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ABSTRACT

With the rapid advance of single-cell RNA sequencing (scRNA-seq) technology, understanding
biological processes at a more refined single-cell level is becoming possible. Gene co-expression
estimation is an essential step in this direction. It can annotate functionalities of unknown genes or
construct the basis of gene regulatory network inference. This study thoroughly tests the existing gene
co-expression estimation methods on simulation datasets with known ground truth co-expression
networks. We generate these novel datasets using two simulation processes that use the parameters
learned from the experimental data. We demonstrate that these simulations better capture the
underlying properties of the real-world single-cell datasets than previously tested simulations for
the task. Our performance results on tens of simulated and eight experimental datasets show that all
methods produce estimations with a high false discovery rate potentially caused by high-sparsity levels
in the data. Finally, we find that commonly used pre-processing approaches, such as normalization and
imputation, do not improve the co-expression estimation. Overall, our benchmark setup contributes to
the co-expression estimator development, and our study provides valuable insights for the community
of single-cell data analyses.

Keywords gene co-expression · scRNA-seq

1 Introduction

Analyzing the co-variations of gene expression across samples, also known as gene co-expression analysis, is essential
for understanding complicated biological processes. For example, gene co-expression analysis can prioritize candidate
disease genes (Presson et al., 2008; Van Dam et al., 2018) and molecules of disparate cellular states (Carter et al., 2004),
and annotate functionalities of unknown genes (Serin et al., 2016). In previous studies on microarray or bulk RNA-seq
data, gene co-expression estimation has shown superior performance for genetic module discovery (Stuart et al., 2003),
gene-disease prediction (Van Dam et al., 2018; Langfelder and Horvath, 2008), and biological-processes-related genes
detection (Usadel et al., 2009; Aoki et al., 2007). Recently, advances in the high throughput single-cell RNA sequencing
(scRNA-seq) technology have enabled researchers to profile gene expression at a single-cell resolution (Hwang et al.,
2018; Chen et al., 2019). scRNA-seq datasets allow us to investigate the gene expression of individual cells, revealing
heterogeneity among cell populations. These datasets are large, generally consisting of expression for tens of thousands
of cells and genes (Macosko et al., 2015; Picelli et al., 2014), thus allowing population-based gene co-expression
estimation. However, these new single-cell data opportunities also present new challenges for statistical analysis
(Lähnemann et al., 2020). For example, it is notoriously difficult to deal with high sparsity and heterogeneity in
scRNA-seq data. Therefore, efficient and robust gene co-expression estimation models for scRNA-seq data are urgently
needed in the field.

We formulate the gene co-expression estimation on scRNA-seq data as an unsupervised undirected graph structure
learning task (Fig. 1). Concretely, given a tissue/organ with heterogeneous cells, scRNA-seq technique first separates it
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into individual cells and sequences gene expression at a single-cell level (Haque et al., 2017). The scRNA-seq data can
be formalized into an expression matrix X ∈ Zn×p

∗ of n cells and p genes 2, where each element Xij is a count value
denoting the expression level of gene j at cell i. Given the expression matrix, we say a pair of genes are co-expressed if
the genes have similar expression patterns. So the goal of gene co-expression estimation is to estimate a symmetric
gene similarity matrix W ∈ Rp×p with Wjk indicating the similarity score between genes j and k. We can convert the
similarity matrix to an adjacency matrix G ∈ {0, 1}p×p, encoding a co-expression network with nodes denoting genes
and undirected edges connecting two nodes i and j if the corresponding pair of genes are significantly co-expressed,
i.e., the similarity score Wij higher than a user-defined threshold. Estimating the undirected co-expression network is
also a fundamental step in directed gene regulatory network (GRN) inference (Nguyen et al., 2021), in which methods
can perform enrichment to determine transcript factors and target genes on the undirected network and assign directions
to edges. This is suggested by the fact that co-expressed genes are likely to be involved in similar biological functions
and share transcription factor binding sites (Marco et al., 2009; Kang et al., 2011; Oldham et al., 2008; Allocco et al.,
2004; Yeung et al., 2004; Yin et al., 2021).

Figure 1: Illustration of gene co-expression estimation on scRNA-seq data. scRNA-seq technique records gene
expression of heterogenous cells that are isolated from tissues. The scRNA-seq data is represented as a cell-by-gene
matrix, with each matrix element a count value denoting the gene’s expression level at a cell. The expression matrix
is then used to estimate gene co-expression, which encodes a graph structure with nodes indicating genes and edges
denoting co-expression.

Previous methods have proposed various measurements for computing the gene similarity score and constructing the
co-expression network. They generally fall into three categories: (1) The first group evaluates the co-expression between
genes by the correlation coefficients of gene expressions. For example, (Langfelder and Horvath, 2008) proposed
Weighted Correlation Network Analysis (WGCNA) to construct gene co-expression networks through weighted
correlation networks. (2) The second group utilizes Mutual Information (MI) as the co-expression measurement. For
example, (Butte and Kohane, 1999) estimated MI via histogram or binning technique. (Margolin et al., 2006) computed
MI with differential entropy that averaged the log probability of gene marginal distributions. (Faith et al., 2007)
estimated the likelihood of MI instead of calculating significance scores as in the previous works. (Meyer et al., 2007)
decomposed the network inference into a series of MI-based supervised gene selection procedures. (3) Methods in
the last group are based on structural models. For example, (Yin and Li, 2011; Danaher et al., 2014; Taeb et al., 2020)
assumed the raw counts or log-transformed gene expression data followed Gaussian(-like) distributions and adopted
Gaussian Graphical Model (GMM) (Friedman et al., 2008) to estimate the partial correlation between genes. GENIE3
(Huynh-Thu et al., 2010) decomposed the task into several regression subproblems and solved them with tree-based
models. Also, (Allen and Liu, 2013) estimated gene co-expression with local Poisson graphical models.

However, these methods were mainly proposed for microarray and bulk RNA-seq data. The excess zero counts and
heterogeneity in scRNA-seq data present several challenges for the gene co-expression estimation task. Some recent
works (Iacono et al., 2019; Cha and Lee, 2020; Wu et al., 2021) have tried to directly apply correlation-based methods
on scRNA-seq data. But the correlation coefficient is not a robust measurement for very-sparse scRNA-seq data
(Sanchez-Taltavull et al., 2020). Moreover, the Gaussian or Poisson data distribution assumptions in these works may be
incorrect, because recent studies (Risso et al., 2018; Townes et al., 2019; Svensson, 2020) have shown that scRNA-seq
data follow negative binomial or zero-inflated distributions. To enable co-expression estimation for single-cell data,
(Chan et al., 2017) proposed Partial Information Decomposition and Context (PIDC), which used partial information
decomposition to explore statistical dependencies between genes in scRNA-seq data. scLink (Li and Li, 2021) revised
GGM learning by explicitly modeling zeros in scRNA-seq data. Similarly, (Park et al., 2021; Choi et al., 2017) modeled
excess zeros in data with (zero-inflated) negative binomial distributions. But in these works, the simulated datasets
used for method evaluations are less sparse than the real-world single-cell experimental data. Two simulated datasets in
(Li and Li, 2021) and (Choi et al., 2017), have around 50% and 20% zero counts, respectively, but the experimental
scRNA-seq data can have more than 80% of zeros (Hicks et al., 2018; Qiu, 2020). Although these methods showed

2Z∗ denotes the non-negative integers set.
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their considerable ability to recover gene co-expression networks on simulated data, the simulated datasets used in
these studies did not exhibit the high sparsity level and overdispersed distribution of experimental scRNA-seq data.
Evaluations on such simulations conceal the complexity of estimating co-expression networks from sparse single-cell
data. Therefore, we need simulations that accurately capture real-world experimental datasets’ underlying properties to
build robust methods for the co-expression estimation task.

In this paper, we test state-of-the-art gene co-expression estimation methods on two novel simulation processes, revealing
the complexity of co-expression estimation for single-cell data and suggesting potential directions for improvement.
First, we apply two novel simulation processes utilizing information learned from real-world single-cell data (Sec. 3.2)
to produce more realistic benchmarking schemes. These schemes will assist in more robust method developments
for the gene co-expression estimation task. Next, we perform a comprehensive analysis of the existing co-expression
estimation methods. We benchmark nine state-of-the-art and representative gene co-expression estimation methods
on ten simulated datasets with different settings and eight experimental datasets covering mouse and human cells
using four different experiment protocols (Sec. 3.3 and 3.4). Our results show that existing methods give poor gene
co-expression estimations and tend to have high false positive rates, thus, suggesting that robust estimation methods
will need to focus on lowering the false positive rates. We also find, as suspected, that high sparsity in scRNA-seq data
is the main bottleneck of co-expression estimation (Sec. 3.5). However, our implementation of several scRNA-seq data
pre-processing approaches, including normalization (Stuart et al., 2019; Wolf et al., 2018; Choudhary and Satija, 2022;
Borella et al., 2022), pseudo-bulk estimation (Squair et al., 2021), and imputation (Hou et al., 2020), show that while
they reduce the sparsity and variance of the data, these pre-processing steps worsen the gene co-expression estimation
by inducing biases (Sec. 3.6), for example, the imputation inducing some artificial correlations (Andrews and Hemberg,
2018; Hou et al., 2020). Therefore, we suggest that future works carefully choose pre-processing approaches when
performing downstream estimation tasks from single-cell datasets. Previous works (Song et al., 2012; Ovens et al.,
2021; Greenfield et al., 2010) tested several co-expression estimators, but they used microarray and bulk RNA-seq
data. (Pratapa et al., 2020; Dibaeinia and Sinha, 2020) used scRNA-seq data in their benchmarks and found existing
methods are largely inaccurate, but they focused on GRN estimation methods and did not examine the effect of different
pre-processing steps. But our study gives a comprehensive investigation of co-expression estimations and is a novel
supplement and extension of the earlier studies. Overall, as gene co-expression estimation is a fundamental step for
downstream single-cell data analysis, our study provides valuable insights for this community that incorporate this step
into their research.

