
 1 

Mechanistic insights into the interactions between cancer drivers and the 

tumour immune microenvironment.  

 

Hrvoje Misetic1,2, Mohamed Reda Keddar1,2, Jean-Pierre Jeannon3, Francesca D. 

Ciccarelli1,2* 

 

1Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, 

UK 

2School of Cancer and Pharmaceutical Sciences, King’s College London, London 

SE11UL, UK 

3Department of Head & Neck Surgery, Guy's Hospital, Great Maze Pond, London SE1 

9RT, UK 

 

* = corresponding author (francesca.ciccarelli@crick.ac.uk) 

 

Running title: Interactions of genetic drivers with tumour immune infiltrates  

 

Keywords: cancer driver genes; cancer immunology; computational biology; head 

and neck cancer; functional networks.   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525325doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525325
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT  

The crosstalk between cancer and the tumour immune microenvironment (TIME) has 

attracted significant interest because of its impact on cancer evolution and response 

to treatment. Despite this, cancer-specific tumour-TIME interactions and their 

mechanisms of action are still poorly understood. Here we identified the interactions 

between cancer-specific genetic drivers and anti- or pro-tumour TIME features in 

individual samples of 32 cancer types. The resulting 477 TIME drivers are 

multifunctional genes whose alterations are selected early in cancer evolution and 

recur across and within cancer types. Moreover, the anti-tumour TIME driver burden 

is predictive of overall response to immunotherapy. Focusing on head and neck 

squamous cancer (HNSC), we rebuilt the functional networks linking specific TIME 

driver alterations to the TIME state. We showed that TIME driver alterations predict 

the immune profiles of HNSC molecular subtypes, and that deregulation of 

keratinization, apoptosis and interferon signalling underpin specific driver-TIME 

interactions. Overall, our study provides a comprehensive resource of TIME drivers 

giving mechanistic insights into their immune-regulatory role. 
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INTRODUCTION 

Cancer evolves within a stromal microenvironment with whom it engages in a dynamic 

crosstalk whereby genetic alterations in the cancer cells modulate the 

microenvironment and, in turn, the microenvironment sculpt the cancer genome1-3. 

Besides shaping cancer evolution, tumour-stroma interactions, especially with the 

tumour immune microenvironment (TIME), impact on overall prognosis and response 

to treatments including immunotherapy4,5. Unravelling cancer-TIME interactions is 

therefore crucial to fully understand cancer biology.  

Tumour-TIME interactions often involve genes that drive cancer evolution (cancer 

drivers). For example, loss-of-function (LoF) alterations in TP53 reduce the anti-

tumour infiltration of natural killer cells6 while gain-of-function (GoF) alterations in 

KRAS promote pro-tumour infiltration of myeloid-derived suppressor cells7. Moreover, 

deregulations of the WNT and PI3K-AKT cancer pathways result in CD8+ T cell 

exclusion8 and regulatory T cells increase9, respectively.  

Recently, systematic genetic screens have expanded the repertoire of genes that 

can modulate cancer immune response. A preferential loss of tumour suppressors has 

been observed in mice with a functional immune system where they likely promote 

immune escape10. Moreover, genome-wide CRISPR screens in co-cultures of cancer 

and cytotoxic T cells have identified genes losses conferring resistance to T cell-

mediated killing11. Although these screens enable identification of TIME-interacting 

genes beyond cancer drivers, they rely on cell or animal models rather than human 

samples and have so far assessed the TIME role of LoF alterations neglecting that of 

GoF alterations.  

Large cancer genomic and transcriptomic datasets allow to compute tumour-TIME 

associations in pan-cancer cohorts and are unbiased towards the alteration type. 
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These studies have so far reported a prevalence of PDL1 amplifications in immune-

hot tumours12,13 as opposed to in APC, KRAS, IDH1 or FGFR3 mutations in immune-

cold tumours12-15. They have so far focused mostly on anti-tumour immunity relying on 

the same list of drivers applied to the whole pan-cancer cohort. The absence of any 

further filtering on the actual cancer-specificity of the driver activity likely led to false-

positive associations. Moreover, very little is still known on the molecular mechanisms 

of the tumour-TIME associations.  

To overcome these limitations, here we have computed the interactions between 

manually curated and cancer specific lists of drivers and five anti- and pro-tumour 

immune features of 6921 samples in 32 solid cancers. We have then investigated the 

properties of the resulting genes and their potential to predict response to 

immunotherapy. Taking head and neck squamous cancer (HNSC) as an example, we 

have rebuilt the tumour-TIME functional networks in the three HNSC subtypes. This 

enabled us to unravel the mechanisms linking driver alterations to the TIME 

modifications at the individual sample level.   
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RESULTS 

TIME drivers are multifunctional genes commonly altered across cancers.  

To identify the cancer genes interacting with the TIME (TIME drivers), we derived a 

reliable set of genes specifically contributing to the evolution of each of the 32 TCGA 

cancer types (Fig. S1A). We started from a pan-cancer collection of experimentally 

validated (canonical) and computationally predicted (candidate) drivers16 and 

assigned drivers to each cancer type according to an expert annotation of the 

literature. We then retained only drivers with damaging alterations in in 7,730 TCGA 

samples with matched genomic and transcriptomic data. We considered LoF 

alterations in tumour suppressors, GoF alterations in oncogenes, and both types of 

alterations in drivers with unclassified roles. Finally, we removed rarely damaged 

drivers for which no reliable associations could be computed. The final list included 

254 canonical and 977 candidate drivers with damaging alterations in 6,921 samples 

across the 32 cancer types (Fig. 1A, Table S1).  

