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Abstract 
Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between 
populations help researchers better understand the links between SVs and disease. The 
identification of SVs from DNA sequence data is non-trivial and requires a balance between 
comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) 
across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse 
TOPMed consortium. We describe our methodologies for SV inference resulting in high variant 
quality and >90% allele concordance compared to long-read de-novo assemblies of well-
characterized control samples. We demonstrate utility through significant associations between 
SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV 
hotspots and deserts and those that potentially impact the regulation of medically relevant genes. 
This catalog characterizes SVs across multiple populations and will serve as a valuable tool to 
understand the impact of SV on disease development and progression. 
 
Keywords: Structural Variants, Population, TOPMed, NGS 
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Main  
A fundamental goal of human genetics is to discover the genetic etiology underlying disorders 
that plague human health and to build comprehensive models for disease biology. While we know 
that all classes of variant alleles are impactful1–4, structural variants (SVs) have not been 
characterized as extensively as single nucleotide variants (SNVs), particularly in diverse 
populations5. Structural variants are important types of genomic alterations that are typically 
described as insertions, deletions, or other complex rearrangements. Structural variants have 
been shown to play an important role in population diversity6,7 and evolution8–10. For example, 
multiple speciation events are reportedly due to de novo deletions and duplications11. SVs may  
also be medically relevant and have been shown to play a key role in cancer12,13 and 
neurological14,15 and cardiovascular16,17 conditions. Further, their impact in Mendelian disorders is 
also well documented18,19. 
 
Despite their biological importance, our knowledge of SVs is limited4,20. Accurately resolving 
classes of variation that are larger than the length of the individual DNA sequence reads poses 
challenges4,5,21. Additionally, accurate assessment of allele frequencies presents difficulties due 
to the computational expense and limited availability of highly curated SV data reference 
resources22. Previous projects have contributed to our knowledge of SV frequency across 
different populations and illustrate the role of SVs in disease, but also demonstrate the limitations 
of current analytical methods. For example, the 1000 Genomes Project (1KGP)6,22 leveraged 
2,500 diverse whole-genome shotgun (WGS) datasets at different coverage levels to generate an 
SV catalog that showed stratification by ancestry. 1KGP highlighted the remarkable variety and 
complexity of structural variants, but the number of samples and the computational methods were 
limited. More recently gnomAD SV23 provided an important resource across 14,891 samples 
(10,738 unrelated individuals). Approximately 356,000 SVs were identified across multiple 
individuals, serving as a valuable resource for allele frequency and disease annotation 
information. A recent publication from NHGRI’s CCDG program16,17 also provided a population-
scale map from 17,795 individuals and estimated the relative burden of rare deleterious SVs17. 
Another study from UKBB further highlighted the importance of SV24 .Despite these advances, 
the methods for identifying and characterizing complex SVs are still evolving and sample sizes 
have not been adequate to capture many rare events. Additionally, many ancestral backgrounds 
remain underrepresented in existing resources.  
 
Joint calling of data from large cohorts can allow for greater sensitivity of detection of rare events 
and makes it possible to call genotypes on all samples in a cohort, but the computational burden 
can be prohibitive. Additionally, joint calling must take into account the inferential nature of 
individual SV detection to maintain sensitivity while also limiting false positives as the size of the 
sample set increases. These limitations must therefore be considered and a robust QC process 
must be in place when creating a large population-wide SV call set in order to accurately assess 
its impact on human health and disease. 

 
We analyzed short read whole genome sequence data from the National Heart, Lung, and Blood 
Institute’s Trans-Omics for Precision Medicine (TOPMed) program to create the largest, most 
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diverse population-based SV catalog to date using scalable and accurate discovery methods. We 
describe the methods used to generate this resource and establish the high quality of the data 
through benchmarking. In addition, we offer key insights on the distribution of variant types 
observed when analyzing SVs from 138,134 samples. We show the impact of these variants on 
multiple genes, including many medically relevant regions, highlighting the value of this resource 
for both studying diversity of the human population and improving our understanding of the role 
of SVs in disease. Furthermore, we are able to confidently identify low frequency SVs. The 
TOPMed SV catalog thus provides a high-quality resource representing a wide range of SV 
frequencies from diverse populations.  

