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Abstract 

The risk of dying tends to increase with age, but this trend is far from universal. For humans, 

mortality is high during infancy, declines during juvenile development, and increases during 

adulthood. For other species, mortality never increases, or even continuously declines with age, 

which has been interpreted as absent- or reverse-aging. We developed a mathematical model 

that suggests an alternative interpretation. The model describes the age-dependence of mortality 

as the sum of two opposite processes. The mortality risk due to physiological decline increases 

monotonously with age. But old individuals gain survival benefits through processes like 

growth and learning. This simple model fits mortality dynamics for all human age classes and 

for species across the tree of life. Simulations revealed an unexpected complexity by which 

learning impacts the evolution of aging. An ability to learn initially accelerated the evolution 

of slower aging but constrained the slowest possible rate of aging that can evolve. This 

constraint occurs when learning reduces mortality during the reproductive period to near 

negligible levels and thereby eliminates selection for a further slow-down of aging. In 

conclusion, learning accelerates the evolution of slower aging, but obstructs the evolution of 

negligible senescence for species with strong learning-associated survival benefits.   
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Main 

Aging is frequently defined as the increase in mortality or hazard rate due to physiological 

decline with age1,2. However, mortality often does not increase monotonously with age. For 

example, human mortality initially declines after birth and only rises after reaching sexual 

maturity (Fig. 1a). For other species, such as Hydra Magnipapillata3,4 or the desert tortoise 

Gopherus agassizii5, mortality is constant across age classes or even declines with increasing 

age. The evolutionary mechanisms underlying this diversity in mortality dynamics are not 

understood. 

Under the operational definition of aging as the age-dependent increase in the hazard rate6,7, a 

decline in mortality with age would suggest a negative aging rate or to reverse-aging5,8. 

However, a more specific definition of aging as “age-dependent physiological decline”1 allows 

for alternative interpretations. Under this definition, mortality can be a non-monotonous 

function of age even if physiological decline progresses continuously if age-dependent 

processes other than aging also impact mortality. For example, survival can be positively 

impacted by an increase in body mass with age. Similarly, experience from environmental 

interactions can provide an age-dependent survival benefit, e.g., through adaptive immunity, or 

through behavioral changes. 

Here, we defined a mathematical model of mortality that takes these considerations into account 

and investigated how they impact mortality dynamics and the evolution of aging rates. We 

collectively refer to all survival benefits gained from experience as “learning”, which explicitly 

includes cognitive as well as non-cognitive processes. We show that considering growth and 

learning allows for a quantitative description of mortality dynamics of species across the tree 

of life, and that learning has non-trivial implications on how aging evolves. 
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Survival benefits of growth and learning can account for non-monotonic mortality 

Numerous mathematical models have been used to describe the relationship between age and 

mortality (reviewed in 9). However, classic models struggle to mechanistically explain non-

monotonicity in age-dependent mortality (Fig. 1a)10. Most famously, the Gomertz-Makheman 

model (GMM) describes the hazard rate hGMM(t) (the age-dependent risk of mortality) as an 

exponentially increasing function hGMM(t) = α(t) = 𝑐 + 𝑎𝑒𝑏𝑡 and provides a good fit for human 

mortality between 30 and 80 years11,12. The parameter b of the GMM is called the rate of aging 

and represents the exponential rate increase of mortality with age. 

To consider the effects of growth and learning on mortality, we developed the so-called GLA 

(for growth-learning-aging) model, which corrects hazard rate of the GMM hGMM (t) = α(t) by 

subtracting the positive survival effects of growth γ(t) and learning λ(t): hGLA(t) = α(t) - γ(t) - 

λ(t). We describe the survival benefits from growth γ(t) by a decelerating function γ(t) = 

𝐺𝑚𝑎𝑥(1 −
1

1+𝑡ℎ), where Gmax is the maximal survival benefit provided by body growth. The 

impact of learning on survival is modeled by a logistic function λ(t) = 𝐿𝑚𝑎𝑥(1 −
1

1+ 𝑒𝑛(𝑡−𝑘)) , 

where 𝐿𝑚𝑎𝑥 is the maximum survival benefit provided by learning. Importantly, γ(t) and λ(t) 

describe the survival benefit stemming from growth and learning, not growth and learning 

themselves, and thus differ in their dynamics their respective upstream processes. 

