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 2 

Abstract 27 

Background: In this study, we aimed to identify bacteria able to grow in the presence of several 28 

antibiotics including the ultra-broad-spectrum antibiotic meropenem in a British agricultural soil, by 29 

combining DNA stable isotope probing (SIP) with high throughput sequencing. Soil was incubated 30 

with cefotaxime, meropenem, ciprofloxacin and trimethoprim in 18O-water. Metagenomes and the 31 

V4 region of the 16S rRNA gene from the labelled “heavy” and the unlabelled “light” SIP fractions 32 

were sequenced.  33 

Results: After incubations, an increase of the 16S rRNA copy numbers in the “heavy” fractions of the 34 

treatments with 18O-water compared with their controls was detected. The treatments resulted in 35 

differences in the community composition of bacteria. Members of the phyla Acidobacteriota 36 

(formally Acidobacteria) are highly abundant after two days of incubation with antibiotics. Several 37 

Pseudomonadota (formally Proteobacteria) including Stenotrophomonas were prominent after four 38 

days of incubation. Furthermore, a metagenome-assembled genome (MAG-1) from the genus 39 

Stenotrophomonas (90.7% complete) was retrieved from the heavy fraction. Finally, 11 antimicrobial 40 

resistance genes (ARGs) were identified in the unbinned-assembled heavy fractions, and 10 ARGs 41 

were identified in MAG-1. On the other hand, only two ARGs from the unbinned-assembled light 42 

fractions were identified.  43 

Conclusions: The results indicate that both non-pathogenic soil- dwelling bacteria as well as 44 

potential clinical pathogens are present in this agricultural soil, and several ARGs were identified 45 

from the labelled communities, but it is still unclear if horizontal gene transfer between these groups 46 

can occur. 47 

 48 

Keywords: antimicrobial resistant bacteria, soil, antibiotics, pathogens, DNA stable isotope probing, 49 

high-throughput sequencing, metagenomics.  50 
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 3 

Introduction 53 

Soil represents a natural reservoir of antimicrobial resistance genes (ARG) that has originated as a 54 

defence mechanism for the microbes to deter antimicrobial products secreted by competing 55 

microbes in the same niche. However, the abuse and/or misuse of antibiotics among humans to 56 

treat diseases, and livestock production systems to increase yield has initiated the alteration of 57 

natural antimicrobial resistance (AMR) and subsequent spread across all terrestrial ecosystems [1]. 58 

Indeed, no soil environment can be now considered pristine as the ARGs are present in garden soils 59 

[2], agricultural soils [3], forests [4], grasslands [5], and even Antarctic soils [6]. So much so that soil 60 

can harbour up to 32% of the overall ARG diversity [7]. In addition, a previous study has reported the 61 

importance of low abundance antibiotic-resistant microbes in soil-plant systems for the spread of 62 

AMR [8]. 63 

Transmission of AMR back to humans through soil-microbe-animal-plant nexus endangers 64 

public health, since the spread of AMR could push us to the pre-antibiotic era. We now know what 65 

can happen to AMR in soils due to rise in antibiotic diversity and abundance in the environment but 66 

how AMR will spread in soil remains to be seen. In other words, the drivers, or mechanisms of the 67 

inevitable spread of AMR in soils when challenged with antibiotics remains to be determined. 68 

Deciphering this knowledge gap is crucial for us to develop strategies to alleviate the spread of AMR 69 

in terrestrial ecosystems. 70 

It has been hypothesised that the spread of AMR in soil is primarily driven by two non-71 

independent processes that can operate in tandem to alter the antibiotic resistome in soil [1,9]. One 72 

process is horizontal gene transfer (HGT) of antimicrobial resistance genes (ARG) between microbial 73 

community members. Secondly is the directional selection of antibiotic resistant microbes that can 74 

grow in the presence of antibiotics. This could be either due to incorporation of microbiomes 75 

derived from anthropogenic sources (e.g., organic fertiliser), or selection and proliferation of 76 

naturally resistant microbiota. We are now beginning to understand how HGT can facilitate the 77 

spread of AMR in pristine environments [6,10]. For instance, the blaNDM-1 gene that confers 78 
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resistance to carbapenem (last resort antibiotic) is now ubiquitous due to successive and distinct 79 

HGT events [11,12]. On the other hand, there is limited knowledge about the community 80 

composition of the microbiome that can resist antibiotic in soil. One of the main reasons could be 81 

the large abundance of extracellular DNA (eDNA) in soil, which cannot distinguish active antibiotic 82 

resistant microbes from dead/dormant antibiotic sensitive microbes  [13,14]. This could be the 83 

reason why studies have reported contradictory results of no change in microbiomes to complete 84 

change upon antibiotic addition [5,15].  85 

Agricultural ecosystems represent 38% of the Earth’s ice-free terrestrial surface — the 86 

largest use of land on the planet [16]. Sustainable agricultural practice envisions the widespread 87 

adoption of organic fertilisers instead of chemical fertilisers as a source of nutrients to maintain or 88 

increase crop yield [17]. This is essential to achieve climate-change goals and concomitantly meet 89 

the dietary demands of 9 billion people by 2050. However, the build-up of antibiotic concentrations 90 

and ARG abundance in environmentally sustainable organic fertilisers, such as livestock manure and 91 

sewage sludge, permeates agricultural soils to spread AMR by altering the microbiome [1,9,13,18]. 92 