To characterise the TIME of these samples, we used five gene expression 

signatures indicative of overall tumour immune infiltration (IS)17, cytotoxic anti-tumour 

infiltration (CYS)12, anti-tumour T-helper activity (ICR)15, anti-tumour inflammation 

state (TIS)18, and cancer-promoting inflammation (CPI)19,20 (Table S2). The five gene 

signatures overlapped only minimally (Fig. S1B), confirming that they captured distinct 

TIME properties. Since IS and CPI were available only for a subset of samples, we re-

computed them for the whole cohort, verifying that our results reproduced those 

previously published17,19,20 (Fig. S1C, D).  

We grouped samples into low, medium, and high TIME levels based on the 

corresponding score distribution of each TIME feature in each cancer type. We then 

calculated the probability of a cancer driver to predict the TIME level of the sample 
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where it was altered using ordinal logistic regression with Lasso regularisation 

independently for each feature in each cancer type (Fig. 1A). Driver-TIME feature 

pairs with a positive 𝛽 regression coefficient indicated that samples with damaging 

alterations in that driver were likely to have medium or high levels for that TIME 

feature. Driver-TIME features pairs with a negative 𝛽 regression coefficients indicated 

the opposite.  

Overall, we identified 477 TIME drivers whose damaging alterations predicted 

higher (301) or lower (277) TIME levels in 30 cancer types (Fig. 1A, Table S3). These 

predictions included 66 of 102 experimentally validated TIME drivers (p = 4x10-8, 

Fisher's exact test, Table S4), supporting their robustness. Cholangiocarcinoma and 

kidney chromophobe cancer did not show any significant association, possibly 

because of the low statistical power due to their small cohorts. Predicted TIME drivers 

included 164 canonical and 313 candidate drivers, indicating that most well-known 

cancer drivers can interfere with the immune system (Fig. 1B). Unexpectedly since 

cancer drivers tend to be cancer-specific16, TIME drivers were instead recurrently 

damaged across cancer types (Fig. 1C) and samples (Fig. 1D, Table S5). Moreover, 

more than 40% of them were also predicted in multiple cancer types (Table S3). These 

included well-known TIME drivers such as TP53, PTEN, ARID1A, and KRAS, but also 

PIK3CA, CDKN2A, or TERT for which no or very little interactions with the TIME have 

been described. Most TIME drivers (261, 55%) were predictive of at least two features, 

and 45 of all five of them (Fig. 1E). An example was BRAF, whose V600E mutation is 

highly immunogenic21, despite BRAF signalling promoting pro-tumour inflammation22.  

Our results depicted TIME drivers as genes recurrently damaged across cancer 

samples and types and able to interact plastically with multiple TIME features. This 

suggested that TIME drivers were likely multifunctional genes involved in several 
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biological processes. To test this hypothesis, we computed the number of interactions 

of TIME drivers in the protein-protein interaction network. We confirmed that TIME 

drivers encoded proteins engaging in multiple protein-protein interactions (Fig. 1F) 

and frequently part of protein complexes (Fig. 1G). Moreover, TIME drivers mapped 

to a significantly higher number of biological pathways (Fig. 1H) and were involved in 

a higher number of immune-related functions (Fig. 1I) compared to non-TIME drivers.  
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Fig. 1. Identification and properties of TIME drivers 

 

A. Approach for TIME driver prediction. Associations between damaging alterations in 

cancer-specific drivers and TIME features were assessed in 32 cancer types using 

Lasso-regularised ordinal regression. Regressions were computed separately for 

canonical and candidate drivers and TIME features in each cancer type. 𝛽 >0 and 
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𝛽 <0 indicated that altered cancer drivers were predictive of medium/high or 

medium/low TIME levels, respectively.  

B. Proportions of TIME canonical and candidate drivers over all drivers.  

C. Proportions of TIME and non-TIME drivers in ≥ 2 cancer types.  

D. Fold change (FC) of median frequency alterations of TIME and non-TIME drivers 

in each cancer type. The number of samples in each cancer type is shown in brackets.  

E. Venn diagram of TIME drivers predictive of the five TIME features.  

F. Distributions of protein-protein interactions in TIME and non-TIME drivers.  

G. Proportions of TIME and non-TIME drivers that are part of protein complexes.  

H. Distributions of level 2-9 Reactome pathways23 containing TIME and non-TIME 

drivers.  

I. Proportion of TIME and non-TIME drivers mapping to immune-related pathways as 

derived from MSigDB24 and Reactome23.  

CPI = cancer-promoting inflammation, CYS = cytotoxicity score, FDR = false discovery 

rate, ICR = immunologic constant of rejection, IS = immune score, TIS = tumour 

inflammation signature. TCGA abbreviations are listed in Table S1. Proportions (C, G, 

I) and distributions (D, F, H) were compared using Fisher’s exact test and Wilcoxon 

rank-sum test, respectively. In (D), Benjamini-Hochberg correction for multiple testing 

was applied.  
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TIME tumour suppressors and oncogenes predict opposite TIME states  

Given their different mode of action, we sought to analyse the TIME interactions of 

tumour suppressors and oncogenes separately. Overall, we found that their alterations 

had an opposite effect on the TIME composition. While tumour suppressors were 

enriched in TIME drivers predictive of a hot anti-tumour TIME, oncogenes were 

enriched in TIME drivers predictive of cold pro-tumour TIME (Fig. 2A, Table S6). 

These observations suggested that tumour suppressor alterations preferentially 

helped tumours to survive in a hot TIME. Oncogene alterations, instead, sustained 

tumour growth in the presence of a pro-tumour TIME.  