2 Methods

Notations: We let bold lowercase letters denote vectors, and bold uppercase letters denote matrices. For a matrix
A ∈ Rm×n, its i-th row and j-th column are denoted by Ai: and A:j respectively. We let ∥ A ∥F=

√∑
i,j A

2
ij denote

the Frobenius norm of matrix A. Given a vector a ∈ Rn, We let ∥ a ∥2=
√∑

i a
2
i denote its ℓ2 norm.

We conduct a series of experiments to compare gene co-expression estimation methods on both simulated and real-world
experimental scRNA-seq datasets. We first show that previously used simulations do not exhibit properties of real-world
experimental data and use two recent single-cell read count simulation algorithms to generate realistic single-cell
datasets (Sec. 3.1 and 3.2). Next, we compare nine bulk and single-cell gene co-expression estimators on our simulated
and real-world datasets (Sec. 3.3 and 3.4). Finally, we investigate whether commonly used pre-processing approaches
for scRNA-seq data could help extract robust gene co-expression networks (Sec. 3.6). We briefly introduce our
experimental settings in this section (with details in the Appendix: More on Method and Results section), and Fig. 2
gives an overview of our setup.

2.1 Data Preparation

2.1.1 Experimental Data and Pre-Processing Steps

We use eight publicly available scRNA-seq datasets in this study. We extract data of four different sequencing protocols
from mouse cortex data (Ding et al., 2019) and human peripheral blood mononuclear cells (PBMC) datasets (Ding
et al., 2019) downloaded from Single Cell Protal3. We filter out cells and genes with zero counts from each dataset’s
raw unique molecular identifier (UMI) count matrix. The basic statistics of these eight datasets are summarized in Table
1. These datasets cover various protocols, cell library sizes, sparsity, and species. In our study, we select the top 100 and

3https://singlecell.broadinstitute.org/single_cell. Mouse cortex data study number is SCP425; human PBMC
data study number is SCP424.
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Figure 2: The summary of our study. Part I: We compare two previous and two new simulated processes with
eight experimental data of multiple species and protocols in Sec. 3.1 and 3.2. We compare cell/gene sparsity and
distribution shape qualitatively using plots and quantitatively using two-sample Kolmogorov–Smirnov tests (KS test)
and integrated errors. Part II: We benchmark nine gene co-expression estimators, including both bulk and single-cell
models, on simulated and experimental data in Sec. 3.3 and 3.4. We test three graph structures for simulation data:
hub-based, scale-free, and gene regulatory network (GRN). We take known transcription factor (TF) co-expression
networks for experimental data as reference networks. We report F1-score, FDR, AUROC, and AUPRC for method
performances. Part III: We test multiple pre-processing approaches, including normalization, pseudo-bulk, and
imputation on scRNA-seq data in Sec. 3.6.
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1000 most highly variable genes (HVG) of every experimental dataset, and we conduct experiments on these subsets of
data and corresponding simulations. The sparsity of 100 HVGs of each dataset are provided in Appendix Table A2.

Table 1: Basic statistics of eight experimental datasets.

ID Species Experiment Protocol # Cells # Genes Sparsity
(ratio of non-zeros) Max Count Description

#1 Mouse Cortex 1 10x Genomics 1453 21887 10.95% 4568

Mouse cortex data.#2 Mouse Cortex 1 Smart Seq2 295 24114 22.94% 108522
#3 Mouse Cortex 2 10x Genomics 4267 22805 7.58% 3268
#4 Mouse Cortex 2 Smart Seq2 349 23974 20.48% 59321
#5 Human PBMC 1 Drop Seq 10824 22792 2.19% 316

Human PBMC.#6 Human PBMC 1 inDrops 6184 18964 1.92% 110
#7 Human PBMC 2 Drop Seq 11578 24634 3.29% 2623
#8 Human PBMC 2 inDrops 5166 19648 3.19% 553

2.1.2 Gene Co-expression Reference Network Generation

To validate the performance of gene co-expression estimators, we need to generate gene co-expression networks to
serve as the ground truth and simulate gene expression data based on it. In literature, hub genes (i.e., genes with high
connectivity) are seen as highly essential and considered to play important roles in developmental processes and the
regulation of transcription (Tong et al., 2004; Liu et al., 2019; Seo et al., 2009). Therefore, we generated hub-based
networks as true co-expression network structures, denoted as G∗ ∈ {−1, 0, 1}p×p with 1 and -1 indicating positive
and negative edge respectively, in all simulations. We use pcorSimulator R package to generate networks. Fig. 8
gives an example of the hub-based network. For each network G∗, we obtain the network weight matrix W∗ ∈ Rp×p

through the following steps:

W∗
ij =


Uniform(−0.5,−0.1), if G∗

ij = −1

Uniform(0.1, 0.5), if G∗
ij = 1

0, otherwise.
(1)

allowing us to use W∗ in data simulation (see Sec. 2.1.3).

To define the ground truth networks for real-world experimental datasets (Sec. 3.4), we use known gene-gene interaction
networks as references of gene co-expression (i.e., W∗). We focus on co-expression related to known transcription
factors (TFs). We take the DNA-binding TF co-expression network presented in Zhou et al. (2017) as the reference for
mouse datasets. Because it is constructed based on Pearson correlation, we keep edges with their absolute Pearson
correlation coefficients higher than 0.2 to remove lowly co-expressed edges. For human datasets, we use the gene
co-expression discovered in ChIP-seq experiments Rouillard et al. (2016). We use the gene cosine similarity matrix
constructed from Pathway Common Rodchenkov et al. (2020) dataset, and select the sub-network related to human
TFs Lambert et al. (2018). We keep the edges with their absolute cosine similarity higher than 0.2. The average
human/mouse TF co-expression network sparsity (i.e., the number of edges divided by the number of possible gene
pairs) is 11%.

2.1.3 scRNA-seq Data Simulation

Previous studies have used two representative simulations based on Gaussian and Poisson distributions to evaluate
state-of-the-art gene co-expression estimation methods.

• Zero-inflated Gaussian (ZI-Gaussian): The Gaussian-based simulation strategy in (Li and Li, 2021;
Mestres et al., 2018) assumes non-zero values of the normalized gene expression matrix following a Gaussian
distribution. This strategy first generates a co-expression network G following Sec. 2.1.2 and constructs a
partial correlation matrix (i.e., the inverse of the covariance matrix) Σ−1 where Σ−1

ij = W∗
ij denotes the edge

weight between node i and j. Then it uses this partial correlation matrix along with gene expression means
and standard deviations estimated from real scRNA-seq data to simulate a dense gene expression matrix X̃
through a multivariate Gaussian distribution. To introduce sparsity into the matrix, for each matrix element, it
calculates the probability pij = exp(−ρX̃ij) where ρ is a hyper-parameter controlling the level of sparsity.
The final sparse simulation matrix is obtained by

Xij = IijX̃ij with Iij ∼ Bernoulli(pij). (2)
Following the same experiment setting in (Li and Li, 2021), we simulated four datasets with the same partial
correlation matrix and different ρ ∈ {0.07, 0.10, 0.13, 0.16} in our study. Since this simulation adds zeros on
top of Gaussian samples, we name it ZI-Gaussian in our study.
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• Zero-inflated Poisson (ZI-Poisson): In addition, (Choi et al., 2017; Allen and Liu, 2013) use Poisson-based
strategy. It first generates a gene expression matrix X̃ through a linear combination

X̃ = YB+E with Y ∼ Poisson(λtrue), E ∼ Poisson(λnoise). (3)

Here, B is a permutation matrix based on W∗. In order to have zeros, it then multiplies each element in the X̃
with a Bernoulli random variable as

Xij = IijX̃ij with Iij ∼ Bernoulli(π) (4)

where π controls the data sparsity. Detailed simulation process may refer to (Choi et al., 2017). We named this
Poisson-based simulation as ZI-Poisson. Adopting the same experiment setting in (Choi et al., 2017), we
generated three simulation datasets by fixing λtrue = 1.5, λnoise = 0.5, and varying π ∈ {0.8, 0.9, 1.0}.

Because ZI-Gaussian and ZI-Poisson simulations cannot exhibit characteristics of experimental scRNA-seq data
(see Sec. 3.1), we apply two new simulation processes.