Since AMR microbes are one of the major determinants of AMR spread, it is therefore crucial for us 93 

to identify the active fraction of the soil microbial community that can grow in the presence of 94 

antibiotics. 95 

Stable isotope probing (SIP) with [18O]-water presents a unique approach to identify the 96 

active AMR microbes [19,20]. SIP is a cultivation-independent approach that requires the addition of 97 

stable-isotope-enriched substrates (e.g., 13C-methane, 18O-water) to environmental samples 98 

followed by analyses of labelled DNA or RNA [20]. SIP techniques can target phylogenetically 99 

constrained metabolic processes (e.g., ethane oxidation) where from a diverse pool of active 100 

microbial community only those microbial guilds that can assimilate and subsequently incorporate 101 

the labelled substrate into their biomolecules such as DNA and RNA are identified. In contrast, SIP-102 

H2
18O as a substrate can potentially label all metabolically active or growing microbes since water is 103 

a prerequisite for growth and cellular maintenance [19,21]. Here, fast growing microbes are labelled 104 
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first, but eventually all active microbes are expected to contain isotope-enriched DNA. Additionally, 105 

18O has two more neutrons than naturally abundant 16O, whereas 2H, 13C and 15N has only one 106 

additional neutron compared to their naturally abundant counterparts (1H, 12C and 14N). This can 107 

potentially increase the degree of physical separation of labelled 18O-DNA from unlabelled DNA 108 

during isopycnic centrifugation in SIP. As a result, the SIP-H2
18O has been used as a robust method to 109 

identify the active microbes in a multitude of treatment set-ups such as nutrient addition to soil [22], 110 

soil rewetting [21,23], and soil warming [24].   111 

In this study we combine antibiotic selection and SIP-H2
18O to elucidate active and growing 112 

microbial communities in an agricultural soil. Antibiotic selection or continuous presence of 113 

antibiotics in the experiment will select only AMR microbes to grow, and simultaneously kill or 114 

inhibit the growth of sensitive microbes. We also use agricultural soil with no history of antibiotic 115 

addition either directly, or indirectly via organic fertilisers. This was done to reduce the bias in 116 

identification that can be introduced from long-term exposure of microbes to anthropogenic derived 117 

antibiotics as it may already have selected for a resistant microbial community with no difference 118 

between the antibiotic challenged and unchallenged communities. Our objectives for this study 119 

were to investigate whether microbes in agricultural soil with no-antibiotic history can grow if 120 

challenged with antibiotic; secondly, if they are present to identify the microbes and the metabolic 121 

machinery and/or AMR genes that confer resistance. We hypothesise that the addition of antibiotics 122 

to agricultural soils in the presence of H2
18O will unravel the identity of antibiotic resistant microbes 123 

and this will help to understand the drivers of AMR spread.  124 

 125 

Results 126 

To evaluate whether microbes in an agricultural soil with no-antibiotic history can grow if challenged 127 

with antibiotic, agricultural soils were incubated with an antibiotic cocktail of meropenem (mem), 128 

cefotaxime (ctx), ciprofloxacin (cip) and trimethoprim (tmp), along with H2
18O or natural isotope 129 

abundance water (referred to as H2
16O). Here we report the results after 4-days of incubation with 130 
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antibiotic addition at 0 and 48 hr time-points. A total of 18 CsCl gradient fractions were collected 131 

following ultracentrifugation and the 16S rRNA gene copy numbers (bacterial abundance) were 132 

analysed for each experimental setup.  133 

Incubation with H2
18O increased the overall buoyant density of the extracted DNA as 134 

compared to the H2
16O controls (Figure 1). 18O-labelled DNA (heavy fractions) resided in fractions 135 

with densities 1.73 g ml-1 and above, whereas unlabelled DNA (light fractions) resided in fractions 136 

with densities 1.729 g ml-1 and lower (Figure 1). This indicates that bacteria were actively 137 

incorporating 18O into their DNA. Here, the heavy fraction indicates active or growing microbes, 138 

whereas the light fraction indicates dormant or dead microbes. 139 

After 4-days of incubation with H2
18O there was a large abundance of bacterial 16S rRNA 140 

gene copies in the heavy fraction as compared to the heavy fraction of samples incubated with H2
16O 141 

(Figure 1). This was the case for both the antibiotic treatment and no-antibiotic controls suggesting 142 

there was substantial bacterial growth in the presence of antibiotics.  143 

 144 
 145 
Figure 1. Abundance of bacterial 16S rRNA genes in CsCl density gradients after 16O-/18O-H2O 146 

incubation. Vertical dotted lines demarcate the heavy (H) fractions from light (L) fractions. Each line 147 

represents a sample. 16H-CT: soils incubated in the presence of natural isotope abundance water 148 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