Results 
TOPMed seeks to identify factors that increase or decrease the risk of heart, lung, blood, and 
sleep disorders25 by coupling multiple-omic datasets with clinical phenotypes. The primary data 
includes whole-genome sequencing on 138,134 individuals from 43 studies25. Samples were 
sequenced at an average of 30X coverage using paired-end Illumina technology at five 
sequencing centers across multiple years25. Data was centralized at the TOPMed Informatics 
Research Center for QC evaluation and initial alignment to the GRCh38 reference. To ensure 
accurate variant discovery, only samples meeting strict data quality requirements were included 
in this call set (>30x coverage and genome coverage metrics averaged 95% ≥ 10x, and 90% ≥ 
20x coverage). Figure 1A shows the composition of the samples with respect to genetically 
inferred ancestry25. While the majority of the samples are of European descent (57.8%), there is 
substantial representation from African (30.2%) and Asian (7.3%) descent. Other traditionally 
underrepresented groups make up these general categories. For example, a subset of individuals 
(n=1,267) are from a Samoan26 cohort and the majority appear in the East Asian and Samoan  
(EAS) category when grouped by genetically inferred ancestry. 
 
We implemented a novel SV discovery pipeline to address the computational challenges posed 
by mega-scale sequencing projects (see Methods for details). In short, each sample was 
independently analyzed for discordant paired-end, split read, and read depth SV signals using 
Parliament227. Parliament2 deploys a multi-caller strategy to generate a VCF file of SVs per 
sample and operates the key principle to leverage the different heuristics that individual state-of-
the-art SV callers utilize. Each SV caller has slightly different strengths and weaknesses which 
are optimized in our SV merging tool, SURVIVOR10. The Parliament2 pipeline is optimized for 
cost-efficient cloud computing and has a high accuracy (F1 score 74.7%) when benchmarked 
against Genome in a Bottle Consortium (GIAB) standards27,28. After the initial calling, we used 
SURVIVOR merge10 to obtain a collection of candidate SVs across all samples. We used 
muCNV29 for efficient population-wide joint genotyping of the candidate SV. The joint genotyping 
step includes integrating all supporting evidence for each candidate SV across all samples and 
fitting mixture models that separate carriers of the SV from the rest of the samples. Some samples 
with low-quality indicators from SNP-based evaluations showed unusually high numbers of 
duplications and thus were removed as they affected the overall joint genotyping processes. Joint 
genotyping was performed with stringent quality evaluation by muCNV to produce an accurate 
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set of SV genotypes that can be directly used for genotype-phenotype analyses. We utilized read 
mapping information and multi-sample statistics to achieve inversion genotyping at scale.  

 
Figure 1: Overview of SV calls. A) Sample counts based on genetically inferred ancestry showing 
the majority of individuals are Europeans (EUR) followed by African (AFR), East Asian and 
Samoan (EAS), American (AMR), South Asian (SAS) and Mestizo (MES) ancestry. B) Per-sample 
SV count distributions by ancestry. C) Overview of gene density (red), deletions (blue), 
duplications (orange) and inversions (green). D) Size distribution of population genotyped CNV 
and inversions. The majority of SVs across the population are large events. E) Randomized PCA 
principal components 1 and 2 of deletions. See supplementary Figures 2-4 for deletions , 
duplications and inversions. 

Summary properties of SVs across 138,134 individuals 
Figure 1B shows the average number of SVs per individual and across ancestry groups. As 
expected, individuals of African ancestry have more SVs than those of other ancestries. We also 
observed a difference for Mestizo (MES)-based ancestries compared to Europeans or Asians. 
The SV catalog includes a total of 355,667 SVs: 231,817 deletions (65.1%); 86,911 duplications 
(24.4%); 36,939 inversions (10.5%) in autosomes. Figure 1C gives an overview along the entire 
genome of the SV densities with respect to the gene density. We observe multiple locations with 
concentrated SV density/hotspots. Figure 1D shows the size distribution of the SVs and their 
types included in this call set. Half of the SVs are at least 5.7 kbp long, with an average SV length 
of 52.7 kbp (Supplementary Table 1). Figure 1E shows the principal component analysis plots 
across deletions. Supplementary Figure 2-4 shows the PCA analysis for Deletions, Duplications 
and inversions respectively. We note the expected distribution with stratification being driven by 
sample ancestry with clustering of samples of African descent (in red) occurring away from the 
East Asian and European ancestry samples. This can be seen by deletions and duplications 
independently. However, inversions appear to have an undefined pattern potentially because of 
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the low number of inversions across the SV call set. We note the use of ancestral groupings in 
this analysis may be limiting due to lack of granularity. For example, a subset of participants from 
a Samoan cohort are grouped with the East Asian & Samoan (EAS) population group category; 
and population-specific analysis might reveal more differences for such isolated populations.   
 