• NORmal-To-Anything (NORTA): The first one is NORTA based on the normal-to-anything approach (Cario
and Nelson, 1997; Chen, 2001; Sekula et al., 2020). The essential idea of NORTA is transforming multivariate
Gaussian samples to samples with any given marginal distributions while preserving a given covariance.
Previously, Sun et al. (Sun et al., 2021) have shown that using information from experimental data helps
with mimicking the properties of real single-cell data. So in our study, we use NORTA to curate data with
distributions learned from experimental data. Concretely, given experimental scRNA-seq data of p genes,
we first use Negative Binomial (NB) distributions to fit each gene’s expression because NB is known to fit
scRNA-seq data well (Hafemeister and Satija, 2019; Svensson, 2020), and obtain p marginal distributions.
Then, we generate the covariance matrix as Σ = W∗. NORTA utilizes them to simulate data with these p
marginal NB distributions and gene covariance encoded by Σ. Fig. 3 illustrates NORTA simulation. For every
experimental dataset, we generate corresponding synthetic data with NORTA 4. In NORTA simulations, the
average hub-based network sparsity is 2.3%.

• Single-cell ExpRession of Genes In silicO (SERGIO): Another new simulation strategy is SERGIO (Dibaeinia
and Sinha, 2020). Given a GRN and profiles of regulators, SERGIO models the stochasticity of transcriptions
and regulators with stochastic differential equations (SDEs). Concretely, it first generates dense gene expression
matrix X̃ in logarithmic scale at stationary state via SDEs. Then it adds zeros via

X̃ij = IijX̃ij with Iij ∼ Bernoulli(πij)

with πij =
1

1 + exp(−k(X̃:j − y0))
and y0 = (100%− s%) percentile of X̃

(5)

with two hyper-parameters k and s determining the sparsity. Finally, it convert X̃ to the expression matrix
through

Xij = Poisson(exp(X̃ij)). (6)
The paper (Dibaeinia and Sinha, 2020) provides a comprehensive experiment showing that SERGIO can
simulate realistic scRNA-seq data. Fig. 3 provides an illustration of SERGIO simulation. In our study, we
simulate five datasets with k = 6.5 and s = {1, 5, 10, 15, 20} using the GRN and regulator profiles provided
by (Dibaeinia and Sinha, 2020). In SERGIO simulations, the GRN sparsity is 5.2%.

In ZI-Gaussian and ZI-Poisson simulations, we set the number of cells as 1000. In SERGIO simulation, the number
of cells produced is 2700, with nine cell types in total and 300 cells per cell type. For NORTA, the number of cells in
simulations equals that in the corresponding experimental data. So in all cases, the number of cells is much larger than
the number of genes. We compare the characteristics of these simulation datasets with experimental datasets in Sec.
3.1,3.2 and test methods on simulations in Sec. 3.3.

2.2 Gene Co-Expression Network Estimators and Evaluation Metrics

We have tested nine gene co-expression network estimation methods in this study. These methods are summarized in
Table 2. They consist of five methods designed for microarray or bulk RNA-seq data and four methods for scRNA-
seq data. These methods cover a wide range of state-of-the-art and commonly used gene co-expression estimators
with different data distribution assumptions and co-expression measurements. Detailed descriptions are provided in
Appendix: More on Method and Results section.

4We use the rnorta function in SimCorMultRes (Touloumis, 2016) R packages in experiment implementations.
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Figure 3: Illustration of NORTA and SERGIO simulations. (Top) NORTA simulation strategy. First, it fits experimental
data gene expression with negative binomial distributions. It generates a network encoding the covariance matrix. Then,
the fitted negative binomial distributions and covariance matrix are used to simulate scRNA-seq data. (Bottom) SERGIO
simulation strategy. It first prepares GRN, regulators profile (i.e., basal production rate in each cell type), and cell type
differentiation graph. Then using these data, it generates clean data based on stochastic differential equations (SDEs).
Finally, it adds dropouts to the clean expression matrix and converts it to the count expression matrix.

To evaluate the performance of methods, we consider co-expression estimation a binary classification task and compare
estimated co-expression structures with the reference structure. Specifically, let G∗ ∈ {0, 1}p×p denote the true
co-expression of p genes 5 with G∗

ij = 1 representing genes i and j are co-expressed. So all 1s in G are considered
positives, and 0s are negatives. Ĝ ∈ {0, 1}p×p denotes the estimated co-expression. We evaluate methods with these
metrics:

F1-score: The F1-score of estimation is computed with the upper triangle (without diagonal entries) of ground
truth G∗ and prediction Ĝ, because the co-expression matrix is a symmetric matrix with diagonal entries all
1s:

F1-score =
2

precision−1 + recall−1 (7)

with
precision =

# true positives
# estimated positives

, recall =
# true positives

# actual positives
. (8)

Ratio of false positives: To evaluate how much false positives each method produce, we computed false
discovery rate (FDR) and positive predictive value (PPV), or precision, with

FDR =
# false positives

# estimated positives
, PPV = 1− FDR. (9)

All the tested methods have only one hyper-parameter to control the sparsity of estimated networks. Specifically,
Pearson, Spearman, MINet, GENIE3, and PIDC require a threshold δ to filter small values. So in our experiments, we
generated a sequence of 100 equally spaced δ values from 0 to the maximal value in the measurement matrix to obtain a
sequence of estimations from the complete network to the empty network. Then the final estimation is selected based
on the highest F1-score. On the other hand, GLasso(Cov), GLasso(scDesign2), scLink, and ZILNBGM have λ as
the sparsity-regularization hyper-parameter. Similarly, we generated a sequence of 100 equally spaced λ values from
0 to 1 and picked the best estimation with the highest F1-score. Especially, ZILNBGM suggests the maximal λ as the

5In the network generation (Sec. 2.1.2), the G∗ can have negative co-expression. But here, to simplify the evaluation, we only
focus on the existence or absence of co-expression.
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max covariance value. So we used this setting only for ZILNBGM. We also include the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) values. For each of the 100
trials, we compute the estimation’s precision, recall, true positive rates, and false positive rates. AUPRC and AUROC
are calculated based on curves constructed from these 100 metric values.

Table 2: Summary of gene co-expression estimation methods tested in this study. The first five are bulk data methods and
the rest four are single-cell data methods. “NA" means the method has no explicit assumption on the data distribution.

Name Citation Co-expression Measurement Network Estimation Hyper-parameter Assumption
Pearson (Langfelder and Horvath, 2008) Pearson correlation thresholding threshold δ NA
Spearman (Langfelder and Horvath, 2008) Spearman correlation thresholding threshold δ NA
MINet (Meyer et al., 2008) mutual information thresholding threshold δ NA

GLasso(Cov) (Friedman et al., 2008) sample covariance MLE regularization λ Gaussian
GENIE3 (Huynh-Thu et al., 2010) regression trees thresholding threshold δ NA
PIDC (Langfelder and Horvath, 2008) partial information thresholding threshold δ gamma or Gaussian

scLink (Li and Li, 2021) robust correlation MLE regularization λ gamma-Gaussian mixture
GLasso(scDesign2) (Sun et al., 2021) copula correlation MLE regularization λ zero-inflated negative binomial

ZILNBGM (Park et al., 2021) regression coefficient regression regularization λ zero-inflated negative binomial

3 Results

3.1 Existing simulations to test co-expression estimation methods do not capture real-world data properties

We first test if two previously-used simulation processes, ZI-Gaussian and ZI-Poisson, represent real-world data.
We simulate ‘single-cell’ datasets with 100 genes and hub-based gene co-expression networks, following the parameter
setting in (Li and Li, 2021; Choi et al., 2017). We compare the properties of these simulations with experimental
datasets from Table 1. Note that for experimental data, we take 100 HVGs from tens of thousands of genes; while on
simulations, we directly generate 100 genes without a selection step. The HVG selection takes informative genes, and
simulated genes are naturally informative (since we are not simulating uninformative noise), so the experimental and
simulated data here (and in Sec 3.2) are comparable.

We systematically compare the sparsity (i.e., the ratio of non-zero values over total values) per cell and sparsity per gene
between 100 HVGs of eight experimental datasets and seven ZI-Gaussian and ZI-Poisson simulated datasets with
100 genes. Fig. 4(A-B) show simulations of both processes contain much fewer zeros than the experimental data. The
average sparsity per cell for all eight experimental data is 0.083. But the most sparse ZI-Gaussian simulated dataset
(i.e., ρ = 0.07) has average sparsity per cell of 0.468; the most sparse ZI-Poisson simulated dataset (i.e., π = 0.8)
has average sparsity per cell of 0.789. Similarly, the average gene sparsity of experimental data is 0.083, while it of
the most sparse ZI-Gaussian simulation is 0.47 and the most sparse ZI-Poisson simulation is 0.79. Two-sample
Kolmogorov–Smirnov tests (KS test) between every experimental data and every simulated data give p < 10−14 (for
cell sparsity) and p < 10−16 (for gene sparsity). This demonstrates that the cell and gene sparsity of simulated data is
significantly different from experimental data.