We reasoned that, if alterations in TIME tumour suppressors favoured immune 

escape, they were likely to occur early in tumour evolution. To test this hypothesis, we 

computed the proportion of clonal drivers and found that TIME tumour suppressors 

were enriched in clonal drivers compared to TIME oncogenes and non-TIME tumour 

suppressors (Fig. 2B, Table S7). Moreover, the proportion of clonal TIME drivers 

predictive of high immune infiltration was significantly higher than that of TIME drivers 

predictive of low immune infiltration (Fig. 2C). Similarly, anti-tumour TIME drivers were 

enriched in clonal alterations compared to pro-tumour TIME drivers (Fig. 2D). 

Therefore, cancers with a hot TIME start to select alterations in tumour suppressors 

very early in their evolution. Interestingly, also the proportion of TIME oncogenes with 

clonal alterations was significantly higher than that of non-TIME oncogenes (Fig. 2B, 

Table S7). This suggested that, independently on their effect, drivers involved in the 

tumour-immune interactions are altered earlier than other drivers. Interestingly, 74% 

of genes driving somatic clonal expansion in non-cancer tissues25 were  TIME drivers, 

indicating that their interaction with the immune system may even predate cancer 

transformation. 
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A hot TIME is needed for an effective response to immune checkpoint blockade 

(ICB)4. We therefore hypothesised that the number of antitumour TIME drivers in a 

cancer type (i. e. its antitumour TIME driver burden, anti-TDB) could predict its 

tendency to respond to ICB. To test for this, we considered whether ICB treatment had 

been approved for that cancer type26,27 and used the median tumour mutational 

burden (TMB) for comparison. Unsurprisingly since both anti-TDB and TMB depend 

on the overall number of cancer alterations, they were positively correlated (Fig. 2E, 

F). We used Bayesian logistic regression to account for this correlation28 and found 

that TMB and anti-TDB were equally predictive of response to ICB (p = 0. 003). We 

then compared the predictive power of TMB and anti-TDB alone or in combination 

using Receiver Operating Characteristic (ROC) curves. We confirmed that TMB and 

anti-TDB alone were significant predictors of response, but their combination further 

improved their predictive power (Fig. 2G). In line with their antitumour TIME 

interactions, antitumour TIME tumour suppressor burden (anti-TTB) had higher 

predictive power than the TIME oncogene burden (anti-TOB, Fig. 2H).   
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Fig. 2. Effects of tumour suppressors and oncogenes on TIME and ICB response 

 

A. Enrichment of TIME drivers predictive of medium/low (𝛽 < 0) or medium/high (𝛽 >

0) TIME levels in tumours suppressors and oncogenes.  

B. Proportions of TIME and non-TIME tumour suppressors or oncogenes with clonal 

damaging alterations.  

C. Proportions of clonal TIME drivers predictive of high or low immune infiltration. 
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D. Proportions of clonal TIME drivers predictive of an anti-tumour (CYS, TIS, ICR 𝛽 >

0, or CPI 𝛽 < 0) and pro-tumour (CYS, TIS, ICR 𝛽 < 0, or CPI 𝛽 > 0) TIME.  

E. Number of antitumour TIME drivers, approval ICB treatment and TMB across 

cancer types. The number of samples for each cancer type is shown brackets.  

F. Pearson’s correlations between the median TMB and the number of antitumour 

TIME drivers in 31 cancer types, excluding COAD-MSI.  

ROC curves comparing the performance of TMB and anti-TDB (G) and TOB or TTB 

(H) in predicting response to ICB. Recall rates and AUCs were calculated across 100 

cross-validations.  

AUC = area under the curve, CPI = cancer-promoting inflammation, CYS = cytotoxicity 

score, ICB = immune checkpoint blockade, ICR = immunologic constant of rejection, 

IS = immune score, anti-TDB = antitumour TIME driver burden, TIME = tumour 

immune microenvironment, TIS = tumour inflammation signature, TMB = tumour 

mutational burden, TOB = TIME oncogene burden, TTB = TIME tumour suppressor 

burden. TCGA abbreviations are listed in Table S1. Proportions (A-D) were compared 

using Fisher’s exact test. In (A), Benjamini-Hochberg correction for multiple testing 

was applied.   
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TIME drivers predict the TIME profiles of head and neck cancer subtypes 

To gain further insights into driver-TIME interactions, we focused on head and neck 

squamous cell carcinoma (HNSC), which identifies group of genetically 

heterogeneous cancers from multiple anatomical sites29. The two main subtypes are 

caused by human papillomavirus (HPV+ HNSC) and cigarette smoking (HPV- HNSC), 

respectively. HPV+ tumours show fewer genetic instability, respond better to 

treatments and have an overall better prognosis30. Despite having among the highest 

leukocyte infiltration14, HNSC shows variable response to immunotherapy26. This 

makes it an interesting cancer type to further investigate the dynamic of driver-TIME 

interactions.  

We expanded the TCGA HNSC cohort to include samples from the Clinical 

Proteomic Tumour Analysis Consortium (CPTAC)31, for a total of 562 samples with 

matched genomic and transcriptomic data (Fig. 3A). Of these, 68 were positive to 

human papillomavirus (HPV+). Based on the levels copy number alterations (CNAs)32, 

we further divided the remaining HPV negative (HPV-) HNSCs into 351 CNAhigh and 

143 CNAlow samples (Fig. 3A, Fig. S2A). We confirmed that HPV+ HNSC patients 

have better overall survival (Fig. 3B) and, within the HPV- group, high levels of 

aneuploidy confer worse prognosis29 (Fig. 3C).  

We quantified the immune infiltrates in samples of the three HNSC subtypes from 

their gene expression profiles and confirmed the hot anti-tumour TIME of HPV+ 

HNSCs (Fig. 3D, Table S8). Interestingly, we observed an overall higher anti-tumour 

immunity in HPV- CNAlow compared to HPV- CNAhigh HNSCs (Fig. 3E). HPV- CNAhigh 

HNSCs were instead enriched in M0 macrophages and regulatory T cells, suggesting 

that these pro-tumour immune infiltrates could contribute to their worse prognosis. 