(H2
16O) without antibiotics (control); 16H-AB: incubation in the presence of H2

16O and antibiotics; 18H-149 

CT: incubation in the presence of H2
18O without antibiotics (control); 18H-AB: incubation in the 150 

presence of H2
18O and antibiotics. 151 

 152 

Species richness was significantly lower in the heavy fractions (2278 ± 142, mean ± 95% confidence 153 

interval) than light fractions (5025 ± 99) for antibiotics (AB) treated soil (p<0.001). Similarly for CT 154 

treatment (i.e., control: soil without antibiotics), the species richness was significantly lower (p=0.013) 155 

in the heavy fractions (2926 ± 314) than in the light fractions (3980 ± 370). Shannon diversity (H) was 156 

lower (p<0.001) for heavy fractions (1.99 ± 0.36) than light fractions (6.50 ± 0.37) for AB treated soil. 157 

However, for CT, Shannon diversity (H) did not differ (p=0.157) between heavy fractions (4.37 ± 0.12) 158 

and light fractions (5.12 ± 0.68). Evenness (J) indexes were lower (p<0.001) in heavy fractions (0.42 ± 159 

0.07) than in light fractions (0.98 ± 0.01) for AB treated soil. Contrarily, for control treatments (CT), 160 

evenness (J) did not differ (p=0.219) between heavy fractions (0.93 ± 0.01) and light fractions (0.93 ± 161 

0.05) (Figure 2).  162 

When comparing the heavy fractions of AB and CT treatments, species richness was lower 163 

(p=0.039) for heavy fractions for AB treatments (2278 ± 142) than CT treatments (2926 ± 314). 164 

Similarly, Shannon diversity was lower (p=0.003) for AB treatments (1.99 ± 0.36) than CT treatments 165 

(4.37 ± 0.12). Evenness was also lower (p=0.005) for AB treatments (0.42 ± 0.07) than CT treatments 166 

(0.93 ± 0.01) (Figure 2). Finally, the coefficient of variation (CV) for all alpha diversity indices across 167 

all the treatments ranged from 0.4% to 16.0% (Figure 2). 168 

 169 
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 170 

Figure 2. Alpha-diversity of 16S rRNA gene sequences from the “heavy” and “light” fractions of DNA 171 

extracted from soils incubated with H2
18O in the presence (AB) or absence (CT) of antibiotics. Alpha-172 

diversity is summarised as species richness (S), Shannon diversity (H), evenness (J), and Simpson (D). 173 

“*” corresponds to p-value <0.05 from pairwise t-test; “**” corresponds to p-value <0.01; “***” 174 

corresponds to p-value <0.001; “NS.” corresponds to p-value >0.05 175 

 176 

The microbial community composition was consistent for all replicates of both heavy and light 177 

fractions across all the treatments. The community composition for heavy and light fractions of AB 178 

and CT when incubated with H2
18O were different as they clustered separately (Figure 3). 179 

Community composition of the light fraction in H2
18O incubated CT soil (18H-CT-Light) was similar to 180 

both heavy (16H-CT-Heavy) and light (16H-CT-Light) fraction in H2
16O incubated CT soils as shown by 181 

their proximity in the PCoA plot and the relative abundance profile (Figure 4, S3). Together, these 182 

three fractions (18H-CT-Light, 16H-CT-Heavy, 16H-CT-Light) along with light fraction of H2
16O 183 

incubated AB soil (16H-AB-Heavy) were similar to the composition of the original soil.  184 

 185 
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 186 

Figure 3. Principal coordinate analysis (PCoA) plots of bacterial OTUs (97% sequence similarity) 187 

derived from 16S rDNA extracted from soil. The legend indicates the origin of the samples. 16H: 188 

incubation with H2
16O; 18H: incubation with H2

18O; AB: incubation with antibiotics; CT: incubation 189 

without antibiotics; Heavy: “heavy” fractions of the extracted soil DNA; Light: “light” fractions of the 190 

extracted soil DNA. 191 

 The community in the heavy fractions of AB incubated with H2
18O were dominated by high 192 

relative abundances of Pseudomonadota (84.9 ± 2.86%), Actinomycetota (formally Actinobacteria, 193 

4.8 ± 1.42%), Acidobacteriota (4.7 ± 0.93%), Planctomycetota (formally Planctomycetes, 1.9 ± 194 

0.42%), Verrucomicrobiota (formally Verrucomicrobia, 1.2%), and Gemmatimonadota (formally 195 

Gemmatimonadetes, 1.1 ± 0.10%). Stenotrophomonas (Pseudomonadota, 76 ± 4.67%) was the most 196 

abundant genus (Figure 4). In contrast, the heavy fractions for CT treatments were dominated 197 

mainly by Pseudomonadota (72.1 ± 7.9%), Bacteroidota (formally Bacteroidetes, 16.1 ± 5.03%), 198 
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Acidobacteriota (3.9 ± 0.83%), Saccharibacteria (2.3 ± 2.22 %), Actinomycetota (1.5 ± 0.38%), 199 