Unlike the GMM, the GLA model fits human mortality across all age classes. The GLA model 

captures the rapid decline at a young age, and the shoulder in the hazard rate during early 

maturity. Indeed, the GLA model greatly improved fits to human mortality compared to the 

GMM for each of the 8 countries and the 67 years that we tested (mean distance 1.21% for 

GLA, vs. mean distance 4.97% for GMM, Fig 1b). This improvement in fit was not explained 

by the larger number of parameters of the GLA model (mean Akaike information criterion: -

201.6 vs. 6.15 mean AIC of GLA vs. GMM, Fig. 1c). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525295doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525295


4 
 

Fitted parameters followed consistent trends across countries and time (Fig. 1d-f, Supplemental 

Figure 1) that match intuitive expectations. For example, Lmax and Gmax (Fig. 1d-e) continuously 

declined between 1948 and 2015, as is expected given the great success of health care in 

reducing childhood mortality13. Also parameters that did not follow a monotonous trend, such 

as parameter k (Fig. 1f), showed high consistency across countries. Finally, fitted parameters 

matched well with general measures of population health. For example, Gmax was highly 

correlated to childhood mortality under 5 years (Fig. 1g), the growth exponent h was correlated 

with the percentage of low-weight births (Fig. 1h), and the sum of parameters c and a 

(corresponding to base-line mortality) closely followed life expectancy at birth (Fig. 1i). 
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Figure 1. GLA model fits human mortality data. a. Fit of GMM (cyan) and GLA (red) 

models to mortality data (black circles) from France 1951 b,c. comparison of s measures and 

AIC calculated for GLA and GMM fitted to cohort mortality data (born 1948-1952), and the 

population data from 1948-2015 (p < 10-15, Wilcoxon rank sum test with continuity 

correction). d-f. fitted Gmax, k and a+c over time. g. correlation between % of low-birth 

babies14 and value of h (growth speed) for 2000-2015, h. correlation of Gmax and children 

mortality14 for 1972 – 2015. i. correlation of c + a with life expectancy14 for 1960 – 2015. b-i. 

color indicates countries, as indicated at the bottom of the figure. 
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The GLA model also generalizes beyond humans to a wide range of animal and plant species, 

including species with vastly different and non-monotonic mortality dynamics (Fig. 2). 

Although available animal and plant mortality data is less smooth due to the smaller size of 

the datasets 5, fits were very good overall for the GLA model. In contrast, the inherently 

monotonic GMM cannot fit these dynamics. 
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Figure 2. GLA model fits a wide variety of mortality curves across the tree of life. GLA 

model (red) fitted to mortality data (blue) from indicated species. The mortality curves are 

ordered as in the source of mortality data5 based on their overall trend. Top left: Species in 
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which mortality increases with age, bottom right: species for which mortality declines with age. 

Data is shown from birth to the age when 5% of the adult population remains alive. 
 

Learning non-monotonically impacts the evolution of aging 

By distinguishing the influence of aging and learning on mortality, the GLA model allowed us 

to ask how learning affects the evolution of aging. To this end, we used agent-based simulations, 

where individual agents underwent repeated rounds of reproduction, mortality, and mutation. 

Briefly, we initiated simulations with 10’000 individuals using parameters obtained from fits 

of the GLA model to human data. Individuals reproduced at an age-dependent rate determined 

by a Brass polynomial which closely matches reproduction of humans15. The mortality rate of 

each individual was determined by the GLA model, and each individual was given a 2% chance 

of mutation to in- or decrease the rate of aging (parameter b in the GLA model). Whereas this 

evolutionary model did not consider tradeoffs between aging and other life-history traits, we 

show in the supplemental information that our overall conclusions are robust to including such 

tradeoffs (Supplemental Figure 2). 