When compared directly, HPV+ and CNAlow HNSCs showed a different immune 
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infiltration profile, with the former enriched in T cells but depleted in NK cells and 

neutrophils compared to the latter (Fig. 3F). The profiles of the five TIME features 

across HNSC subtypes confirmed that both HPV+ HNSCs and HPV- CNAlow HNSCs 

were rich in anti-tumour and poor in pro-tumour TIME (Fig. 3G, H, Table S9).  

To test whether the TIME features of the three HNSC subtypes could be explained 

by their TIME driver alteration profile, we compared the frequency of the 53 HNSC 

TIME drivers across subtypes (Table S3). Five of the seven TIME drivers significantly 

more frequently damaged in HPV+ HNSCs were predictive of high anti-tumour or low 

pro-tumour TIME (Fig. 3I). Similarly, all three TIME drivers more frequent in HPV- 

CNAlow HNSCs were predictive of high anti-tumour immunity, while most TIME drivers 

more frequent in HPV- CNAhigh were predictive of low anti-tumour immunity (Fig. 3J, 

K). Moreover, HPV+ and HPV- CNAlow HNSCs showed significantly higher anti-tumour 

or lower pro-tumour TDB per sample than HPV- CNAhigh HNSCs (Fig. 3M, N). 

These results indicated that the distinct immune profiles within HNSCs segregate 

with the distinct TIME driver alteration profiles across molecular subtypes.   
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Fig. 3. Immune profiles and TIME driver alterations of HNSC 
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A. HNSC extended cohort. HNSCs collected from TCGA and CPTAC were divided in 

HPV+, HPV- CNAlow and HPV- CNAhigh samples based on HPV infection and level of 

aneuploidy32.  

Kaplan-Meier survival curves between HPV+ and HPV- (B) or HPV- CNAlow and HPV- 

CNAhigh (C) HNSC patients. Overall survivals were compared using the log-rank test.  

Comparison of CIBERSORTx absolute score medians between HPV+ and HPV- (D); 

HPV- CNAlow and HPV- CNAhigh (E); or HPV+ and HPV- CNAlow (F) HNSCs. Only 

immune cell types enriched in at least one HNSC subtypes are shown.  

Comparison of enrichment factors (EFs) in the five TIME features between HPV+ and 

HPV- (G) or HPV- CNAlow and HPV- CNAhigh (H) HNSCs (see Methods).  

TIME drivers more frequently damaged in HPV+ HNSCs (I), HPV- CNAlow (J), or HPV- 

CNAhigh HNSC samples (K). For HPV- CNAhigh HNSCs only the top 13 TIME drivers 

are shown (full list in Table S3).  

CPI = cancer-promoting inflammation, CYS = cytotoxicity score, CPTAC = Clinical 

Proteomic Tumour Analysis Consortium, EF = enrichment factor, FDR = false 

discovery rate, HPV = human papillomavirus, ICR = immunologic constant of rejection, 

IS = immune score, TIS = tumour inflammation signature. Proportions were compared 

using Fisher’s exact test (D-F, I-K) or Mantel-Haenszel chi-square test (G, H). 

Distributions (M, N) were compared using Kruskal−Wallis test. In (D-K), Benjamini-

Hochberg correction for multiple testing was applied.   
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Functional networks uncover the molecular mechanisms of driver-TIME 

interactions 

To unravel the functional links between driver alterations and TIME features in HNSC, 

we rebuilt the transcriptional regulatory network of 1,443 transcription factors (TFs) in 

562 HNSCs using their expression profiles (Fig. 4A). Measuring TF protein activity, 

we found 1,211 TFs overall active in HNSC and 398 differentially active in the three 

HNSC subtypes. Of these, 240 showed a significant correlation with TIME features in 

one of the three HNSC subtypes (TIME TFs). Comparing the protein activity of these 

TIME TFs in HNSCs with and without damaging alterations in the 53 HNSC TIME 

drivers, we found 1,386 TIME driver – TIME TF associations. We then combined 

several types of functional data (Methods) and identified seven functional networks 

linking HNSC TIME drivers and TIME TFs (Fig. 4A, Tables S10). Since these 

networks comprised between 37 and 203 functional nodes (Table S11), we extracted 

the coherent subnetworks connecting TIME drivers to TIME TFs through maximum 

three nodes.  

These subnetworks enabled investigation of the transcriptional programmes 

directly linking TIME driver alterations to the TIME features in each HNSC subtype. 

For example, the TIME oncogene DNMT3B, predictive of a hot TIME, was frequently 

damaged in HPV+ HNSCs (Fig. 3I). DNMT3B was part of the HPV+/TIS subnetwork 

involving HIC1 and the TIME TF PHF1 (Fig. 4B, Table S11). DNMT3B is known to 

methylate HIC133 inhibiting PHF1 recruitment and activating its transcriptional 

repression programme34. Consistently, we found a higher PHF1 protein activity (Fig. 

4C) and a downregulation of keratinization (a pathway enriched in PHF1 targets, Table 

S12) in DNMT3B-damaged HPV+ HNSCs (Fig. 4D). Keratinocytes have recently been 

reported to inhibit T cell proliferation by secreting T cell-modulating cytokines35. This 
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could explain how DNMT3B amplification could lead to higher immune infiltration. 