Furthermore, we compare the expression distribution shape. Because the value range differs among datasets, we first
normalize each dataset by min-max scaling as

Xij =
Xij −minij Xij

maxij Xij −minij Xij
. (10)

Data distributions of all datasets have a bi-modal structure consisting of dominating zero and rest non-zero parts.
Because datasets have different sparsity levels, we only compare the distribution of non-zero components in Fig. 4(C).
ZI-Poisson simulations are qualitatively different from experimental data. Also, we compute integrated absolute error
(IAE) as

IAE =
∑
i

|h1(i)− h2(i)| . (11)

Here h1 and h2 are 20-bins histograms of two datasets, and h1(i) is the data frequency at the i-th bin. The average IAE
between ZI-Gaussian and experimental data is 0.04; between ZI-Poisson and experimental data is 1.73; between
every possible pair of experimental data is 0.03. This further indicates ZI-Poisson simulations are different from
experimental data.

Our results show that ZI-Gaussian and ZI-Poisson simulations cannot display properties of actual scRNA-seq
data. They are either less sparse or have very different distribution shapes. Therefore, despite good performance, the
reliability of methods tested on these simulations becomes less certain. Next, we perform a comprehensive benchmark
of gene co-expression estimation methods by generating more realistic simulations.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525447doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Investigating the Complexity of Gene Co-expression Estimation for Single-cell Data A PREPRINT

Figure 4: Compare properties between experimental data, ZI-Gaussian (with ρ = {0.07, 0.10, 0.13, 0.16}), and
ZI-Poisson (with π = {0.8, 0.9, 1.0}) simulations. (A) Sparsity per cell. (B) Sparsity per gene. (C) Compare four
experimental datasets (#1 to #4) with the most sparse ZI-Gaussian/ZI-Poisson simulations. Histograms show
distributions of non-zero parts for min-max scaled data.

3.2 Generating Simulation with Experimental Data properties to Help Validate co-expression estimation
Performance

We apply two new simulation processes, namely SERGIO and NORTA, to generate more realistic data. To validate that
the two new simulation processes can represent real-world experimental data, we also compare cell sparsity, gene
sparsity, and distribution shapes of the normalized data between these new simulations and experimental datasets.
Fig. 5(A-B) and Appendix Fig. A1 qualitatively show that NORTA and SERGIO simulation datasets have the similar
gene and cell sparsity as the experimental data. The average gene sparsity of NORTA simulations is 0.087, and of
SERGIO simulations is 0.11, which is similar to the average gene sparsity of experimental data (0.083). The cell sparsity
of NORTA simulations is 0.087, and of SERGIO simulations is 0.11, which is also similar to the experimental data
average cell sparsity (0.083). Two-sample KS test between most NORTA simulation and corresponding experimental
data gene sparsity gives p > 0.1, except for dataset #6 (p = 1.2 × 10−4) and #8 (p = 2.4 × 10−2). Because these
two experimental datasets have genes with very high sparsity levels, e.g., 0.03% non-zeros, the NORTA generated all
zeros for these genes. So the KS test gave p-values smaller than 0.1 in these cases, but overall the NORTA can accurately
simulate the sparsity level of the experimental data. KS tests between SERGIO simulation and experimental data gene
sparsity all give p > 0.1. These denote no significant differences between simulation gene sparsity and experimental
data gene sparsity. Moreover, Fig. 5(C-D) show that new simulations have similar distribution shapes with experimental
data, with NORTA ISE=0.014 and SERGIO ISE=0.086. Our results demonstrate that SERGIO and NORTA better exhibit
the properties of the experimental data compared to the previous simulation methods.

Note that experimental single-cell data generally contains gene expressions of multiples cell types (Consortium et al.,
2018; Han et al., 2018; Rozenblatt-Rosen et al., 2017), so we check whether the NORTA and SERGIO simulations
also have such heterogeneous information via clustering. We find the first 50 principal components for each dataset
through the Principal Component Analysis (PCA), and we cluster cells with the Leiden algorithm (Traag et al., 2019).
Leiden algorithm is a community detection method used in many scRNA-seq clustering algorithms (Cao et al., 2019;
Mohammadi et al., 2020; Stuart et al., 2019; Wolf et al., 2018) that can automatically choose the number of clusters
and show superior performance on finding cell types from single-cell data (Yu et al., 2022). We visualize each
dataset’s clustering result in the 2D Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018)
embedding space. Quantitatively, we compute the silhouette score (Rousseeuw, 1987) in the UMAP space to evaluate
the cohesion and separation of clusters. The silhouette score ranges from -1 to +1, with a higher value indicating dense
and well-separated clusters and values around zero indicating overlapping clusters. Fig. 6 shows that the NORTA and
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SERGIO simulations have clusters that are somewhat well separated (Appendix Fig. A2, A3, and A4 provide clustering
visualization for all the NORTA and SERGIO simulations). Also, the NORTA simulation has a similar silhouette score with
its corresponding experimental data. Note that we are not matching the cell clusters between experimental and simulated
data. Having a silhouette score higher than 0 and similar to that on experimental data is sufficient to demonstrate that
simulations possess multi-cell-type properties and are realistic.

Another important aspect of the simulation is imposing a given gene co-expression structure on data such that it is
feasible for estimation. (Dibaeinia and Sinha, 2020) gave a comprehensive testing of SERGIO and found simulations
successfully have specified co-expression patterns. So here, we only validate that NORTA simulations have information
of specified gene co-expression by comparing the Pearson correlation coefficients between experimental data and
corresponding simulations. Specifically, let Correxp denote Pearson correlation coefficient matrix of experimental
data; Corrsim denote correlation matrix of corresponding NORTA simulations. We use mean squared error (MSE) and
correlation distance matrix (CMD) (Herdin et al., 2005) to measure the similarity between two correlation matrices.
Here, a smaller MSE between two correlation matrices indicates they are more similar. CMD(A,B) = 0 denotes two
correlation matrices are equal up to a scaling factor and CMD(A,B) = 1 if they differ in max extents. CMD values in
Fig. 5(E-F) show that CMD(Corrsim,W

∗) < CMD(Correxp,W
∗) and MSE(Corrsim,W

∗) < MSE(Correxp,W
∗) in

most cases. Exceptions are still datasets #6 and #8 for the reason mentioned above, having slightly higher CMD and
MSE in simulations. But overall, NORTA successfully imposes the co-expression structure W∗ on data.

In summary, the SERGIO and NORTA are more realistic simulations and better options in future works for evaluating
gene co-expression estimators.

3.3 Existing Methods Estimate Gene Co-Expression Networks from realistically Simulated Data with a high
FDR

Here, we test nine state-of-the-art gene co-expression estimators on SERGIO and NORTA simulations. We compute and
compare F1-score, FDR, AUROC, and AUPRC across all methods.

On NORTA simulated datasets, some methods including the state-of-the-art scRNA-seq model scLink, can have
incorrect predictions with F1-score lower than 0.2 (Fig. 7(A)). In other cases, even though the F1-score is around
0.5 for Spearman, MINet, and GLasso(scDesign2), they have FDR around 0.4 to 0.5 (Fig. 7(B)), indicating the
predictions have many false positives. Appendix Fig. A11 gives an example of Spearman method prediction on
NORTA simulations with 100 genes. In this case, F1-score=0.43 and FDR=0.6, containing 27 true positives and 40
false positives. This denotes that although F1-score is relatively high, the predictions have many false positives. On
SERGIO simulations, all methods have F1-score lower than 0.2 and FDR higher than 0.8, giving poor co-expression
estimations (Fig. 7(C-D)). But we still can use a few methods piratically. Suppose one has to select a co-expression
estimator to give a coarse-grained estimation as the starting point of GRN construction. In that case, we recommend
using Spearman, MINet, or GLasso(scDesign2) since they have better performance in our experiments. The reason
for it is that Spearman correlation and mutual information are robust to outliers and noise, and GLasso(scDesign2)
captures gene correlations with Gaussian copula (Sun et al., 2021).

In Appendix Fig. A7 and A8, we tested methods on NORTA and SERGIO simulated data with more genes. It shows that
methods’ performance decrease with an increased number of genes (see Appendix Section A1.5). This is reasonable
since having more genes indicates the problem has higher complexity. So in later sections, we only use 100-genes
simulations.

We also notice that methods have high AUROC but much lower AUPRC values (Appendix Fig. A5, A6). The reason for
high AUROC is that the ground-truth network is very sparse, such that the number of negative instances (i.e., absence of
co-expression) is much larger than the number of positive instances (i.e., the existence of co-expression). The AUROC
measurement is known to be sensitive to class imbalance, so we also use AUPRC score, which alleviates the influence of
data imbalance by considering both precision and recall values. Our observations suggest that co-expression estimation
studies should use multiple metrics to comprehensively evaluate their methods.