As expected, during early time points of the simulation, the aging rate rapidly declined (Fig. 

3a). However, at longer time scales, the slow-down of aging decelerated and plateaued (Fig. 

3b). An ability to learn non-trivially impacted how quickly the aging rate evolved. The initial 

decline in the aging rate (b) was faster for simulatons with a stronger effect of learning on 

surivival (Lmax ) (Fig. 3a, c). However, learning had the opposite effect on the plateau and 

increased the slowest rate of aging that evolved at long time scales (Fig. 3b, d). These data 

suggest an unexpected complexity in the relation between the evolution of learning and aging: 

learning accelerated the evolution of slower aging initially but constrained the lowest rate of 

aging that can evolve. 

Simulations of where Lmax and b were allowed to co-evolve were consistent with these results. 

Lmax increased slightly during the evolution, and the final rate of aging was thus further 
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increased (Fig. 3b). A similar pattern also emerged from simulations of asexual populations 

with constant reproduction, although in this case, the aging rate b never reached a complete 

plateau (Supplemental Figure 3). 

 

Figure 3. Learning accelerates the evolution of slower aging in agent-based simulations 

and increases the lowest rate of aging that can evolve. a. Evolution of aging rate in the 

simulation of sexually reproducing organisms with fertility and mortality parameters taken 

from fits to human data. A Brass polynomial was used to model a fertility function matching 

human data based on ref 15. Other life history parameters were taken from fits of the GLA 

model to morality data from France 1951. b. as a, but for longer time scales and additionally 

showing the results of a simulation where aging and learning co-evolved. For co-evolution, 

Lmax was 0.125 at the beginning of the simulations and then allowed to evolve. c. Mean +/- 

SEM of the slope of aging rate evolution during the first 100 timesteps (n = 625 independent 

simulations with m = 10’000 individuals). d. Mean +/- SD of aging rate at the point at which 

evolution of slower aging decelerated (n = 10 independent simulations with m = 10’000 

individuals) 
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Low mortality during reproduction due to learning weakens selection of slower aging 

To understand why the impact of learning on the evolution of aging inverts at low aging rates, 

we used deterministic simulations to compute selective fitness over a wide range of Lmax and b. 

Specifically, we calculated fitness as the intrinsic rate of population increase r by the Euler-

Lotka equation16 from the same model as used above (Fig. 4a). We then determined the 

selection strength for slower aging, as the change in fitness resulting from a 1% reduction in 

the rate of aging b (Fig. 4b). From this, we calculated the difference in the selection strength in 

the presence and absence of learning (Fig. 4c). Fig. 4 shows simulations for parameters obtained 

from 1951 population data of France. 

For a wide range of parameters, including those matching human mortality data from all 8 

countries and 67 years tested, the fitness benefit of slower aging increased with a higher degree 

of learning (
𝜕𝑟

𝜕𝐿𝑚𝑎𝑥𝜕𝑏
> 0 for all countries, France 1951 shown in Fig. 4b) . Thus, humans are in 

a parameter space where, learning accelerates the evolution of slower aging, consistent with 

results from agent-based simulations (Fig. 3). The shape of the fitness landscape was 

qualitatively robust to the choice of the fertility function, producing equivalent conclusions for 

decreasing, constant, and increasing fertility with age (Supplemental Figure 4). 

The lower right corner of the fitness landscape (high Lmax, low b) shows a plateau where a slow-

down of aging has no further effect on fitness (Fig. 4b). Indeed, mapping the trajectories from 

agent-based simulations onto the fitness landscape shows that evolution loses directionality 

once the fitness plateau is reached (Fig. 4c). Thus, the edge of the plateau indicates the slowest 

rate of aging that is selected. Notably, the shape of the plateau is such that this lower bound of 

the selectable aging rates increases with Lmax (Fig. 4c), consistent with results from agent-based 

simulations (Fig. 3d). 
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An intuitive explanation for the fitness plateau and its shape is revealed by inspection of the 