Interestingly, HPV+ HNSCs have been divided into two transcriptional subtypes, one 

(HPV+ KRT) characterized by high keratinocyte differentiation and the other (HPV+ 

IMU) with a strong immune response36. Using the same dataset36, we verified that 

DNMT3B was more frequently damaged in HPV+ IMU HNSCs (Fig. 4E). This 

independently supported the hot anti-tumour TIME induced by DNMT3B amplification.  

Next, we investigated the TIME role of the tumour suppressor CASP8 whose 

damaging alterations were predictive of anti-tumour immunity and were enriched in 

HPV- CNAlow HNSCs (Fig. 3J). Two lines of evidence supported a role of CASP8 loss 

in immune escape in HPV- CNAlow HNSC. The first was that FASL, a cytotoxic T cell-

induced trigger of apoptosis37 was upregulated in CASP8-damaged HPV- CNAlow 

HNSCs (Fig. 4F). Since CASP8 is the downstream target of FASL-initiated apoptotic 

cascade (Fig. 4G), its loss could prevent cancer cells to undergo apoptosis. The 

second line of evidence came from the HPV- CNAlow HNSC subnetworks where 

CASP8 interacts with the TIME TF IRF7 through TP53 (Fig. 4H, Table S11). Since 

CASP8 loss stabilises TP5338, we expected higher IRF7 activity in CASP8-damaged 

HPV- CNAlow HNSCs, which was indeed confirmed (Fig. 4I). IRF7 targets were 

enriched in several immune and apoptosis-related pathways (Table S12). 

Accordingly, we found a significant upregulation of both a/b interferon signalling and 

apoptosis negative control CASP8-damaged HPV- CNAlow HNSCs (Fig. 4J). This 

further confirmed that apoptosis reduction was a CASP8-induced immune escape 

mechanism in HPV- CNAlow HNSCs with a hot TIME.  

Lastly, we analysed the functional network of the TIME oncogene TERT, 

predictive of a cold TIME and whose GoF alterations were enriched in HPV- CNAhigh 

HNSCs (Fig. 3K). TERT is a member of the WNT- 𝛽-catenin pathway and its activation 
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led to WNT upregulation in TERT-damaged HPV- CNAhigh HNSCs (Fig. 4K). WNT 

activation has been linked to immune exclusion8, which could explain the role of TERT 

in inducing a cold TIME. Moreover, TERT was in the same HPV- CNAhigh subnetwork 

of the TIME TF PRMT5 (Fig. 4L, Table S11). TERT activation is known to induce 

AKT1-mediated EGFR phosphorylation that, in turn, downregulates PRMT5 through a 

negative genetic interaction39. We confirmed a lower PRMT5 protein activity (Fig. 4M) 

and the downregulation of interferon signalling (Fig. 4N), one of the pathways enriched 

in PRMT5 targets (Table S12) in TERT-damaged HPV- CNAhigh HNSCs. A lower 

interferon activity could reduce the production of T cell chemo-attractants resulting in 

a cold TIME.   
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Fig. 4. Driver–TIME functional networks in HNSC subtypes 
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A. Reconstruction of HNSC driver-TIME functional networks. HNSC transcriptional 

regulatory network was used to identify the transcription factors (TFs) differentially 

active (DA) in the three HNSC subtypes that correlated with TIME features and were 

associated with TIME drivers. Combining functional data, the significant functional 

networks linking these drivers to TIME TFs were derived.  

B. DNMT3B functional subnetwork in HPV+ HNSCs.  

C. Comparison of PHF1 protein activity between DNMT3B-damaged and wild-type 

(wt) HPV+ HNSCs.  

D. Gene set enrichment analysis (GSEA) plot comparing the activation of the 

keratinization pathway between DNMT3B-damaged and wt HPV+ HNSCs.  

E. Comparison of DNMT3B-damaged samples between immune (IMU) and 

keratinization (KRT) HPV+ HNSCs from36.  

F. Comparison of FASL gene expression levels between CASP8-damaged and wt 

HPV- CNAlow HNSCs.  

G. Schematic of cytotoxic T-cell induced apoptosis of cancer cells through the FAS-

FASL cascade.  

H. CASP8 functional subnetwork in HPV- CNAlow HNSCs 

I. Comparison of IRF7 protein activity in CASP8-damaged and wt HPV- CNAlow 

HNSCs.  

J. GSEA plots comparing the activation of the a/b interferon signalling and apoptosis 

regulation pathways between CASP8-damaged and wt HPV- CNAlow HNSCs.  

K. GSEA plot comparing the activation of the WNT signalling pathway between TERT-

damaged and wt HPV- CNAhigh HNSCs.  

L. TERT functional subnetwork in HPV- CNAhigh HNSCs.  
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M. Comparison of PRMT5 protein activity between TERT-damaged and wt HPV- 

CNAhigh HNSCs.  

N. GSEA plot comparing the activation of the interferon signalling pathway between 

TERT-damaged and wt HPV- CNAhigh HNSCs.  

CNA = copy number alteration, HNSC = head and neck squamous cell carcinoma, 

HPV = human papilloma virus, TIME = tumour immune microenvironment. 

Distributions (C, F, I, M) were compared using Wilcoxon rank-sum test. Proportions 

(E) were compared using Fisher’s exact test. GSEAs (D, J, K, N) were performed 

using gene set permutation tests.   
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DISCUSSION 

In this study, we predicted the functional interactions between the genetic drivers of 

6,921 cancers and their immune microenvironment. Despite the analysis being 

conducted separately in 30 cancer types, the predicted TIME drivers shared key 

properties, including high multifunctionality, plasticity in their interaction with the TIME, 

and recurrent damaging alterations across cancer types and samples. These 

properties support a multifaceted role of TIME drivers in promoting tumour evolution 

through both cancer-intrinsic and cancer-extrinsic mechanisms and suggest that they 

can interfere with multiple TIME features likely in a tissue-specific manner.  