Finally, we test methods on several simulated datasets from the previous studies for the completeness of comparison.
First, we compare method estimations on ZI-Gaussian and ZI-Poisson simulations generated in Sec. 3.1. On
four ZI-Gaussian simulations, scLink outperforms other models with average F1-score=0.29 , average FDR=0.74,
and average AUPRC=0.22 (Appendix Fig. A9). The high F1-score of scLink is reasonable since the generation of
ZI-Gaussian follows the Gaussian assumptions of the scLink method. We use the same simulation used in (Li
and Li, 2021) and scLink achieves a similar AUPRC value as Fig. 2(D) in (Li and Li, 2021). However, though
scLink outperforms its counterparts, its predictions still report a high FDR. On the other hand, on three ZI-Poisson
simulations, Appendix Fig. A10 demonstrates that most methods have relatively better performance on ZI-Poisson
than on other tested simulations (including ZI-Gaussian, NORTA, and SERGIO) and experimental data. Specifically,
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Figure 5: Comparison between experimental data, NORTA, and SERGIO simulations. (A) Sparsity per gene of experi-
mental data and corresponding NORTA simulations. (B) Sparsity per gene of experimental data and SERGIO simulations.
(C) Compare distribution shapes between four experimental datasets and corresponding four NORTA simulations. His-
tograms show distributions of non-zero parts for min-max scaled data. (D) Compare distribution shapes between four
experimental datasets and SERGIO simulations. Histograms show distributions of non-zero parts for min-max scaled
data. (E) Correlation matrix distance (CMD) of experimental data and corresponding NORTA simulations. The gray bar
denotes CMD between experimental data correlation and true network, i.e., CMD(Correxp, W∗). The red bars denotes
CMD between NORTA simulation correlation and true network, i.e., CMD(Corrsim, W∗). (F) Mean squared error
(MSE) of experimental data and corresponding NORTA simulations. The gray bar denotes MSE between experimental
data correlation and true network, i.e., MSE(Correxp, W∗). The red bar denotes the MSE between NORTA simulation
correlation and true network, i.e., MSE(Corrsim, W∗).
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Figure 6: Examples of cell clustering on experimental data, NORTA simulations, and SERGIO simulations. UMAP
embedding visualization for the Leiden clustering on the first 50 principal components. Silhouette score is computed in
the UMAP space. (A.) Experimental dataset (#1) and its corresponding NORTA simulation. (B.) SERGIO simulations
with simulation parameter s = 1 and s = 5.
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scLink is the best with average F1-score=0.75, average FDR=0.21, and average AUPRC=0.78. We think these good
estimations may be due to the low sparsity of ZI-Poisson simulations but are not feasible in real-world single-cell
applications due to their inconsistency with experimental data, as shown in Fig. 4. Through these experiments, we find
that existing methods either report high FDR or use less sparse simulations than real-world data, making them less
applicable to experimental single-cell datasets. On the contrary, we conduct experiments on more realistic simulations
with comprehensive evaluations, which will be more reliable for future testing and benchmarking.

3.4 Methods Recover Known Gene Interactions from Experimental scRNA-seq Data with a low precision

Here we test methods on four experimental datasets (#2, #4, #5, and #7 in Table 1) with 1000 HVGs 6 to evaluate
how they perform on real scRNA-seq data. We compare model predictions with known TF co-expression networks
discovered on bulk data (see Sec. 2.1.2). For each experimental dataset, the number of TFs and the corresponding
number of known co-expression edges are listed in Appendix Table A1. Note that these TF co-expression networks are
not absolute ground truth since they are obtained from bulk data instead of single cells. But they are good references for
us to evaluate whether methods can recover known information. Results in Fig. 7(E-H) show that all methods have
less than ideal performances on detecting known TF co-expression from experimental data. All methods have average
F1-score≈0.25 and average PPV< 0.2 for mouse cortex data. GLasso(Cov), GLasso(scDesign2), and scLink
perform best with an average PPV of 0.191. On the human PBMC data, these methods’ average F1-score< 0.1 and
average PPV< 0.12, where Spearman outperforms others, having an average PPV= 0.117.

With these tests on experimental datasets, we find that our tested methods have a low precision when recovering bulk
data-based TF-TF edges via their co-expression estimation from single-cell datasets. We also note that evaluating
co-expression on experimental data needs careful consideration. A missing edge in reference networks does not mean
the pair of genes are not co-expressed. That edge/co-expression perhaps has not been verified by previous bulk data
experimental studies. So the FDR is expected to be high, as the estimator may discover unknown gene co-expression
from single-cell data. We consider an alternative metric like precision (i.e., PPV), see Eq. 8. The precision/PPV
evaluates how many estimated positives are true positives. This metric can test models’ performance on recovering
known gene co-expression. However, since precision=1-FDR, high FDR values lead to low precision, and all methods
give precision< 0.5 in our experiments. Unfortunately, we generally have little information to validate if the false
positives are newly discovered co-expression interactions or errors. Therefore, we suggest caution while choosing the
evaluation metric to verify co-expression estimation for real-world datasets. Augmenting downstream validations, such
as the quality of GRN inference from the co-expression matrix and the accuracy of gene enrichment analysis, might be
useful. Furthermore, we continue the remaining experiments on our simulations since we know the underlying ground
truth.

3.5 High Sparsity in scRNA-Seq Data Impedes the Correlation Computation leading to poor Co-Expression
Estimation

We generate data with different settings to explore which property of scRNA-seq data is the bottleneck of co-expression
estimation. Since NORTA is more flexible and convenient at controlling simulation properties, like the type of network
topology, we explore NORTA simulation in this section.

First, we use NORTA to simulate data with 100 genes and {10, 50, 100, 150, 200} cells. We observe that using more
cells helps with the estimation (Fig. 9(A)). For scRNA-seq data, as the sequencing techniques enable the profiling of
more cells, we can have data with hundreds and thousands of cells. So the number of cells is not the bottleneck.

Some works state that real-world biological networks can be scale-free networks (Khanin and Wit, 2006; Clauset et al.,
2009; Albert, 2005). Additionally, using known gene regulatory networks (GRNs) in simulation is a good way to
incorporate prior knowledge. So we further use scale-free networks and example GRNs from (Dibaeinia and Sinha,
2020) in NORTA simulations with 100 genes and compare them with hub-based networks. Fig. 8 gives an example of
these three types of networks. Fig. 9(B-C) shows the similar performance of models, denoting that the graph structure
is not the important factor.

Last, we simulate NORTA data with different sparsity levels using negative binomial gene marginal distributions and
adding zero counts following Splatter simulation (Zappia et al., 2017). We test methods on data with 100 genes and
{10%, 20%, · · · , 90%} sparsity. Fig. 9(D) implies that the estimation worsens as the data becomes more and more
sparse. To understand how sparsity affects co-expression estimation, we compute the Pearson correlation coefficients of
data at different sparsities and study how the correlation changes. Fig. 9(E) computes the absolute difference between

6Here, we use 1000 HVGs instead of 100 HVGs because the 100 HVGs contains only a few TFs such that the reference network
will be too small.
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Figure 7: Methods performances on simulated and experimental datasets. In box plots, we split the performance of
five bulk RNA/microarray models and four scRNA-seq models with a vertical line. Because ZILNBGM spends several
days running a single trial on experimental data, we consider it uncomparable with other methods and omit it in the
plots related to experimental data. (A-B) F1-score and FDR/PPV on NORTA simulations with 100 highly variable genes.
(C-D) F1-score and FDR/PPV on SERGIO simulations with 100 genes. (E-F) F1-score and FDR/PPV on mouse cortex
data with 1000 highly variable genes. (G-H) F1-score and FDR/PPV on human PBMC data with 1000 highly variable
genes.
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Figure 8: Examples of three gene co-expression network topologies used in simulations: hub-based network, scale-free
network, and GRN.

the simulation correlation and the true network. It shows that when data gets sparser, the simulation correlation becomes
more different from the true network due to increased heterogeneity in the data, resulting in difficulties in co-expression
evaluation. The increase in difference involving both positive (i.e., co-expression in the true network) and negative (i.e.,
non-co-expression in the true network) edges in the true network is perhaps the reason for the high FDR. Our results
indicate that the sparsity in data is the major bottleneck of estimation and methods that can address sparsity should be
investigated for future co-expression estimation method development.

Figure 9: Methods performances on simulated data with different settings. (A) F1-scores of NORTA simulations with
100 genes and {10, 50, 100, 150, 200} cells. (B-C) F1-scores and AUPRC values of methods on NORTA simulations
with three different graph structures. (D) F1-scores of NORTA simulations with different sparsity levels. (E) The absolute
difference between simulation correlations and the true network at different sparsity levels.

3.6 Data Imputation or Pre-Processing steps introduce More False Positives in co-expression estimation

In scRNA-seq analysis, many pre-processing and imputation approaches have been proposed to address the analytical
difficulties arising from the sparsity of the data. Here, we apply a few commonly used pre-processing and imputation
approaches to test whether they can improve the co-expression estimation.

