second case, when all propensities are set to 0.5, allowing the noise level to vary while maintaining the discount
factor fixed at 0.9, we see that some policies become effective while other are still ineffective as shown in Figure 6. Thus,
changing the noise level in this case does affect the effectiveness of the policies. For noise level of 0.05 or smaller, the
stationary distribution consistently goes to state 2 (000001), so for small levels of noise the policies becomes effective.

Finally, when we used propensities from Table 1, allowing the noise level to vary while maintaining the discount factor
fixed at 0.9, we see that the policies for these choice of parameters are always ineffective. Thus, changing the noise
level in this case does not affect the ineffectiveness of the policies.

We also computed optimal policies that have a duration period of L steps that are followed by a recovery period (without
intervention) of L−W steps as described in [15, 16]. In Figures 8-10 we show results for optimal policies with L =W
for L = 2, 4, 6, 8. We see that for the case of all propensities equal to 0.5, the policies become effective for a discount
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Figure 8: Heatmap of stationary distributions given all propensities are 0.9 using two-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.8 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

factor of 0.9 or higher. However, for the propensities in Table 1, the policies are still ineffective. For policies with four
steps or higher, even the propensities in Table 1 will produce effective policies.

3.2 The Repressilator

The Repressilator is a cycle of three repressors as shown in Figure 20a. This model has been studied using differential
equations [25]. The Repressilator has been used for the design and construction of synthetic networks to understand
different cell functions [26]. Here we created a Boolean model for the Represillator using three update functions given
in Figure 20b. Then we examined the effect the propensities have on its long term dynamics using the SDDS framework.
The synchronous dynamics of this model is given by two cycles: a 2-cycle and a 6-cycle as shown in Figure 21a. Once
we add stochasticity to the model using the SDDS framework, the states in the 2-cycle became transient states (that is, it
was possible to escape from the 2-cycle). However, the 6-cycle was still and attractor as shown in Figure 21b. Thus, we
considered the six-cycle to be the absorbing states for calculating time to absorption.

In figure 21b we can see the effect the propensities have on the transition from one state to another. In this particular

example the propensities are
(
0.2 0.9 0.5
0.9 0.2 0.5

)
, where the top row is the activation propensity for each function and

the bottom row is the degradation propensity for each function. The mixing time is 4.5547 steps with the repressilator
spending 6.85% of the time in each state 001 and 101, 12.33% of the time in each state 011 and 100, and 30.82% of the
time in each state 010 and 110. Negligible time is spent in states 000 and 111. We want to investigate the range of
mixing times for the Repressilator.

First, we examine the mixing time when both propensities for all variables are the same. In Figure 22, the top line in
blue represents the mixing times (y-axis) for several propensities (x-axis). It is intuitive that when all of the mixing
times are low, the repressilator is less likely to change states. In particular, since the two-cycle is less likely to change
states, the time to absorption becomes larger which causes the mixing time to be higher as well (see Figure 23a). A
similar effect is seen with high propensities where the 000 and 111 alternate before being absorbed as in Figure 23b.
The smallest mixing time appears to occur when the propensities are at 0.5 when the system has the highest change to
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Figure 9: Heatmap of the stationary distribution given all propensities are 0.5 using two-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.9 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

Figure 10: Heatmap of the stationary distribution given propensities from Table 1 using two-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The
policies for these choice of parameters are always ineffective.
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Figure 11: Heatmap of stationary distributions given all propensities are 0.9 using four-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.8 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

Figure 12: Heatmap of the stationary distribution given all propensities are 0.5 using four-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.9 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.
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Figure 13: Heatmap of the stationary distribution given propensities from Table 1 using four-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The
policies for these choice of parameters are always ineffective.

Figure 14: Heatmap of stationary distributions given all propensities are 0.9 using six-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.8 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.
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Figure 15: Heatmap of the stationary distribution given all propensities are 0.5 using six-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.9 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

Figure 16: Heatmap of the stationary distribution given propensities from Table 1 using six-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The
policies for these choice of parameters are always ineffective.
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Figure 17: Heatmap of stationary distributions given all propensities are 0.9 using eight-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.8 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.

Figure 18: Heatmap of the stationary distribution given all propensities are 0.5 using eight-step optimal policies from
the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a
discount of 0.9 or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy
becomes effective.
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Figure 19: Heatmap of the stationary distribution given propensities from Table 1 using eight-step optimal policies
from the value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy.
The policies for these choice of parameters are always ineffective.

(a) Wiring Diagram

f1 = x3 = x3 + 1,
f2 = x1 = x1 + 1,
f3 = x2 = x2 + 1.

(b) Regulatory Functions

Figure 20: Boolean model of the Represillator.

leave the two-cycle and be absorbed (Figure 24a). However this mixing time is 6.9521, which is higher than the mixing
time for the starting example. The minimum mixing time seems to occur when the propensities are not equal.
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Figure 22: A comparison of the mixing times. The x-axis represents the value of the propensities. The y-axis represents
the mixing time. The blue line represents the mixing times when all propensities are the same. When all of the
propensities are 0.5, we find the lowest mixing time. However, when only changing propensities inversely for p↓2 and p↑3
and keeping all other propensities 0.5, we find the mixing time is lowest at the ends of the graph. That is when p↓2 = 0.9

and p↑3 = 0.1 and vice versa, we achieve the lowest mixing time.