We found an enrichment of TIME tumour suppressors in early mutated drivers and 

their alterations are predictive of a hot anti-tumour TIME. These observations strongly 

suggesting that they are involved in immune evasion. This agrees with the recently 

reported preferential loss of tumour suppressors in mouse models with a functional 

adaptive immunity10 and supports their emergent role as the guardians of immune 

integrity40. Differently from tumour suppressors, TIME oncogenes were preferentially 

damaged in samples with a cold TIME, in line with the documented role of MYC, HRAS 

and BRAF oncogenes in inducing inflammatory chemokines and cytokines41. The 

opposite effect of tumour suppressors and oncogenes on the TIME could reflect their 

broad functional differences, with the former mostly involved in controlling cell cycle, 

DNA repair and apoptosis and the latter enriched in signalling genes42. In all cases, 

TIME alterations occur earlier than those of other drivers, suggesting that the 

interactions between the mutated epithelium and the immune cell compartment is 

likely to start well before the epithelial cells become fully transormed25. 

The burden of antitumour TIME drivers, particularly tumour suppressors, can 

predict whether a cancer type is responsive to ICB similarly to TMB and their 
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combination improves the overall predictive power. The identification of patients who 

are most likely to benefit from ICB treatment is an open clinical question since 

response to ICB primarily assessed in the clinic and translational biomarkers are still 

very few43. For example, although ICB treatment is now standard of care in recurrent 

HNSC44, the majority of patients will not respond45 exposing them to unnecessary toxic 

effects and worse survival. In clinical practice, the combined positive score based on 

the number of PD-L1 positive cells over all tumour cells is used to determine eligibility 

to ICB treatment46. Still, only 30% of HNSC patients will respond, some of which with 

dramatic and prolonged results but currently there are no reliable biomarkers26. We 

showed that HPV+ but also HPV- CNAlow HNSCs tend to have a hot anti-tumour TIME 

while HPV- CNAhigh HNSCs are usually deprived of immune infiltration. This would 

suggest a prioritisation of ICB treatment only in patients with HPV+ and HPV- CNAlow 

HNSC subtypes.  

Unlike TMB that has a sample-specific value, anti-TDB is a feature of the cancer 

type and cannot predict response to ICB of the individual patient. To overcome this 

limitation and unravel the molecular mechanisms of the driver-TIME interactions, we 

rebuilt the transcription regulatory networks linking directly driver alterations to TIME 

states. We identified TIME-driver functional networks for 33 HNSC TIME drivers, 

indicating how alterations in these genes interfere with the TIME. For example, 

DNMT3B-damaged HPV+ HNSCs significantly overlap with the recently identified 

HPV+ IMU subtype, which shows better prognosis and high immune infiltration36. Our 

data show that this is likely achieved through a reduction of keratinocyte differentiation 

induced by DNMT3B amplification. Therefore, patients with DNMT3B-damaged HPV+ 

HNSCs are good candidates for a successful ICB treatment. Similarly, CASP8-

induced immune escape through apoptotic inhibition is another mechanism evolved 
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by HPV- CNAlow HNSCs to survive a high anti-tumour infiltration. Our prediction is that 

also this subgroup of patients would benefit from ICB treatment. On the contrary, 

TERT activation modulates a cold TIME, suggesting that HPV- CNAhigh patients with 

this alteration would not benefit from immunotherapy.  

Besides these examples, our analysis provides a comprehensive set of driver-

TIME interactions and mechanistic insights into their crosstalk that could be further 

explored in experimental and clinical settings.  
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METHODS 

TCGA data  

A dataset of 7730 TCGA samples with quality-controlled mutation (SNVs and indels), 

copy number and gene expression data in 32 solid cancer types was assembled from 

the Genomic Data Commons portal (GDC, https://portal. gdc. cancer. gov/). 

Oesophageal cancer was divided into squamous cell carcinoma (OSCC) and 

adenocarcinoma (OAC) using TCGA annotation. Colon adenocarcinoma was split into 

COAD-MSS and COAD-MSI according to the level of microsatellite instability (MSI)47.  

All SNVs and indels were annotated with ANNOVAR48 (April 2018) and 

dbNSFP49 v3. 0 and only those identified as damaging were retained. These included 

truncating mutations (stopgain, stoploss, frameshift), hotspot mutations, missense 

mutations and splicing mutations predicted as damaging as described in16.  

Copy Number Alteration (CNA) segments, sample ploidy and sample purity were 

obtained from TCGA SNP arrays using ASCAT50 v. 2. 5. 2. Segments were intersected 

with the exonic coordinates of 19,641 unique human genes in hg19 and CNA genes 

were identified as those with ≥25% of transcribed length covered by a CNA segment. 

RNA-Seq data were used to filter out CNAs with no effect on gene expression. 

Damaging gene gains were defined as CN>2 times sample ploidy and significant 

increase in gene expression as compared to baseline expression using a Wilcoxon 

rank-sum test and accounting for multiple testing using Benjamini-Hochberg 

correction. Only gene gains with false discovery rate (FDR) <0.05 were retained. 

Homozygous gene losses were defined as CN = 0 and FPKM expression values <1 

over sample purity. Heterozygous gene losses were defined as CN = 1 or CN = 0 but 

FPKM expression values >1 over sample purity. This resulted in 2,163,756 redundant 

genes damaged in 7,730 TCGA samples. Of these, 511,048 genes acquired LoF 
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alterations (homozygous deletion, truncating, missense damaging, splicing mutations, 

or double hits), while 1,652,708 genes were considered to acquire GoF alterations 

(hotspot mutation or damaging gene gain).  