Planctomycetota (1.3 ± 0.15%), Verrucomicrobiota (1.24%), and Gemmatimonadota (1.1%). Here, 200 

unclassified (Pseudomonadota, 17.18%), Sphingomonas (Pseudomonadota, 11.9%), Thermomonas 201 

(Pseudomonadota, 10.8%), Arenimonas (Pseudomonadota, 5.28%), Novosphingobium 202 

(Pseudomonadota, 7.03%) were the abundant genera (Figure 4). 203 

 The relative abundance in the light fractions of AB were dominated by Pseudomonadota 204 

(38.7 ± 5.38%), Acidobacteriota (17.2 ± 0.62%), Actinomycetota (12.3 ± 4.24%), Verrucomicrobiota 205 

(10.9 ± 1.01%), Planctomycetota (6.2 ± 1.17%), Bacteroidota (3.7 ± 0.29%), Chloroflexota (formally 206 

Chloroflexi, 3.6 ± 0.68%), and Gemmatimonadota (1.9 ± 0.19%). The most abundant genera were 207 

Stenotrophomonas (Pseudomonadota, 8.9%), Bradyrhizobium (Pseudomonadota, 2.3%, only in one 208 

replicate), and Acidibacter (Pseudomonadota, 2.1%) (Figure 4). In contrast, the light fractions of CT 209 

were dominated by Bacteroidota (57.5 ± 8.54%), Pseudomonadota (14.7 ± 2.46%), Acidobacteriota 210 

(9.9 ± 2.59%), Actinomycetota (4.7 ± 1.79%), Verrucomicrobiota (4.4 ± 1.29%), Planctomycetota (3.1 211 

± 0.62%), Chloroflexota (1.52 ± 0.40%), and Gemmatimonadota (1.1 ± 0.12%). The most abundant 212 

genus in this treatment was Flavobacterium (Pseudomonadota, 38.91 ± 4.67%) (Figure 4). 213 

 214 
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 215 

 216 

Figure 4. Relative abundance of microbial communities at the phylum level identified in the “heavy” 217 

and “light” fractions of DNA extracted from soils incubated with H2
18O in the presence (AB) or 218 

absence (CT) of antibiotics. 219 
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 220 

A heatmap was created to visualise and compare the abundance of the 20 OTUs that 221 

explains the most variation in the axis-1 and axis-2 of the PCA ordination. Out of a total of 28 OTUs 222 

selected, 19 OTUs belong to Pseudomonadota, followed by six OTUs of Bacteroidota, two OTUs of 223 

Verrucomicrobiota, and one OTU of Acidobacteriota. Stenotrophomonas (Pseudomonadota; OTU-7) 224 

was dominant in the heavy fraction of AB compared to heavy fraction of CT. On the other hand, 225 

Sphingomonas (Pseudomonadota; OTU-1065, OTU-1321, OTU-2509, OTU-488405, OTU-692415), 226 

Lysobacter (Pseudomonadota; OTU-12766), Novosphingobium (Pseudomonadota; OTU-14845), 227 

Xanthomonadaceae (Pseudomonadota; OTU-13089), Arenimonas (Pseudomonadota; OTU-1764) 228 

were dominant in heavy fraction of CT compared to AB. Additionally, Pseudolabrys 229 

(Pseudomonadota; OTU-1764), DA101 (Verrucomicrobiota; OTU-424), OPB35 (Verrucomicrobiota; 230 

OTU-8196) were dominant in light fractions of AB compared to heavy fractions of AB (Figure 5).  231 

 232 

 233 

 234 

Figure 5. Heatmap of the most relevant bacterial OTUs identified in the “heavy” and “light” fractions 235 

of DNA extracted from soils incubated with H2
18O in the presence (AB) or absence (CT) of antibiotics. 236 

18H-AB-heavy indicates “heavy” fractions treated with antibiotic;18H-AB-light indicates “light” 237 
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fractions treated with antibiotic; 18H-CT-heavy indicates “heavy” fractions without antibiotic 238 

treatment; 18H-CT-light indicates “light” fractions without antibiotic treatment. The coloured scale 239 

represents the relative abundance of OTUs. 240 

 241 

The DNA of both heavy and light fractions of soil when incubated with 18O-labelled water in 242 

the presence of antibiotics were sequenced individually using high-throughput sequencing. After 243 

genome binning of both heavy and light fractions, one qualified metagenome-assembled genome 244 

(MAG) was generated with 90.7% completeness and 0% contamination. The MAG was affiliated to 245 

Stenotrophomonas (Pseudomonadota) (Figure 6). This is in-sync with the results of 16S rRNA gene 246 

sequencing that also showed Stenotrophomonas (Pseudomonadota) as the dominant genus when 247 

incubated with antibiotics (Figures 4, 5).  248 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 249 

Figure 6. Multi-locus phylogenetic tree of the MAG-1 using autoMLST. 98 conserved housekeeping 250 

genes were used for the analyses. MAG-1 is indicated in red together with their respective 251 

completeness and contamination. 252 

 253 

Analysis of the unbinned-assembled genomes of light and heavy fractions, along with the genome of 254 