(a) No stochasticity (b) With stochasticity

Figure 21: The synchronous dynamics are given by a 6-cycle and a 2-cycle in 21a without noise. With stochasticity
using the SDDS framework, one may leave the two-cycle for the six-cycle, but not the other way around.

To further analyze the effect of changes in propensities, we start by setting all propensities to 0.5 and allowing one
propensity to differ. The lowest mixing time for propensities tested from 0.1 to 0.9 is 4.8887 at 0.1 and remains the
same for all variables. Allowing two functions to have differing inverse propensities yields more interesting results. For

example, if the propensities are
(
0.5 0.5 0.1
0.5 0.9 0.5

)
, we get a mixing time of 4.3157. The mixing times for propensities

for this inverse relationship between the activation propensity for the third function and the deactivation propensity
for the second function can be seen in Figure 24b starting at 0.1 and 0.9 respectively. Setting all other propensities
to 0.9 allows an even shorter mixing time of 2.8627 at endpoints 0.1 and 0.9, but setting all other propensities to 0.1
forces the mixing time to be even longer with 11.9877 being the smallest mixing time at 0.5. A comparison of the
mixing times and corresponding Markov chains can be seen in Figure 25 and Figure 26, respectively. Finally, it is worth
noting that the time to absorption remains low even when mixing times are large. For instance, when the mixing time

is 11.8977 for propensity matrix
(
0.1 0.1 0.5
0.1 0.1 0.5

)
, the time to absorption is 1.6949. In summary, we have observed

that the mixing times of this model are sensitive to changes in the propensity parameters while the time to absorption
remained stably low.
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(a) All propensities 0.1 (b) All propensities 0.9

Figure 23: Same propensities comparison: When the propensities are all 0.1, the network has a tendency to stay at
the state it started on and when the propensities are all 0.9, it has a tendency to go to the next state in the cycle more
quickly. In both cases, the probability to leave the two-cycle is low.

(a) All propensities 0.5 (b) x2 deactivation, x3 activation

Figure 24: When all of the propensities are 0.5, the system has a fastest mixing time of all same propensities. When
p↓2 = 0.9 and p↑3 = 0.1, we see that state 001 has a much higher probability to go to state 100 in comparison to all other
probabilities in the network. This is when the mixing time is fastest overall.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.23.525286doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525286
http://creativecommons.org/licenses/by-nc-nd/4.0/


Effect of changes in model parameters A PREPRINT

Figure 25: Mixing time comparison: The red line represents the network with all propensities 0.9, allowing p↓3 to
change. The blue line represents all other propensities set to 0.1 instead.

(a) High propensities (b) Low propensities

Figure 26: High and low comparison: On the left, all propensities are set to 0.9 except p↓3. On the right, these
propensities are set to 0.1.

We show the transition matrix of the Boolean Repressilator model in Figure 27 and their eigenvalues in Equation 13.
When all the propensities are the same (i.e., p = p↑k = p↓k for all k), we see that the absolute value of all eigenvalues are
minimized when p↑k = p↓k = 0.5 as shown in Figure 28.

Figure 27: Transition matrix of the Repressilator model.
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Figure 28: Here we show the plots of eigenvalues from the transition matrix in Figure 27, where all propensities are
assumed to be the same. Eigenvalues (listed in order in Equation 13) are all minimized when the propensity is p = 0.5,
and graphical results can easily be confirmed analytically or numerically with MATLABs fminsearch function.

λ1 = 1
λ2 = 1− 2p
λ3 = 3p2 − 3p+ 1

λ4 = 1− 3(1/2)p ∗ i
2

− p

2

λ5 = 1 +
3(1/2)p ∗ i

2
− p

2

λ6 = 1− 3(1/2)p ∗ i
2

− 3p

2

λ7 = 1 +
3(1/2)p ∗ i

2
− 3p

2
λ8 = −2p3 + 3p2 − 3p+ 1

(13)

4 Conclusion

In this paper, we studied the effect of changes in model parameters on optimal control policies, time to absorption, and
mixing times by focusing on a class of Markov decision processes that is obtained by considering stochastic Boolean
networks equipped with control actions. The stochastic framework that we used is the one called Stochastic Discrete
Dynamical Systems (SDDS). The SDDS framework introduces stochasticity by assigning two propensity parameters
to each function in a Boolean network. Using the SDDS framework and their control actions, we have performed an
analysis of the effect of changes in propensity parameters on optimal control policies, time to absorption, and mixing
times on specific Boolean models.

In the first part of the results, we studied how choice of propensity parameters affects the effectiveness of optimal
control policies where depending of range of values of certain parameters (e.g., the discount factor, level of noise, and
the period of duration), some policies became ineffective. We have also shown that by tuning the noise level and period
of duration of the control policies one can still guarantee the effectiveness of some of the ineffective policies that we
have considered.

In the second part of the results, we have studied the effect on changes in the propensity parameters on the time to
absorption and the mixing time for a Boolean model of the Repressilator. We have shown that the mixing time of
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Repressilator model was very sensitive to changes in the propensity parameters while the time to absorption remained
stably low.

To conclude, the results of this paper will help us understand the sensitivities of model parameters in similar models and
their results and might help us inform the selection of different parameters in other models.
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