 

Driver annotation 

The cancer drivers for each of 32 cancer types were retrieved from the Network of 

Cancer Genes (NCG, http://www. network-cancer-genes. org), which collects 

preferentially mutational drivers16. To add drivers altered through CNAs, focal 

amplifications and deletions in each cancer type were gathered from the FireBrowse 

portal (http://firebrowse. org)51. Amplification and deletion segments were intersected 

with 256 canonical and 1,405 candidate oncogenes and 254 canonical and 1,318 

candidate tumour suppressors16, respectively. Drivers for at least 25% of their 

transcript within a CNA event were considered CNA drivers. Only tumour suppressors 

with LoF alterations (homozygous deletion, truncating, missense damaging, splicing 

mutations, or double hits) and oncogenes with GoF alterations (hotspot mutation or 

damaging gene gain) were retained. Both LoF and GoF alterations were considered 

for drivers with unclassified roles. Finally, only drivers damaged in ≥2% or five samples 

were retained. In total 1,231 (254 canonical and 977 candidate drivers, Fig. 1 and 

S1A) damaged in 6,921 samples were used for the identification of TIME drivers.  

The clonality of 27,763 damaging mutations affecting 1231 drivers was measured 

using the cancer cell fraction (CCF) as described in52. Briefly, for each damaging 

mutation, the probability to have a CCF from 0. 01 to 1 incremented by 0. 01 was 

calculated given the observed variant allele frequency (VAF), copy number status of 

the mutation, sample purity and normal copy number. The CCF with the highest 

probability was selected with the associated 95% confidence interval (CI). A damaging 
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mutation was considered clonal if 95% CI of the CCF overlapped with 1, otherwise it 

was considered subclonal. A driver was considered clonal when it had at least one 

clonal damaging mutation.  

The clonality of 38,846 damaging CNAs affecting 1231 drivers was assessed with 

ABSOLUTE53, using mutation VAFs and SNP6 array segmentation values obtained 

from GDC. ABSOLUTE was run with default parameters and the cancer type-specific 

karyotype models for 6,900 TCGA samples. Even in this case the returned CCF with 

the highest probability was selected with the associated 95% CI. A CNA driver was 

considered clonal if a 95% CI of its CCF overlapped with 1, otherwise it was 

considered subclonal.  

 

TIME features 

To assess the cytotoxic anti-tumour infiltration score (CYS), 6,445 samples were 

grouped into six clusters ordered from the lowest (CYS1) to the highest (CYS6) CYS 

levels, as defined in the original publication12. The six CYS levels were grouped into 

low (CYS1, 2), medium (CYS 3, 4) and high (CYS 5, 6) groups for consistency with 

the other features. To assess the immunologic constant of rejection (ICR), 6528 

samples were grouped into low, medium or high ICR levels based on the expression 

distribution of 20 genes encoding IFN-simulated, regulatory, and effector immune 

molecules15. To assess the tumour inflammation signature (TIS), 6266 samples were 

grouped into low, medium or high TIS levels based on the expression values of 18 

genes measuring adaptive immune response18. Overall immune infiltration (immune 

score, IS) and cancer-promoting inflammation (CPI) values were calculated for 6921 

and 6728 samples, respectively, based on the expression of 141 genes using 

ESTIMATE17 and as the mean of the Log2-transformed expression20 of ten genes 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525325doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525325
http://creativecommons.org/licenses/by/4.0/


 30 

encoding known mediators of cancer-promoting inflammation19, respectively. For IS, 

FPKM gene expression data from GDC were used to assess gene expression levels. 

For CPI, RSEM gene expression data from cBioPortal54,55 were used. Cancer samples 

were grouped into discrete categorical levels starting the lowest (low) to the highest 

quartile (high) and assigning all remaining samples to the group with medium levels. 

The sample grouping was performed for each cancer type separately.  

 

Lasso-regularised ordinal regression  

Lasso-regularised ordinal regression was used to estimate the probability of each 

damaged driver to predict the TIME ordinal level of each sample using the glmnetcr 

function from the glmnetcr R package56 v. 1. 0. 6. The input data consisted of a binary 

matrix whose rows corresponded to samples (observations) and columns (variable) to 

the driver alteration status. TIME levels were encoded as ordered factor vectors with 

a size equal to the number of samples. Regression analysis was run for each TIME 

feature in each cancer type, considering canonical and candidate drivers separately 

and only samples with ≥1 damaged driver, for a total of 320 glmnetcr calls to fit 320 

regression models. All analyses were run without variable standardisation and all other 

parameters set to default values. In each regression, multiple steps of the model with 

the different values of lambda were ran and models with the minimum Akaike 

information criterion (AIC) were used to extract non-zero 𝛽 coefficients56.  

 

Protein-protein interaction and functional analysis 

The number of non-redundant protein-protein interactions for TIME and non-TIME 

drivers were computed from BioGRID57 v. 3. 5. 185, IntAct58 v. 4. 2. 14, DIP59 

(February 2018), HPRD60 v. 9 and Bioplex61 v. 3. 0 as described in16 and compared 
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using a Wilcoxon rank-sum test. The proportion of proteins encoded by TIME and non-

TIME cancer drivers that engage in complexes were derived from CORUM62 v. 3. 0, 

HPRD60 v. 9 and Reactome23 v. 72 as described in16 and compared using Fisher’s 

exact test.  

Reactome23 v. 72 level 2-9 pathways were used to calculate the numbers of 

pathways each of 821 drivers present in Reactome mapped to. These were compared 

between 335 TIME and 486 non-TIME cancer using a Wilcoxon rank-sum test. A list 

of 2,519 immune-related genes was derived combining genes mapping to the immune 

system level 1 pathway of Reactome23 v. 72 and the immune-related pathways in 

MSigDB24. The proportions of immune-related TIME and non-TIME drivers were 

compared using a Fisher’s exact test.  