First, normalization is a critical pre-processing step in scRNA-seq analysis to adjust unwanted biases and obtain
information of interest (Grün and van Oudenaarden, 2015; Vallejos et al., 2017; Chen et al., 2019). We utilize three

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525447doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Investigating the Complexity of Gene Co-expression Estimation for Single-cell Data A PREPRINT

Figure 10: Comparison of methods performances on NORTA simulations and corresponding processed data from different
approaches. (A-B) F1-scores for raw and normalized simulated data from LogNorm, PsiNorm, and sctransform.
(C-D) F1-scores for raw simulations and pseudo-bulks. (E-F) F1-scores for raw and imputed simulations from MAGIC,
SAVER, DCA, and ALRA.
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commonly-used and novel normalizing schemes: LogNorm (Satija et al., 2015; Zheng et al., 2017; Stuart et al., 2019;
Butler et al., 2018), sctransform (Hafemeister and Satija, 2019; Choudhary and Satija, 2022), and PsiNorm (Borella
et al., 2022). Details about these normalization methods are provided in Appendix: More on Methods and Results.
After comparing method estimations from the raw expression matrix and normalized matrix, we find the normalized data
does not improve and even worsens the method performance (Fig. 10(A-B)) on both types of simulations. Appendix
Table A2 indicates that LogNorm and PsiNorm cannot reduce the sparsity in data such that challenges of estimation
remain. For sctransform, it is designed to remove variations caused by RNA sequencing depths. But there are other
types of technical variations (Haque et al., 2017), such as cell cycle (Buettner et al., 2015) and transcriptional bursting
(Suter et al., 2011). So the reason sctransform does not improve the estimation is potentially due to its lack of ability
to address multiple types of variations.

One other way to reduce variations in scRNA-seq data is calculating the pseudo-bulk signal (Squair et al., 2021), which
is obtained from averaging cell expressions for cells in the same cluster. For each simulation dataset, we apply UMAP
to find the low-dimensional representation and then cluster cells with Leiden clustering. The pseudo-bulk expression is
obtained by averaging cell expressions in each cluster. Fig. 10(C-D) show that the pseudo-bulk cannot improve method
predictions and might break down the method, e.g., for MINet. We hypothesize that clustering may induce biases, and
constructing the pseudo-bulk results in statistical information loss, which affects the co-expression estimation.

To solve the problem with sparsity in scRNA-seq data, imputation (Hou et al., 2020) is a common solution. In scRNA-
seq data, observed zeros can be either biological zeros denoting non-expression of genes or a technical limitation in
quantifying the small number of molecules. To address the challenges induced by the sparsity, some recent works have
developed several imputation methods to impute observed zeros. They were shown to improve downstream single-cell
data analysis (Hou et al., 2020), such as differential gene expression analysis and cell clustering. Here, we test whether
the imputation can improve gene co-expression estimation. We apply all methods on simulation data imputed with four
commonly used state-of-the-art algorithms, MAGIC(Van Dijk et al., 2018), SAVER(Huang et al., 2018), DCA (Eraslan
et al., 2019), and ALRA (Linderman et al., 2022). Appendix Table A2 shows the imputation has reduced data sparsity.
But results indicate that imputed data worsen the method predictions, producing higher FDR scores (Fig. 10(E-F) and
Appendix Fig. A14). The imputation step has been reported to induce artificial correlations in data (Andrews and
Hemberg, 2018; Hou et al., 2020) and thus might explain the observed reduced estimation performance.

In addition, simply removing lowly-expressed cells seems useful. So for each NORTA simulated dataset, we remove
cells with library size smaller than t%×K, t ∈ {1%, 5%, 10%, 15%, 20%}, in which K is the maximal library cell of
all cells. Appendix Fig. A18 shows that removing lowly-expressed cells doesn’t improve performance either. This is
reasonable because Appendix Fig. A1 shows that all cells are sparse, so simply removing cells will not reduce data
sparsity.

Overall, we have found that these commonly used pre-processing approaches do not improve the gene co-expression
estimation and might further introduce more false positives, resulting in estimations of lower quality.

4 Discussion and Conclusion

In this study, we test several gene co-expression estimators on scRNA-seq data. Experiment results show that existing
methods tend to produce estimations with high FDR. The choice of realistic underlying assumptions and testing on
simulations that represent properties of experimental data are keys to developing robust estimation methods. We find
that methods like GLasso and GENIE3 that are proposed for bulk data do not perform well for scRNA-seq data because
scRNA-seq data distribution is significantly different. We also show that previously used simulations, ZI-Gaussian and
ZI-Poisson, have much fewer zero counts and different distribution shapes compared to real-world experimental data.
Therefore, we propose the use of two types of new simulated datasets, NORTA and SERGIO, that exhibit characteristics
of experimental data. The low performance of existing methods on these simulations needs to be considered when
applying them to real-world single-cell datasets. Especially a co-expression estimation with a low FDR is required in
the field.

We also test different pre-processing steps of scRNA-seq datasets to see whether they can improve the estimation. We
find that the widely-used normalization step can reduce data variations, however, the high-level of sparsity in the data
continues to make co-expression estimation challenging. Next, we use pseudo-bulk to reduce data sparsity by averaging
cell expressions through clustering. But it obtains a worse estimation compared to raw data in our experiments. We
hypothesize that the clustering may induce biases in the data. Furthermore, constructing the pseudo-bulk reduces the
number of samples and results in statistical information loss, which negatively affects the analysis. Finally, we show that
scRNA-seq imputation methods also worsen the methods’ performance by potentially inducing artificial correlations in
data. Overall, the pre-processing steps commonly used on scRNA-data do not help with co-expression estimation due
to various limitations and biases related to the complexity of single-cell datasets.
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While our study shows that none of the existing methods provide correct estimations, we believe a few methods can still
be used practically as first steps for downstream improvement or analysis. Based on our experiments, we recommend
using Spearman, MINet, or GLasso with scDesign2 transformation to measure gene co-expression since they have
better performance in our experiments.

Unsurprisingly, we find that the main challenge of scRNA-seq data is its high sparsity. This makes robust analysis of
the data a difficult task. We suggest that, in future works, the improvement on gene co-expression estimation should be
made upon model robustness against sparsity and FDR control. Another potential solution might be adding more data
from other modalities to help with the estimation. Due to the high sparsity and variations, the scRNA-seq data itself
may not provide enough information for promising analysis, so integrating other data, for example scATAC-seq data,
perhaps is important for more comprehensive and confident analyses.

In summary, our tested simulations will be helpful in gene co-expression analysis, especially for benchmarking and
validating methods. We think our study provides valuable insights for scRNA-seq data analyses, and our benchmark
setup can be a resource for the community as we work towards developing more accurate gene co-expression estimators.

Code Availability

All the codes and data used in this study are available at https://github.com/rsinghlab/scRNAseq_
Coexpression_Benchmark.
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A1 More on Methods and Results

A1.1 Properties Comparison between Simulated and Experimental Data

In Sec. 3.1 and 3.2, we compare several basic statistics between simulated and experimental scRNA-seq data. These
statistics include the percent of zeros per cell, percent of zeros per gene, distribution shape, and cell clusters.

In comparisons, we use box plots for the percent of zeros per cell/gene. The similarity between the two datasets is
evaluated via the Kolmogorov–Smirnov test (KS test), where the null hypothesis is that the sparsity of the two datasets
is identical. To compare distribution shapes, since different dataset has different scales of values, we normalize the data
into range [0.0, 1.0] with min-max scaling

Xij =
Xij −mini,j Xij

maxi,j Xij −mini,j Xij
. (12)

We compare distribution shapes qualitatively through frequency histograms and quantitatively through integrated
absolute error (IAE) as

IAE =
∑
i

|h1(i)− h2(i)| . (13)

Here h1 and h2 are 20-bins histograms of two datasets, and h1(i) is the data frequency at the i-th bin.

We use clustering to validate that simulations have the multi-cell-type structure as experimental data. Concretely,
given an expression matrix X ∈ Rn×p, we apply Principal Component Analysis (PCA) to find the top 50 principal
components as P = PCA50(X) ∈ Rn×50. Then we utilize the Leiden clustering (Traag et al., 2019) to split cells into
clusters from P. We visualize the clustering results in the two-dimensional Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) space U = UMAP2(P) ∈ Rn×2. Moreover, we use the silhouette score
(Rousseeuw, 1987) to evaluate the clustering performance. Specifically, let Ck denote a set of cells in the k-th cluster,
the silhouette score is computed through

silhouette(U) =
n∑

i=1

bi − ai
max(ai, bi)

with

ai =
1

|Ck| − 1

∑
j∈Ck,i̸=j

||Ui: −Uj:||2 and bi = min
k′̸=k

1

|Ck′ |
∑
j∈Ck′

||Ui: −Uj:||2.
(14)

Here, ai measures the average ℓ2 distance between a cell i and every cell in the same cluster. bi measures the average ℓ2
distance between cell i and every cell in the nearest cluster. Appendix Fig. A2, A3, and A4 provide clustering results
along with silhouette scores for 100 HVGs experimental data and NORTA/SERGIO simulations. We use scanpy (Wolf
et al., 2018) for PCA, UMAP, and Leiden clustering. We use scikit-learn (Pedregosa et al., 2011) to compute the
silhouette score.