The observed allele frequency distribution is consistent with an exponential growth of the human 
population with 95.5% categorized as rare (<1%) and 47.3% as singletons. The majority of 
singletons are deletions (101,346) while inversions represent the minority (21,797). Over the 
entire frequency spectrum (Supplementary Figure 1A) we see a small increase of fixed SVs (95-
100% AF).  

Establishing a highly concordant and accurate SV call set  
We included two control subjects from 1KGP (NA12878 of Central European ancestry, and 
NA19238 of Yoruban ancestry) in our callset and subsequent analyses. These samples served 
as process controls for the TOPMed program and were sequenced ~32 times each across each 
contributing genome center25. Furthermore, there are high-quality haplotype-resolved assemblies 
of these genomes that provide a reference for variant benchmarking30. We used two different SV 
benchmarking methods: TT-Mars31 and Truvari32  (see Methods for details) to evaluate our variant 
call sets. On average across the two subjects, there were 3149±32 / 3749±43 deletions, and 
200±11 / 279±12 duplications discovered by each sequencing run, indicating a high degree of 
consistency. The assemblies enabled the assessment of, on average, 93% of calls (Figure 2A). 
The positive predictive value (PPV) estimated by TT-Mars averaged 0.90 for NA12878 deletion 
calls and 0.87 for NA19238 deletion calls (Figure 2B). The estimated PPV based on Truvari 
analysis indicated that 87% of deletions were true positives. Variant calls for NA19238 had similar 
(though improved) metrics of 95% (TT-Mars) and 89% (Truvari) PPV. The combined assessments 
of TT-Mars and Truvari allow us to estimate the overall precision of our deletions to be 90.0-
91.5%. We could assess between 96 and 98% of all duplications. The overall PPV of duplications 
was determined to be 86.5% by TT-Mars and Truvari (Figure 2A & B)28. In addition, we reviewed 
SVs for NA12878 that were not confirmed by either method (n=219) using Samplot33. In most 
cases, there was clear read evidence that there was a real CNV at the predicted location (61% of 
variants that were initially non-confirmed by TT-Mars or Truvari). The others that were non-
confirmed appeared to be a result of inaccurate breakpoints. This was pronounced in regions of 
low map-ability/ repetitive regions and explains why both methods(TT-Mars or Truvari) did not 
confirm these calls. We were not able to establish visual evidence for 6% of non-confirmed SVs 
to confirm their presence in these control samples. 
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Figure 2: Evaluation of SV call sets against using haplotype-resolved assemblies for deletion 
(DEL) and duplication (DUP) calls in the NA12878 and NA19238 genomes. A) Evaluation using 
TT-Mars. The fraction of calls that may be assessed using the assemblies (analyzed) and positive 
predictive value (PPV) are given for DEL and DUP calls. B) Support for calls from both the TT-
Mars and Truvari methods. C) The size by count spectrum of all calls (red), the count validated 
by TT-Mars (green), and the count validated by Truvari (blue) for the combination of both 
genomes. 
 
To estimate consistency, we counted the SVs per subject that were assessed as being a true 
positive in at least one replicate and measured the percentage of these SVs that each replicate 
recovered. For NA12878, Truvari found 3,004 DELs and 282 DUPs, 93% and 59% of which were 
recovered per-replicate on average, respectively. For NA19238, the 3,906 DELs and 411 DUPs 
were recovered in 87% and 63% of replicates, respectively. TT-Mars and Truvari use 
complementary approaches for variant validation and so it is interesting, but perhaps not 
surprising, that each method highlights certain deletions or duplications that can be verified by 
only one of the methods (Figure 2B). Neither validation approach confirmed deletions greater 
than 500kb or duplications over 50kb (Figure 2C). Deletions and duplications of less than 1kb 
account for 78% and 95% of calls, respectively, and the PPV in this size range was 93% and 
87%, indicating a high accuracy for shorter calls.  
 