reproductive output along the evolutionary trajectories. When the aging rate drops below a 

threshold bT where mortality becomes negligible during the reproductive period, a further 

reduction in the aging rate does not increase reproductive output (Fig. 4d, e). Hence, there is no 

selective pressure for rates of aging below bT. This threshold bT occurs already at a higher rate 

of aging when mortality is additional suppressed by learning. Together, our analysis explains 

the seemingly paradoxical impact of learning on the speed at which aging slows-down during 

evolution (Fig 4e). 
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Figure 4 Fitness landscape distinguishes regions where learning accelerates or constrains 

the evolution of slower aging. a. absolute fitness as a function of the maximal benefit of 

learning (Lmax) and the rate of aging (b). b. selective pressure for slower aging as a function of 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525295doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525295


13 
 

the maximal benefit of learning and the rate of aging . Selective pressure was calculated as the 

absolute fitness benefit in intrinsic rate of population increase (𝑟) from a 1% reduction in the 

rate of aging. Black cross marks location of fitted parameters for France 1951. c. as (b), but 

relative to the selective pressure in the absence of learning (Lmax = 0). Red color indicates the 

parameter space where learning accelerates the evolution of slower aging. yellow line: agent-

based simulation of sexual reproduction and co-evolution of learning and aging for 120 000 

timesteps (average trajectory of 10 independent simulations with 10 000 individuals each). 

Black crosses:starting and end values of the simulation. d. Reproductive output (total number 

of offspring produced per individual) as a function of Lmax and b. e. Graphical illustration of the 

interaction between learning and the evolution of aging. Initially, the same decrease in aging 

rate without learning (left) leads to smaller increase of reproductive output than with learning 

(right). However, at some point mortality during reproductive period becomes negligible with 

learning but not without it which reverses the situation. 
 

 

Discussion 

We developed the GLA model, which integrates the effects of aging, learning, and growth on 

mortality, and thereby provides good fits to mortality data across the tree of life. The model 

distinguishes between age-dependent processes that increase mortality, which we call aging, 

and those that reduce mortality, which we summarize as growth and learning. 

We used the GLA model to analyze learning impacts the evolution of aging. We find that an 

ability to learn initially accelerates the evolution of slower aging, which is in good agreement 

with observational data. Brain size of birds and mammals correlates with their maximum 

longevity17–20, 21 and zoo records of parrots support a direct relationship between larger brains 

and longer life expectancy22. Previous theories, such as the cognitive buffer hypothesis17, have 

explained this relation by the reduction of extrinsic mortality due to a bigger cognitive 

flexibility. Our model suggests that learning additionally favors slower physiological aging on 

an evolutionary timescale, consistent with previous theoretical work on phenotypic plasticity 

23. 

Additionally, we reveal scenarios under which learning sets a lower bound on aging rates, 

namely when learning reduces the mortality rate during the reproductive period to near 

negligible levels. The GLA model thus predicts that only species with no or little survival 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525295doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525295


14 
 

benefits from learning can evolve negligible senescence. Indeed, most organisms with 

negligible senescence, such as hydra3–5, do not show obvious signs of coginitive learning or 

other experienced-based survival benefits, such as adaptive immunity 24. Notably, this includes 

more than 90% of angiosperms 25–27. 

ur conclusions are compatible, but independent of, classical theories on the evolution of aging. 

Mutation-accumulation theory28 and the hypothesis of antagonistic pleiotropy29 suggested a 

selection shadow, where aging evolved because the strength of selection declines with age due 

to the decreasing pool of survivors. In the GLA model, learning dampens this selection shadow 

by reducing mortality at a young age, and consistently increases the selection for slow-down of 

aging (Fig. 3). The disposable soma theory30 proposes a tradeoff between somatic maintenance 

and reproduction. The survival benefits of learning ultimately depend on the correct function 

of somatic tissues (e.g., brains, sensory organs, immune system). Somatic maintenance is 

therefore required for effective learning, and vice-versa learning could increase the fitness 

benefit of somatic maintenance. For example, it is conceivable that effective learning positively 

affects mating success. This positive feedback may further accelerate the evolution of slower 

aging. 