To validate that our new NORTA simulation can successfully keep the given gene co-expression structure, we compare the
correlation of data before and after tuned by a given network. Let W∗ denote the true covariance matrix used in NORTA
simulation; Correxp denote Pearson correlation coefficient matrix of experimental data; Corrsim denote correlation matrix
of corresponding simulated data. The Corrsim should be closer to W∗ since we explicitly impose the network structure
in NORTA. So we utilize the correlation matrix distance (CMD) (Herdin et al., 2005) to measure the similarity between
two correlation matrices as

CMD(A,B) = 1− tr(AB)

∥ A ∥F · ∥ B ∥F
∈ [0, 1]. (15)

CMD(A,B) = 0 denotes two correlation matrices are equal up to a scaling factor and CMD(A,B) = 1 if they differ in
max extents. Therefore, CMD(Corrsim,W

∗) < CMD(Correxp,W
∗) indicates that the simulation successfully impose

the gene network structure on data. Apart from CMD, we also utilize mean squared error (MSE) as

MSE(A,B) =
1

p2
∥ A−B ∥2F with A,B ∈ Rp×p, (16)

in which ∥ · ∥F is Frobenius norm and a smaller MSE value indicates two matrices are more similar.

A1.2 Gene Co-Expression Network Estimators

• Pearson/Spearman: The correlation coefficient is the most intuitive measure of gene co-expression
(Langfelder and Horvath, 2008). In this study, we test Pearson and Spearman correlation. Specifically,
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for every pair of genes, we compute the correlation coefficients and constructed a correlation matrix as

G̃pearson
ij = pearson(X:i,X:j) =

Cov(X:i,X:j)

σ(X:i)σ(X:j)

G̃spearman
ij = spearman(X:i,X:j) =

Cov (R(X:i), R(X:j))

σ (R(X:i))σ (R(X:j))
.

(17)

Here Cov is the covariance, σ is the standard deviation, and R(a) : Rn 7→ Rn are ranks of variable a.
Then we filter the correlation matrix G̃ with a user-defined threshold δ for the final estimation as Ĝij =

max
(
˜|Gij | − δ, 0

)
.

• MINet: Mutual information (MI), as a generalized correlation measure, has also been used to estimate gene
co-expression networks. The MI is estimated with Spearman entropy estimator, and the network is estimated
through MRNET (Meyer et al., 2007) algorithm. We also use δ to threshold the mutual information matrix. This
method is referred to MINet in this study. We use R package minet (Meyer et al., 2008) in our implementation.

• GLasso(Cov): (Friedman et al., 2008) proposed graphical lasso (GLasso) to estimate a sparse inverse
covariance matrix from Gaussian data. Specifically, GLasso assumes p genes follow a multivariate Gaussian
distribution N (0,Σ) and the inverse covariance G := Σ−1 encodes the gene co-expression network. We
generally solve GLasso with a maximum likelihood estimation (MLE)

Ĝ = argmin
G≽0

tr(SG)− log det(G) + λ
∑
i ̸=j

|Gij |, (18)

in which S is the sample covariance matrix and λ is a hyper-parameter controls sparsity. We name it
GLasso(Cov) because it uses GLasso and is based on the covariance matrix. We use the implementation of R
package QUIC(Hsieh et al., 2011).

• GENIE3: (Huynh-Thu et al., 2010) developed GENIE3 to estimate gene regulatory network from microarray
data. The essential idea of GENIE3 is decomposing the task of estimating a network of p genes into p
subproblems, each aiming to estimate one gene’s interactions based on regression. Each subproblem is solved
with a tree-based ensemble method. We use R package GENIE3 in our implementation.

• PIDC: (Chan et al., 2017) developed PIDC to estimate gene regulatory network from single-cell data. It utilizes
partial information decomposition to estimate relationships between genes. We use R package PIDC in our
implementation.

• scLink: (Li and Li, 2021) proposed a gene co-expression estimator, scLink, for scRNA-seq data. It assumes
log-transformed scRNA-seq data follow the mixture of Gamma-Normal distribution. Upon this, scLink
estimate robust correlation coefficients to ease the influence of excess zeros in data. The robust correlation
matrix is later fed into GLasso to give a final gene co-expression network estimation. we follow the scLink R
implementation in the study.

• GLasso(scDesign2): (Sun et al., 2021) originally proposed scDesign2 for simulating high-fidelity scRNA-
seq data and it can also be used on gene co-expression estimation. It assumes the expression of each gene
follows zero-inflated negative binomial (ZINB) distribution. It first converts each gene’s expression to
Gaussian-like samples with a Gaussian copula. Then it simulates data with the approximated covariance matrix
of transformed data. In our study, we take this covariance matrix of transformed data from scDesign2 and
use GLasso to estimate gene co-expression.

• ZILNBGM: (Choi et al., 2017; Park et al., 2021) estimated gene co-expression network with the local graphical
model. For each node (i.e., gene), it locally infers each node’s neighbors with zero-inflated negative binomial
regression and integrates neighbors of all nodes into a gene network. It has a hyper-parameter λ to control the
sparsity. This approach is named zero-inflated local negative binomial graphical model (ZILNBGM).

A1.3 scRNA-seq Simulation with Different Settings

• Different number of cells: We use NORTA to generate five datasets of {10, 50, 100, 150, 200} cells corre-
sponding to 100 HVGs subsets of eight experimental datasets. We use the same hub-based co-expression
network in these simulations. The number of cells ranges from 0.1× to 2× of the number of genes, providing
a sequence of tests from low-dimensional (where the number of cells n are larger than the number of genes p)
to high-dimensional settings (where n < p). Totally, we have 40 simulated datasets in this case.
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• Different network structures: We use NORTA to generate data based on three different co-expression graph
structures: hub-based, scale-free, and GRN. We use pcorSimulator R package to generate hub-based and
scale-free networks. The GRN network is taken from example data in (Dibaeinia and Sinha, 2020). The gene
distributions are fitted from 100 HVGs subsets of eight experimental datasets, so we have 24 simulated datasets
in this case.

• Different sparsity level: We simulate NORTA data of different sparsity. We use the hub-based network and a
negative binomial distribution with dispersion= 0.5 and probability of success= 0.005 to generate expression
matrix X of 100 genes and 500 cells. Then we add zero counts on X following Splatter simulation (Zappia
et al., 2017), to obtain data of {10%, 20%, · · · , 90%} sparsity. Concretely, let Y = [log(Xij + 1)]i,j , we add
zeros through

Xij = IijXij with Iij ∼ Binomial(πij) and πij =
1

1 + exp (median(Y)−Yij)
. (19)

A1.4 scRNA-seq Simulation with Different Pre-processing Approaches

In Sec. 3.6, we test multiple processing approaches to validate whether they can improve the co-expression estimation.

• Normalization: We test three normalizing techniques:
– LogNorm: Specifically, given a count matrix X ∈ Rn×p of n cells and p genes, we first normalize each

cell with its library size as

Xi: =
Xi:∑
k Xik

·M (20)

where M is a scale factor and we set it as M = 104 in our experiments. After this, we log-transform data
with

Xij = log
(Xij+1)
10 . (21)

– sctransform: (Hafemeister and Satija, 2019; Choudhary and Satija, 2022) proposed a novel scRNA-seq
data normalization method called sctransform. It is designed to stabilize cell sequence depth variations,
and it models gene expression with the generalized linear model (GLM). Concretely, sctransform
assumes the expression of gene j at cell i follows

Xij ∼ NB(µij , θj) with µij = exp(βj0 + lnMi). (22)

Here Mi =
∑p

j=1 Xij is the library size of cell i. sctransform fits the NB distribution for each gene
through the regularized negative binomial regression. Then sctransform normalizes data by converting
it to the Pearson residual via

Xij =
Xij − µij

σij
(23)

with µij = exp(βj0+lnMi) and σij =
√
µij + µ2

ij/θij . Note that sctransform normalized data have
negative values. So ZILGM and GLasso(scDesign2) are infeasible for sctransform outputs since they
require data to be non-negative. We use R package sctransform in our experiments.

– PsiNorm: (Borella et al., 2022) proposed a scalable normalization method PsiNorm for scRNA-seq data,
based on power-law Pareto distribution. Specifically, for a cell i, PsiNorm normalizes its expression
through

Xi: =
pXi:∑p

j=1 log(Xij + 1)
. (24)

We use R package PsiNorm in our experiments.
• Pseudo-bulk: Pseudo-bulk data are obtained in two steps. First, we cluster cells with Leiden clustering on

their UMAP representations. In UMAP, The neighbor graph is computed with the number of neighbors as
ten on the first 50 principal components. Then for each cluster, we average cell expressions to get the final
pseudo-bulk expression matrix. We use scanpy package (Wolf et al., 2018) to obtain pseudo-bulk data in
implementation. Appendix Table A2 shows the pseudo-bulk data sparsity.