MAG-1 helped understand whether the microbial community exposed to antibiotic contained 255 

antimicrobial resistance genes (ARGs) to survive the stress of antibiotics. The presence of aph(3’)-IIc, 256 

with 85.46% similarity to Stenotrophomonas maltophilia strain K279a was observed in the heavy 257 

fraction and MAG-1, and no presence of this gene was observed in the light fraction. aph(3’)-IIc 258 

encodes for the aminoglycoside phosphotransferase enzyme that confers resistance to antibiotics in 259 
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the aminoglycoside class (butirosin, paromycin, kanamycin, neomycin) among others. Similarly, the 260 

presence of oqxB, with 76.28% similarity to Escherichia coli plasmid pOLA52 in heavy fraction and 261 

MAG-1, which was also absent in the light fraction was also observed. The oqxB gene encodes for an 262 

efflux pump that confers resistance to amphenicol class antibiotics (e.g., chloramphenicol), 263 

disinfectants (e.g., benzalkonium chloride, cetylpyridinium chloride), quinolone class antibiotics (e.g., 264 

ciprofloxacin, nalidixic acid), trimethoprim, and others. However, dfrB3, which encodes for 265 

dihydrofolate reductase that confers resistance to trimethoprim, was found with a 90.14% similarity 266 

with the plasmid R751 in Klebsiella aerogenes only in the light fraction. The presence of ARGs that 267 

confer resistance to beta-lactam were also found in both light and heavy fraction, but not in MAG-1. 268 

For example, blaTEM-181 in the light fraction was found with a 99.86% similarity with a vector pUC-269 

3GLA, and blaL1 in heavy fraction with 85.84% of similarity with a beta-lactamase gene in 270 

Stenotrophomonas maltophilia strain K1. No ARG conferring beta-lactam resistance was present in 271 

MAG-1 (Table 1).  272 

 273 

Table 1. Antimicrobial resistance genes found in the unbinned-assembled reads (from heavy and 274 

light fractions) and MAG-1 275 

Antimicrobial Class light heavy MAG-1 
Gene (Similarity (%) / Reference*) 

Light Heavy MAG-1 

Butirosin 

Aminoglycoside 

  X X  

aph(3')-IIc 
(85.46% / 
AM743169) 

aph(3')-IIc 
(85.46% / 
AM743169) 

Paromomycin  X X  

Kanamycin  X X  

Neomycin   X X  

Chloramphenicol Amphenicol  X X   

OqxB 
(76.28% / 
EU370913) 

OqxB 
(76.28% / 
EU370913) 

Benzylkonium 
chloride 

Quaternary 
ammonium 
compound  X X  

Cetylpyridinium 
chloride 

Quaternary 
ammonium 
compound  X X  
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Ciprofloxacin Quinolone  X X  

Nalidixic acid Quinolone  X X  

Trimethoprim 
Folate pathway 
antagonist X X X 

dfrB3 
(90.14% / 
X72585) 

OqxB 
(76.28% / 
EU370913) 

OqxB 
(76.28% / 
EU370913) 

Unknown beta-
lactam Beta-lactam X X   

blaTEM-
181 
(99.86% / 
KM977568) 

blaL1 
(85.84% / 
EF126059)   

* AM743169: Stenotrophomonas maltophilia strain K279a; EU370913: Escherichia coli plasmid 276 
pOLA52; X72585: Klebsiella aerogenes plasmid R751 genes from integron element; KM977568: 277 
Cloning and transformation vector pUC-3GLA; EF126059: Stenotrophomonas maltophilia strain K1 278 
(beta-lactamase gene). 279 
 280 

 281 

Discussion 282 

In this study we used DNA-SIP with H2
18O to identify the antibiotic resistant microbes from the active 283 

pool of an agricultural soil microbiome that was not previously exposed to antibiotics. The results 284 

showed that microbes can grow in the presence of antibiotic even in the agricultural soil with no-285 

antibiotic history (Figure 1). On the other hand, not all active microbes are antibiotic resistant, since 286 

community composition was different between antibiotic treated and untreated soil (Figures 2-5). 287 

The metagenomic analyses revealed the presence of ARGs in the active resistant microbial 288 

community (Table 1). Additionally, a MAG belonging to Stenotrophomonas was found in the heavy 289 

fraction after incubation with H2
18O and antibiotics. The study highlights the ability of DNA-SIP with 290 

H2
18O to identify active antibiotic resistant microbes.  291 

The results showed that microbes in soils without prior exposure to antibiotic can harbour 292 

microbes that can become active and enriched in the presence of antibiotics during a short period of 293 

time, in this case after four days of incubation. This suggests that soils contain a seedbank of 294 

antibiotic resistance, and the microbiome can shift dramatically towards an enrichment of antibiotic 295 

resistant populations even after a short exposure to antibiotics. This also highlights the potential of 296 

soil to harbour native AMR bacteria, for these microbes to become dominant, and subsequently 297 
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spread after exposure to antibiotics. The long-term consequence of shifts in community 298 

composition, for example biogeochemical transformations, soil fertility, and disease risk is not clear 299 