Together, we have shown that the effects of growth and learning can explain the diversity of 

age-dependent mortality dynamics across the tree of life, and that an ability to learn impacts the 

evolution of aging. Separating age-related effects on mortality into beneficial and detrimental 

processes is compatible with conventional theories of aging and makes an important 

contribution to explaining why negligible senescence occurs in some species, but not in others. 
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Methods 

General model 

The GLA model describes the hazard rate ℎ(𝑡) as the sum of effects of aging (α), growth (γ) 

and learning (λ) on survival, each of which has a distinct time dependence: 

ℎ(𝑡) = α(𝑡) − λ(𝑡) − γ(𝑡) 

aging follows the Gompertz-Makeham function9, a commonly used model of aging: 

α(𝑡) = 𝑐 + 𝑎𝑒𝑏𝑡 

c, a, and b are constant parameters, and t represents time. The parameter b is called the aging 

rate, the exponential rate at which mortality due to aging increases with time.  

Learning reduces mortality with age by a logistic function which plateaus to a maximal 

benefit of learning Lmax: 

λ(𝑡) = 𝐿𝑚𝑎𝑥(1 −
1

1 +  𝑒𝑛(𝑡−𝑘)
)  

𝑘 is the age at which the benefits of learning reach half their maximum. 𝑛 determines the 

steepness of the learning curve. 

We modeled the benefits of growth by a deaccelerating function.  

γ(𝑡) = 𝐺𝑚𝑎𝑥(1 −
1

1 + 𝑡ℎ
) 

Gmax corresponds to the maximal survival benefit due to growth and ℎ relates to the growth 

speed. Supplemental Figure 5 illustrates the shapes of those three functions. Importantly, our 

conclusions are robust to details of the model implementation, for example, using different 

functions to model aging (Supplemental Figure 6). 
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Mortality data 

Data on human mortality rates were acquired from the human mortality database31 on 20 April 

2022. We have analyzed the birth cohort (longitudinal) and population data (cross-sectional). 

Analysis was restricted to mortality data after 1948. Cohort data of at least 65 years were 

available for 26 countries. We focused on the 8 countries with a population of over 10 million 

in 1948. Population data was taken from 1948 to 2015 for the same countries. Animal and plant 

mortality data are from ref 5, excluding six species (Agave marmorata, Rana Aurora, 

Macrotrachela quadricornifera, Crocodylus johnsoni, Pan troglodytes and Poecillia 

reticulata) due to sparse or short data. 

Fitting the GLA model 

SLSQP (implemented in the scipy.optimize Python package)32, and CMA-ES (implemented in 

the CMA Python package)33 were used to fit the parameters of the GLA model to log 

transformed mortatlity data. Out of two fits, we always chose the better one assessed by the 

standard error of the regression, further referred to S measure). For fitting human data, a 

constraint was set for growth and its associated benefits to stop changing at age 30 since at this 

point, all growth and development is completed 34. 

Computation of fitness functions and the benefit of slower aging 

We used the intrinsic rate of population increase 𝑟 as a measure of Darwinian fitness, defined 

by the Euler-Lotka equation16 

∑ 𝑒−𝑟𝑥

∞

𝑥=0

𝑙𝑥𝑚𝑥 = 1    

𝑙𝑥 is the likelihood of survival to age x. 𝑚𝑥 corresponds to the number of offspring produced 

by individuals of age x. Based on the GLA model, survivorship 𝑙𝑥 was calculated as: 
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𝑙𝑥 = 1 − ∫ (α(𝑡) − λ(𝑡) − γ(𝑡)) 𝑑𝑡
𝑥

𝑡=0

 

For mx we used a Brass Polynomial defined as 

𝑚𝑥(𝑐, 𝑑, 𝑤) = {𝑐(𝑥 − 𝑑)(𝑑 + 𝑤 − 𝑥)2 
0

  
𝑖𝑓 (𝑑 + 𝑤) > 𝑥 > 𝑑 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

For models shown in in Supplemental data, we used constant (mx = c), increasing (𝑚𝑥 =

 𝑏0(1 + (0.05𝑥))), or decreasing (𝑚𝑥 =  
𝑏0

1+(0.05𝑥)
) functions. 