• Data Imputation: We also test how scRNA-seq imputation algorithms affect co-expression estimation since
they can reduce the data sparsity. We utilize four imputation algorithms, MAGIC (Van Dijk et al., 2018), SAVER
(Huang et al., 2018), DCA (Eraslan et al., 2019), and ALRA (Linderman et al., 2022) to impute simulation
datasets. MAGIC imputes scRNA-seq data through diffusion on the cell similarity network. Specifically, MAGIC
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first compute distances between every pair of cells and normalize them into cell affinities. The imputation
is completed by performing diffusion on cell affinities. SAVER first learns the posterior distribution of each
gene from regression methods and imputes zeros from learned distributions. DCA takes overdispersion and
sparsity into consideration and utilizes a variational autoencoder to denoise the data. These three methods
are commonly used in scRNA-seq data analysis. Moreover, the recently proposed ALRA impute data while
preserving biologically non-expressed values based on low-rank matrix approximation. Our study runs each
imputation algorithm on simulated datasets with default hyper-parameter settings. Appendix Table A2 shows
the data sparsity after imputation.

A1.5 Gene Co-expression Estimation On Simulations with More Genes

We also test all methods on NORTA simulations with 500 genes and SERGIO simulations with 400 genes. We use NORTA
to generate data corresponding to 500 HVGs of eight experimental data with hub-based co-expression networks. For
SERGIO simulation, we use the example data of 400 genes in (Dibaeinia and Sinha, 2020). Appendix Fig. A7 and A8
show that, compared with simulations with 100 genes (Fig. 7), methods perform worse on data with more genes. This
indicates that more genes worsen the estimation due to increased problem complexity.

A1.6 Gene Co-expression Estimation On Experimental Data of Different Cell Types

To remove the mutual effects of multiple cell types, We follow (Li and Li, 2021) and evaluate all methods on gene
expressions of individual cell types. Concretely, we use Tabula Muris database (Consortium et al., 2018), which is
derived from Smart-seq2 RNA-seq libraries (Picelli et al., 2014) and contains 53,760 cells from 20 tissues of 8 mice. We
use expressions of 500 HVGs from three cell types: T cells (793 cells and sparsity=7.37%), pancreatic beta cells (449
cells and sparsity=22.59%), and skeletal muscle satellite stem cells (439 cells and sparsity=7.24%). We still compare
mouse TF co-expression networks with method predictions. Appendix Fig. A19 shows that all methods have average
F1-scores<0.4. MINet performs the best on recovering known TF co-expression with PPV≈ 0.41. Other methods have
PPV< 0.3.

A2 Supplementary Figures

Figure A1: Compare experimental data with NORTA and SERGIO simulations concerning cell sparsity. (A) Cell
sparsity of experimental data and corresponding NORTA simulation. (B) Cell sparsity of experimental data and SERGIO
simulations varying s ={1, 5, 10, 15, 20}.

Table A1: Basic stats of TF co-expression networks.

Dataset # TFs # Edges Network Sparsity

Mouse Cortex #2 26 39 12%
#4 48 162 14%

Human PBMC #5 64 67 3%
#7 64 69 3%

Tabula Muris
skeletal muscle satellite stem cells 16 16 13%

T cells 11 7 13%
pancreatic beta cells 10 8 18%
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Figure A2: Compare cell clustering on mouse cortex experimental data (#1 to #4) and corresponding NORTA simulations.

Figure A3: Compare cell clustering on PBMC experimental data (#5 to #8) and corresponding NORTA simulations.
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Figure A4: Cell clustering of SERGIO simulations with s={1, 5, 10, 15, 20}.

Figure A5: Method performances on eight NORTA simulations with 100 genes, including (A) boxplot for F1-score, (B)
FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525447doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Investigating the Complexity of Gene Co-expression Estimation for Single-cell Data A PREPRINT

Figure A6: Method performances on five SERGIO simulations with 100 genes, including (A) boxplot for F1-score, (B)
FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.

Table A2: Average(std.) gene sparsity (ratio of non-zeros) of 100HVG simulated datasets of raw data and different
pre-processed data.

Dataset Gene Sparsity (ratio of non-zeros)
Raw LogNorm sctransform PsiNorm Pseudo-bulk Imputation

NORTA

#1 5.2%(4.7%) 5.2%(4.7%) 98.5%(9.9%) 5.2%(4.7%) 74.6%(21.8%) 76.9%(39.6%)
#2 20.9%(15.6%) 20.9%(15.6%) 100%(0%) 20.9%(15.6%) 89.6%(14.8%) 98.6%(4.5%)
#3 4.3%(3.9%) 4.3%(3.9%) 93.6%(21.6%) 4.3%(3.9%) 74.6%(29.0%) 95.4%(17.1%)
#4 18.3%(12.5%) 18.3%(12.5%) 100%(0%) 18.3%(12.5%) 92.6%(11.6%) 79.7%(35.7%)
#5 2.0%(2.5%) 2.0%(2.5%) 72.7%(31.9%) 2.0%(2.5%) 49.0%(31.3%) 67.2%(45.8%)
#6 2.0%(3.5%) 2.0%(3.5%) 60.1%(40.5%) 2.0%(3.5%) 39.8%(28.4%) 67.2%(45.8%)
#7 1.0%(1.8%) 1.0%(1.8%) 55.2%(19.5%) 1.0%(1.8%) 25.5%(20.8%) 87.1%(24.1%)
#8 4.0%(5.4%) 4.0%(5.4%) 76.8%(41.0%) 4.0%(5.4%) 71.1%(39.0%) 78.2%(40.7%)

SERGIO

s=1 1.5%(6.2%) 1.5%(6.2%) 33.2%(34.0%) 1.5%(6.2%) 14.1%(14.1%) 68.5%(39.5%)
s=5 6.8%(9.6%) 6.8%(9.6%) 82.8%(21.0%) 6.8%(9.6%) 57.3%(21.5%) 95.0%(14.3%)

s=10 11.6%(13.4%) 11.6%(13.4%) 93.0%(13.3%) 11.6%(13.4%) 77.9%(18.4%) 92.5%(16.8%)
s=15 15.9%(16.6%) 15.9%(16.6%) 99.0%(0%) 15.9%(16.6%) 95.8%(12.7%) 79.2%(37.0%)
s=20 19.7%(18.2%) 19.7%(18.2%) 99.4%(0%) 19.7%(18.2%) 99.0%(5.7%) 80.1%(35.7%)
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Figure A7: Method performances on eight NORTA simulations with 500 genes, including (A) boxplot for F1-score, (B)
FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.
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Figure A8: Method performances on five SERGIO simulations with 400 genes, including (A) boxplot for F1-score, (B)
FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.
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Figure A9: Method performances on four ZI-Gaussian simulations with 100 genes, including (A) boxplot for F1-score,
(B) FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.

Figure A10: Method performances on three ZI-Poisson simulations with 100 genes, including A) boxplot for F1-score,
(B) FDR and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.
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Figure A11: The best Spearman estimation on NORTA simulations with 100 genes (right) and the corresponding true
network (left). Here, F1-score=0.43 and FDR=0.6, containing 27 true positives and 40 false positives.

Figure A12: Method performances on NORTA simulations with different number of cells and 100 genes. We simulate
data with 10, 50, 100, 150, and 200 cells. Evaluations include (A) boxplot for F1-score, (B) FDR and PPV, (C) boxplot
for AUROC, and (D) boxplot for AUPRC.

Figure A13: Method performances on NORTA simulations with different graph structures and 100 genes. We simulate
data with hub-based, scale-free, and regulatory networks. Evaluations include (A) boxplot for F1-score, (B) FDR and
PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.
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Figure A14: Method performances on NORTA simulations with different sparsity levels and 100 genes. We simulate
data with 0.1, 0.2, · · · , 0.9 ratio of non-zero values. Evaluations include (A) boxplot for F1-score, (B) FDR and PPV,
(C) boxplot for AUROC, and (D) boxplot for AUPRC.
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Figure A15: Comparisons of method performances between raw and noramalized NORTA (left column) and SERGIO
(right column) simulations. Evaluations include (A,E) boxplot for F1-score, (B,F) FDR and PPV, (C,G) boxplot for
AUROC, and (D,H) boxplot for AUPRC.
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Figure A16: Comparisons of method performances between raw data and pseudo-bulks of NORTA (left column) and
SERGIO (right column) simulations. Evaluations include (A,E) boxplot for F1-score, (B,F) FDR and PPV, (C,G)
boxplot for AUROC, and (D,H) boxplot for AUPRC.
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Figure A17: Comparisons of method performances between raw and imputed NORTA (left column) and SERGIO (right
column) simulations. Evaluations include ((A,E) boxplot for F1-score, (B,F) FDR and PPV, (C,G) boxplot for AUROC,
and (D,H) boxplot for AUPRC.
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Figure A18: Method performances of NORTA simulations after removing cells in the quality control. We first found the
maximal library size of all celss and denoted it as M . Then for each NORTA simulation dataset, we remove cells with its
library size smaller than the 1%, 5%, 10%, 15%, and 20% of M . Evaluations include A) boxplot for F1-score, (B) FDR
and PPV, (C) boxplot for AUROC, and (D) boxplot for AUPRC.

Figure A19: We test methods on Tabula Muris data. We use the top 500 HVGs of three cell types: T cells, pancreatic
beta cells, and skeletal muscle satellite stem cells. Because ZILNBGM spends several days running a single trial on these
data, we consider it uncomparable with other methods and omit it in this comparison.
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