[25]. 300 

The AMR bacterial seedbank in soil could be a result of in situ selection as a consequence of 301 

natural production of antimicrobials produced by the microbial community as microbes compete for 302 

resources. Indeed, soils intrinsically harbour AMR bacteria and are a natural reservoir for ARGs 303 

[7,12]. Alternatively, antibiotic resistant bacteria or ARGs could have been introduced to the soil 304 

from external sources. This is common in soils exposed to livestock manure or sludge [9,18]. 305 

Moreover, the dispersal through unconventional sources such as birds can provide the initial seed 306 

for the microbial communities to spread AMR. Birds have been shown to spread AMR through long-307 

distance and localised migration [26,27]. For example, Franklin’s gulls (Leucophaeus pipixcan) in 308 

Chile were found to have twice the prevalence of ESBL-producing E. coli compared to humans in the 309 

same area along with high sequence similarity suggesting transmission. Interestingly, the gulls also 310 

share sequences with drug-resistant human pathogens identified in clinical isolates from the central 311 

Canadian region, which is a nesting place for these gulls [27]. However, more studies are needed to 312 

decisively establish the roles of birds to encounter and acquire active antibiotic resistant microbes in 313 

soils without prior exposure to antibiotic. Horizontal gene transfer (HGT) is another mechanism for 314 

ARG accumulation within a community but there was no evidence for this in the present study. 315 

The active pool of antibiotic resistant microbes was dominated by Pseudomonadota, 316 

Actinomycetota, Acidobacteriota (Figures 4, 5). Pseudomonadota are known to be physiologically 317 

and metabolically versatile with variable morphology that allows them to subsist in various 318 

ecological niches [28–33]. This could be the reason why 72-84% of the OTUs labelled in the presence 319 

of antibiotics were affiliated to Pseudomonadota (Figures 4, 5, S3, S4). Further, due to their 320 

versatility, Pseudomonadota also contain the greatest number of bacterial pathogens to an extent 321 

that this phylum has been proposed to be a potential diagnostic signature for disease risk [34,35]. 322 

Actinomycetota is another near ubiquitous phylum in soil that are known for their ability to 323 
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synthesize diverse secondary metabolites and harbour different ARGs [33,36,37]. It is hypothesised 324 

that in soils, ARGs of pathogenic Pseudomonadota originated from Actinomycetota through 325 

horizontal gene transfer using conjugative plasmids [38–40]. These results reaffirm the role of 326 

Actinomycetota in AMR spread and high abundance in AMR microbiomes. Similarly, Acidobacteriota 327 

is also widespread in soil with phylogenetic depth and ecological importance comparable to 328 

Pseudomonadota [33,41]. Acidobacteriota can harbour multiple integrative and conjugative 329 

elements in their genome, a major determinant of horizontal gene transfer, that confers them a 330 

major advantage to survive, resist, and persist in the presence of antibiotic [42,43].  331 

In this study, Stenotrophomonas was found to be the dominant genus with a relative 332 

abundance of 76% in the active resistant microbiome (Figures 4, 5, 6) and it possessed ARGs for 333 

diverse antibiotics (see MAG-1 in Table 1). Stenotrophomonas is an antibiotic resistant opportunistic 334 

pathogen that is commonly linked to respiratory infections in humans [44]. Possession of a wide 335 

range of ARGs by Stenotrophomonas in an antibiotic unexposed soil is disturbing, but not unusual 336 

and rare. For instance, on one hand, ARG in Stenotrophomonas strains has been reported from 337 

deep-sea invertebrates [45]. On the other hand, multi-drug resistant Stenotrophomonas is a 338 

common nosocomial and community-acquired infection [44].  339 

The active pool of antibiotic resistant microbiota in this agricultural soil contains ARGs for a 340 

wide variety of antibiotics (Table 1). Surprisingly, many of these antibiotics such as aminoglycosides, 341 

chloramphenicol, were not even part of the experiment in this study. This highlights the potential 342 

role of the seedbank of resistant bacteria in AMR spread. We hypothesize that these microbes are 343 

present in soils at low abundance but with selection can become enriched increasing the probability 344 

of causing disease outbreaks in livestock and human populations. Their enrichment may also spread 345 

resistance within the microbial community through HGT.  346 

 347 

Conclusion 348 
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In this study, the active resistant soil microbiome from an agricultural field with no prior history of 349 

antibiotic exposure using DNA-SIP with H2
18O was identified and differences in the composition of 350 

active soil microbes and active antibiotic resistant soil microbes was observed. The metagenome 351 

data shed light on the diversity of antibiotic resistant genes of the resistant microbiome. In this 352 

study, we identified the prevalence of antibiotic resistant Stenotrophomonas in the soil, which might 353 

be consequential for AMR spread and disease risk. Overall, this study makes a strong case for DNA-354 

SIP with H2
18O to identify the clinically important drug-resistant microbes in the environment. 355 