Fitness landscapes in Figure 4 were based on parameters form fitting to French population 

mortality data from 1951. Fitness landscapes produced using parameters from other countries 

and years were very similar. 

Agent-based models 

For all agent-based simulations, time was discrete, with each time step corresponding to the age 

increment of 1 and with all relevant rates and probabilities defined on a per-time step basis. 

Each simulation was run in 10 replicates unless stated otherwise in the main text. Parameters 

were taken from fits to French population mortality from 1951. Conclusions were robust to 

using parameters from fits to cohort or population form data from other countries and years. 

Asexual agent-based model 

Each agent was represented by three characteristics: its age x, its aging rate b, and its maximum 

benefit of learning Lmax. At the start of the simulation, 20’000 agents were assigned an age x 

drawn from a normal distribution with mean 30 and standard deviation (SD) 10, and a rate of 

aging b from a normal distribution with mean = 0.15 and SD = 0.001. Lmax was constant for all 

individuals. In each time-step, the chance of dying h was calculated for each individual and 

survival was determined by a Bernoulli trial. Surviving individuals were then picked at random 
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and cloned until the population reached 20’000 individuals. Cloned individuals had an age of 1 

and otherwise the same parameters as their parents. For each newly born agent there as a 2% 

chance of mutation in the aging parameter b where a new parameter b was drawn from a normal 

distribution centered around the pre-mutation value with SD of 0.0075. For a summary of 

parameters, see Supplemental Table 1. Simulations were run using statistical software R (v. 

4.2.0.) 

Sexual model 

Each agent was represented by four attributes: its sex, its age x, its aging rate b, and its 

maximum benefit of learning Lmax. When initializing the simulation, each agent was assigned 

x and b drawn from a normal distribution (mean(x) = 30, SD(x) = 10; mean (b) = 0.07, SD (b) 

= 0.001). Lmax was constant for all individuals. The initial population size was set to 5’000 and 

the maximum population size was capped at 10’000. Starting simulations with a population size 

of 10’000 did not affect the conclusions (Supplemental Figure 7). 

For every round of the simulation, the probability of death was computed based on the GLA 

model for each agent. Survivorship was determined by a Bernoulli trial, followed by either 

increasing the age by 1 or removing the agent from the simulation. 

Reproduction was modeled by the Brass Polynomial as described above using parameters 

obtained from human fertility data of men and women15. To optimize computations, simulations 

were discontinued for agents whose age was above the fertile period (𝑤 + 𝑑). Simulations 

where post-reproductive individuals were not removed led to identical consclusions 

(Supplemental Figure 7). The probability p of an agent to reproduce in a given round was 

calculated by:  

𝑝𝑥(𝑐, 𝑑, 𝑤) =
𝑚𝑥(𝑐, 𝑑, 𝑤)

max (𝑚𝑥(𝑐, 𝑑, 𝑤))
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All agents were then randomly paired as male and female couples. If both agents of a couple 

were able to reproduce, they produced a new agent of random sex. The aging rate b of the 

new agent was assigne the mean b of its parents. 2% of all newly created agents were then 

randomly selected to mutate and assigned an aging rate b drawn from a normal distribution 

with mean being its pre-mutation value and SD = 0.006.  

Parameters used in the simulations are summarized in Supplemental Table 1. Simulations were 

run using Python version 3.8.10. 

Aging rate plateau 

The aging rate plateau in Figure 3d was operationally defined as the time point the aging rate 

changed by less than 0.5% of the initial aging rate within 1’250 time steps. Specifically, we 

calculated the mean aging rate in two consecutive windows of 1’250 time steps and calculated 

the difference between these means. A plateau was called when this difference was twice in a 

row lower than 0.5% of the initial aging rate. 
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