 

HNSC extended cohort 

A dataset of 109 HNSC samples from the Clinical Proteomic Tumour Analysis 

Consortium (CPTAC) with quality-controlled mutation (SNVs and indels), copy number 

and gene expression data was downloaded from GDC. Damaging mutations were 

identified as described above. CNAs were derived using AscatNGS63. Sample ploidy 

was calculated as the average copy number of all segments weighted by segment 

length63. Sample purity was measured from gene expression data using ESTIMATE17. 

Gene gains, heterozygous and homozygous gene losses were defined as described 

above. In total, 26,450 redundant genes were damaged with 7,891 LoF and 18,559 

GoF alterations. The CPTAC samples were added to the TCGA cohort for a total of 

562 HNSCs.  

HPV- HNSCs were divided into CNAhigh and CNAlow subtypes as described in32 

using a cohort of 1,495 squamous cell carcinomas that included 1,386 TCGA samples 
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and 109 CPTAC HNSCs. CNA GISTIC2 loci were obtained from32 for the TCGA cohort 

and from LinkedOmics64 for the CPTAC HNSCs. Loci were classified as copy number 

neutral, low and high CNAs and used for hierarchical clustering using Euclidean 

distance. Two clusters, one with 143 HPV- CNAlow HNSCs and the other with 351 HPV- 

CNAhigh HNSCs were identified. TCGA classification overlapped with that in the 

original publication32 for 94% of samples (Figure S2A). Survival analysis was 

performed for 557 patients with available clinical data using the survminer R package 

v. 0. 4. 9 and compared between HNSC subtypes using the log-rank test.  

CIBERSORTx65 was run on the FPKM-normalised RNA-seq data of 562 HNSCs 

using the LM22 signature to estimate the absolute abundance level of 22 immune 

populations. Absolute abundance scores were compared between HNSC subtypes 

using a Wilcoxon rank-sum test and corrected with Benjamini-Hochberg correction.  

Since only FPKM gene expression data were available for all 562 HNSCs, the 

five TIME features were recalculated using FPKM instead of RSEM values, verifying 

that the two measures correlated positively (Figure S2B-F). For CYS and ICR, 

clustering was done as described in the original publications12,15. For TIS the same 

clustering strategy as for the TCGA cohort was applied. For IS and CPI, the score was 

calculated as described above.  

For each TIME feature, the enrichment factor (EF) of a HNSC subtype 𝑖 in a 

TIME level 𝑗 (𝐸𝐹!") was calculated as: 

𝐸𝐹𝑗𝑖 = (
𝑛𝑖𝑗
𝑛𝑖 )/(

𝑁𝑗
𝑁 ) 

Where 𝑛!" is the number of HNSCs in subtype 𝑖 with TIME level 𝑗; 𝑛! is the total number 

of HNSCs in subtype 𝑖; 𝑁" is the number of all HNSCs with TIME level 𝑗; and N is the 

total number of HNSCs. 
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TIME drivers – TIME TFs functional network 

A list of 1,471 genes annotated with the GO:0006355 (regulation of DNA-templated 

transcription) Gene Ontology (release 2022-05)66,67 term were considered bona fide 

transcription factors (TFs) and used as input for ARACNE-AP68 together with the gene 

expression profiles of 562 HNSCs with default parameters (Fig. 4A). The resulting 

HNSC transcriptional regulatory network composed of 1,443 TFs, 18,067 targets and 

202,512 interactions was used to infer the sample-level TF protein activity using 

VIPER69, resulting in 1,211 HNSC-active TFs.  

The expression levels of downstream targets of each active TFs were compared 

between HNSC subtypes and 100 adjacent normal tissues using ms-VIPER69. Overall, 

271, 113 and 212 differentially active (DA) TFs (p-value <0. 05) were found in HPV+, 

HPV- CNAlow and HPV- CNAhigh HNSCs, respectively, for a total of 398 unique DA TFs. 

Pearson’s correlation was calculated between the protein activity of each DA TF and 

each TIME feature to retrieve DA TFs significantly correlated with TIME in each HNSC 

subtype (TIME TFs, FDR <0. 1). Overall, 51, 103 and 159 TIME TFs were found in 

HPV+, HPV- CNAlow and HPV- CNAhigh HNSCs, respectively, for a total of 240 unique 

DA TFs.  

TIME TFs were tested for statistical association with 53 HNSC TIME drivers, 

comparing their protein activity in HNSCs with and without TIME driver alterations 

using Wilcoxon rank sum test. Overall, 131, 373 and 882 TIME TF- TIME driver 

significant associations (FDR <0. 1) were found in HPV+, HPV- CNAlow and HPV- 

CNAhigh HNSC, respectively, for a total of 1386 associations. TieDIE70 was applied to 

find functional interactions between significantly associated TIME TFs and HNSC 

TIME drivers. The prior knowledge network (PKN) for TieDIE was assembled from 

542,397 protein-protein16, 12,730 phosphorylation71, 15,104 genetic57 and 34,877 
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signalling interactions72 across 18,053 human genes. Fourteen TIME drivers–TIME 

TFs functional networks were rebuilt in each HNSC subtype and TIME feature, seven 

of which had an influence score significantly higher (p-value <0. 08) than random 

networks with the same degree distribution (Table S10). Starting from these networks, 

coherent subnetworks were defined as those with maximum three nodes between the 

TIME driver and the TIME TF and a positive coherency score70 (Table S11).  

TIME TF targets were functionally annotated using pathway enrichment analysis as 

described in73 (Table S12). GSEA74 v4. 3. 2 was used with a gene set permutation 

test of 1,000 iterations.  
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