We evaluated the genotyping accuracy by measuring error rates from Mendelian consistencies 
using 11,387 samples in 4,081 trios and 173 duos (Figure 3A). The estimated error rates are 
0.29% for deletions, 6.1% for duplications, and 6.1% for inversions. Inheritance patterns indicate 
de novo variants at 0.33% of heterozygous deletions, 1.4% duplications, and 9.0% inversions. 
Mendelian inconsistencies and de novo variant rates are comparable to each other in deletions 
and inversions because they are all biallelic variations, but the Mendelian error rate is much higher 
than the de novo error rate in duplications due to multi-allelic variations. The allelic balances 
(Figure 3A) were 49.6:50.4 (REF:HET) in deletions, 55.2:44.8 in duplications, and 57.9:42.0 in 
inversions. Compared to the expected 50:50 distribution, we see slightly more REF calls than 
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HET calls in duplications, meaning there exists a slight reference bias. Overall, the ratios do not 
show excessive reference biases and do not deviate significantly from the expected. The average 
het/hom ratio of samples is 2.26±0.34 (Supplementary Table 2) 
 

 
Figure 3: A) Assessment of Mendelian error and novel HET rates per SV type across 11,387 
samples from trio/duo families. For the evaluation, we also include the multiallelic variants that do 
increase the error rate, especially across duplications. B) Overlap of SV over 1KGP and gnomAD 
SV with respect to the allele frequency within the TOPMed SV call set. The allele frequencies 
change slightly between the novel SV from TOPMed and other overlapping SV. C) FST plot of 
African versus European ancestry of SV across the entire genome, highlighting a threshold of 
0.11.  

Identification of 163,794 novel SVs  
To evaluate the novelty of the TOPMed SV call set, we compared it with the gnomAD SV (14,891 
samples) and 1KGP (2,506 samples) call sets, which capture variants with allele frequency down 
to 0.01%, and 0.1%, respectively. Events identified across callsets are classified as the same SV 
if they have an overlap of ≥70% using AnnotSV34. Across all types of SVs, 52% of TOPMed SVs 
have overlap with gnomAD SV or 1KGP, with the highest overlap for deletions (56.8%) followed 
by duplications (48.0%) and inversions (46.1%). As expected, we observed a larger overlap with 
gnomAD SV (44.05% of calls) compared to 1KGP (28.50%). The variants unique to TOPMed are 
consistent with the number of rare events detected using increased sample sizes. Figure 3B 
shows the overlap of TOPMed SV to 1KGP and gnomAD SV with respect to the allele frequency 
of the variants. Events found in all three catalogs have the highest mean allele frequency (1.9%) 
and events exclusively in TOPMed have the lowest (0.4%). Our call set also includes 168,307 
singletons (47.28% of calls), 45% of which overlap with a gnomAD or 1KGP call. For variants 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525428doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525428
http://creativecommons.org/licenses/by-nd/4.0/


 

10 

shared across individuals (AF≥0.01) and overlapping between TOPMed SV and gnomAD, the 
Pearson correlation coefficient between reported allele frequencies is 0.85. 