Finally, this method can become gold standard to understand and identify the drivers of AMR spread 356 

in any environment.  357 

 358 

Materials and methods 359 

Soil sampling 360 

Agricultural soils from Chilworth Manor Experimental plots located in the Victorian Walled Gardens 361 

(Southampton, U.K.) was sampled in October 2016. This soil does not have history of manure and no 362 

antibiotic applications for over 20 years. Also, the last application of herbicide Round-up (Glyphosate 363 

at a concentration of 360 g L-1 as active ingredient) was in 2007-2008 (M. Cotton, pers. comm.). 364 

Samples were collected from 10-cm deep in a 10m triangular pattern as described previously 365 

(Gomez- Alvarez et al., 2007). In total, three soil samples (not pooled) were transported to the 366 

University of Southampton and storage at 4°C for further experiments. Physico-chemical parameters 367 

were carried out at the Anglian soil analyses company (Lincolnshire, U.K.) and detailed in Table S1. 368 

This soil is a sandy/loam soil with a pH of 6.17 (±0.006), organic matter of 7.73% (±1.43) and dry 369 

matter of 85.99% (±3.58). 370 

 371 

Soil incubations 372 

Initial tests were performed to determine the concentration of antibiotic necessary to inhibit 373 

bacterial growth in soil for up to 12 days. This is necessary due to potential attenuation of the 374 
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antibiotic by soil (for methodology see Appendix S1). Since the attenuation of the antibiotic is as fast 375 

as two days (Figure S1), a second preliminary experiment was carried out by incubating the soils with 376 

several antibiotics to determine the suitable ones to be used for further labelling experiment. 377 

Antibiotics were chosen because of their mechanism of action and described in Appendix S1. The 378 

resistance genes for these antibiotics have been found in the genome of Klebsiella pneumoniae [46]. 379 

After performing the preliminary experiments, we decided to incubate the soils for up to 4 days due 380 

to its fast decomposition (Figure S1) and four antibiotics were chosen for further incubations with 381 

H2
18O (Table S2). One g of soil was incubated in 1.5 ml of with either label water (H2

18O) or 382 

unlabelled water (H2O). Antibiotics [meropenem (mem), cefotaxime (ctx), ciprofloxacin (cip) and 383 

trimethoprim (tmp)] at a concentration of 100 μg/ml each were added to the slurry at time 0 h and 384 

48 h. Incubations were performed at 200 rpm, dark and room temperature. Sampling time for the 385 

treatment was at day 2 and day 4. For controls, sampling was carried out after 4 days of incubation. 386 

The experiments were performed in triplicate to provide statistically testable data (Figure S2).   387 

 388 

DNA extraction 389 

DNA was extracted from the soil at the end of the treatments by using the Power-Soil DNA isolation 390 

kit (Mo Bio, UK) according to the manufacturer’s recommendation. DNA purity and quantification 391 

were determined using a NanoDrop® Spectrophotometer ND-1000 (Thermo Fisher Scientific, USA). 392 

All DNA samples were stored at -80°C for further analysis. 393 

 394 

H2
18O-SIP procedure 395 

A standard DNA-SIP protocol was used to resolve [18O]-incorporation based on buoyant density [47]. 396 

1 μg of genomic DNA was loaded into 5.6-ml polyallomer quick-seal centrifuge tubes (Beckman 397 

Coulter, USA) containing gradient buffer [20] and CsCl. The isopycnic centrifugation of DNA was 398 

performed with an initial CsCl buoyant density of 1.725 g mL-1 subjected to centrifugation at 177,000 399 
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× g for 36-40 h at 20 °C in an Optima XPN-80 ultracentrifuge (Beckman Coulter, USA). At the end of 400 

the centrifugation, 18 fractions were separated from each gradient. 401 

 402 

Quantitative PCR 403 

The 16S rRNA gene was quantified in each of the fractions. All qPCR reactions were performed on a 404 

StepOne Plus real-time PCR system (Applied Biosystems) and the data were processed using 405 

StepOne software v2.3 (Applied Biosystems). For all assays, standards were prepared by PCR of 406 

cloned genes. Standards were serially (101–107) diluted and used for the calibration curves in each 407 

assay. Controls were run with water instead of template DNA. The assays were based on dual-408 

labelled probes using the primer–probe sets: BAC338F/BAC516P/BAC805R [48]. The probe was 409 

synthesized with 6-Carboxyfluorescein (6-FAM) on their 5’end and Black Hole Quencher 1 (BHQ1) on 410 

their 3’end. Each reaction was 20 mL in volume and contained the following mixture: 10 L of 411 

TaqMan fast advanced master mix (1X) (Applied Biosystems), 1.0 L of of primer mix [18 L BAC338F 412 

(0.9 M), 18 L BAC805R (0.9 M), 5 L BAC516P (0.25 M) and 59 L of TE buffer], DNA template 413 

(2.0 L) and 7.0 L of water. The program used was 95°C for 5 min, followed by 35 cycles of 95°C for 414 

30 s and 62°C for 60 s for annealing, extension and signal acquisition respectively [49]. Efficiencies of 415 

97 to 103% with R2 values > 0.98 were obtained. 416 

 417 

High-throughput sequencing 418 

The 16S rRNA genes from SIP gradient fractions was amplified and sequenced by barcoded Illumina 419 

sequencing. PCR primers 515FB (GTGYCAGCMGCCGCGGTAA) and 806RB 420 

(GGACTACNVGGGTWTCTAAT) from the Earth Microbiome project 421 

(http://press.igsb.anl.gov/earthmicrobiome/) targeting the V4 region of the 16S rRNA gene 422 

(approximately 250 nucleotides) were used. Library preparation and sequencing was performed at 423 

the National Oceanographic Centre (NOC) of the University of Southampton, UK, following 424 
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methodologies described by [50]. Samples were pooled in an equimolar concentration and 425 

sequenced on separate runs for MiSeq using a 2 bp × 300 bp paired end protocol.  426 

The total metagenomic DNA of the heavy and light fractions from incubations with H2
18O (total of six 427 

samples) were sequenced on an Illumina MiSeq at the University of Southampton (as described 428 

above). The metagenome was analysed on a high-performance computing cluster supported by the 429 

Research and Specialist Computing Support Service at the University of East Anglia (Norwich, UK). 430 

 431 

Bioinformatic Analyses 432 

For the 16S rRNA-sequencing, quality filtering of the sequences was carried out by using cutadapt 433 

[51]. Forward and reverse reads were then merged by using the usearch fastq_mergepairs command 434 

[52]. Downstream processing was performed by using UPARSE [52] and UCHIME pipelines [53]. 435 

Briefly, sequences shorter than 250 bp were discarded, singletons were retained, and operational 436 

taxonomic units (OTUs) were defined at a sequence identity level of 97%. 437 

 438 

For the DNA sequences, reads were checked using FastQC version 0.11.8 [54]. Low-quality reads 439 

were discarded using BBDuk version 38.68 [55]. Afterwards, reads were merged into scaffolds using 440 

de novo assembler metaSPAdes version 3.13.1 [56]. Binning of the assembled scaffolds from both 441 

heavy and light fractions was carried out with the metaWRAP version 1.2.1 [57]. Completion and 442 

contamination metrics of the extracted bins were estimated using CheckM [58]. The resulting bins 443 

were collectively processed to produce consolidated metagenome-assembled genomes (MAGs) 444 

using the bin_refinement module in wetaWRAP.  445 

 446 

Statistical analyses and OTU Classification 447 

Statistical analyses were performed using the ‘vegan’ package [59] in R software version 4.1.1. Tests 448 

with P<0.05 were considered to be statistically significant. Shapiro-Wilk normality test was 449 

performed for each analysis. ANOVA was performed when abundance data were normally 450 
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distributed. A non-parametric Kruskal-Wallis one-way analysis of variance was performed when the 451 

data were not normally distributed [60]. In parallel, to test the significance of the differences 452 

between 2 samples (i.e., between heavy and light fractions), two-tailed independent t-tests were 453 

done. For all OTU-based statistical analyses, the data set was normalized by a Hellinger 454 

transformation [61] using the decostand function. For beta-diversity, principal coordinates analysis 455 

(PCoA) ordination of Hellinger distances was carried out using the ‘pcoa’ function. Heatmaps were 456 

constructed with ‘pheatmap’ package [62] for the OTUs explaining most of the differences between 457 

samples. Principal component analysis (PCA) of the Hellinger transformed data was performed using 458 

the prcomp function. The 20 OTUs explaining most of the differences between samples were 459 

defined as the OTUs contributing the largest absolute loadings in the first and second dimensions of 460 

the PCA [60], obtained from the rotation output file. Hierarchical clustering of the distance matrix 461 

was carried out with the “ward.D2” method using ‘hclust’ function.  462 

 463 

Taxonomy Analysis 464 

A representative sequence of each OTU was aligned against the SILVA 16S rRNA gene database using 465 

the naïve Bayesian classifier (bootstrap confidence threshold of 80%) by using the mothur software 466 

platform [63]. 467 

The taxonomic classification of the MAG was performed as explained previously [64]. Briefly, DNA–468 

DNA hybridization (dDDH) was conducted using the Type Strain Genome Server (TYGS) [65]. Amino-469 

acid comparisons between the MAG retrieved in this study and their closest relative strains were 470 

calculated based on reciprocal best hits (two-way amino acid identity AAI) using the enveomics 471 

collection [66]. Finally, a phylogenomic tree was created using the automated multi-locus species 472 

tree (autoM-LST) pipeline [67]. AutoMLST determines closely related genomes based on alignment 473 

of >90 core genes, and the closest species were determined based on percent average nucleotide 474 

identity (ANI). 475 

 476 
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Antimicrobial resistance genes 477 

Since only one MAG was recovered in this study, the unbinned-assembled reads (from heavy and 478 

light fractions) were also analysed. Therefore, all (MAG-1, unbinned heavy fractions and unbinned 479 

light fractions) reads were screened for antimicrobial resistance genes (ARGs) using the public 480 

database Resfinder version 4.1 [68]. 481 
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