SV association with human phenotypes and further applications 
The availability of a validated SV catalog on a large diverse population-based sample set creates 
an important resource for genome-wide association analyses between SVs and a broad array of 
clinically relevant phenotypes. As a proof-of-concept for the SV-phenotype association analyses, 
we tested genome-wide association between SVs and various cardio-metabolic phenotypes from 
Atherosclerosis Risk in Communities (ARIC) and Hispanic Community Health Study / Study of 
Latinos (HCHS/SOL) cohorts. In ARIC, we had 3,642 samples from European American ancestry 
and 269 samples from African American ancestry with SV genotypes. In HCHS/SOL, we had 
3,945 samples with SV genotypes. We tested for association in each ancestry group separately 
using EPACTS (ARIC AA/EA) and GMMAT (SOL) and performed a meta-analysis across three 
ancestry groups using METAL. Although we tested only a modest sample size compared to the 
entire TOPMed set, we were able to successfully identify genome-wide significant associations. 
We identified a 3.8 kbp deletion overlapping HBA2 in human alpha globin cluster (chr16, 
173,578-177,341) that was significantly associated with decreased hemoglobin (p=7.93x10-15, 
standardized β= -0.34) and a 893 bp deletion overlapping BCRP3 (chr22, 24,637,046-24,637-
939) that was significantly associated with increased gamma-glutamyltransferase (GGT) levels 
(p=1.94x10-8, standardized β= 0.18). The HBA2 deletion was a previously reported deletion and 
is known to be associated with red blood cell traits and a recent TOPMed-wide association 
analysis confirmed the association with seven red blood cell related traits35. We also genotyped 
this specific variant across additional ARIC and SOL TOPMed/CCDG WGS samples and 
identified a significant association with decreased hemoglobin, decreased hematocrit, and 
increased HbA1c levels16,36,37. The association between BCRP3 deletion and GGT levels has not 
previously been reported, but is located approximately 9 kb downstream of the GGT1 gene that 
directly encodes the GGT enzyme. Interestingly, both deletions were common in AA but very rare 
in EA (HBA2 AA MAF=0.20, EA MAF=0.004; BCRP3 AA MAF=0.51, EA MAF= 0.00077), 
suggesting the importance of the current multi-population WGS analyses and also the role of SVs 
that contribute to inter-individual and inter-population differences in the distributions of several 
clinically relevant biomarkers. Our results show that the call set provides unique value as the 
largest-scale SV genotype resource available for WGS data and can be utilized for the study of 
functional contributions of SVs to various complex human traits. Since the release of the SV 
callset, there has been active involvement of various phenotypic working groups of TOPMed who 
have reported findings from significant SV-phenotype association; including the hematologic 
traits35 and atrial fibrillation (AF) (manuscript in preparation). The SV set also has been utilized to 
generate a database of SV-SNP linkage disequilibrium (LD) statistics from subpopulations of 
TOPMed samples (http://topld.genetics.unc.edu/topld/) 38.  

LD between SVs, SNPs, and known GWAS hits 
To understand how SVs are associated with other nearby genetic variation, we performed 
pairwise linkage disequilibrium (LD) analysis between each SV and small variants within a +/- 1 
Mbp region around the SV. We used the TOPMed SNV call set freeze 925, and only founder 
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samples were selected from both the small variant and SV call sets. We analyzed 36,056 SVs 
with MAF>0.001, including 30,191 deletions, 3,717 duplications, and 1,861 inversions. We ran 
PLINK pairwise LD analyses with a minimum r2 value of 0.05. 12,204 SVs had at least one small 
variant with r2>0.3. We identified 28,424 unique small variants with r2>0.3; they were distributed 
most densely in the HLA region of human chromosome 6, a known recombination cold spot.  
 
Another important way to use SNV data in conjunction with SVs is to look at correlation of SVs 
events with known GWAS signals. Most of the known GWAS association signals are from small 
variants, but this is also frequently the only variant class evaluated in large association studies. 
While these GWAS signals may be significant, the functional role of small variants is often 
obscured. Based on Mendelian disease gene discovery and follow-up studies 39, existence of an 
SV highly correlated with a known GWAS SNP suggests a functional contribution to the 
associated phenotype. To understand the overall distribution of SVs in the context of reported 
GWAS signals, we compared data from the NHGRI-EBI GWAS Catalog40 to identify SVs in high 
LD with their reported association signals. From the GWAS Catalog, we identified 201 SNPs with 
r2>0.5 and 132 SNPs with r2>0.8 that are associated with at least one SV. For example, a 684-bp 
deletion in an intergenic region of chromosome 9 (chr9:101,457,417-101,458,101) is in almost 
perfect LD (r2=0.997) with rs2183745 at chr9:101,456,893, which is strongly associated (P=2x10-

133) with alkaline phosphatase (ALP) level. Another example is a 928-bp deletion upstream of 
INSR at chromosome 19 (chr19:7,258,353-7,259,281) that is in strong LD (r2=0.979) with 
rs12798472 at chr19:7,257,979, which is significantly associated (P=1x10-58) with systolic blood 
pressure. These two SV are in regulatory and intron regions, respectively. The majority of GWAS 
SNP-linked SV were deletions, but we also found a 55-bp duplication at 19q13.11 that is in strong 
LD with rs66528626, which is associated with serum albumin levels (P=4.00x10-9), and a 200-bp 
inversion at 10q22.2 that is in strong LD (r2=0.953) with rs648078, which (together with a couple 
of other inversions) is associated with atrial fibrillation (P=6x10-27). The full list of SVs in high LD 
(r2>0.8) with SNPs from the GWAS Catalog is in Supplementary Table 3. 

Population differentiation of SV 
We assessed the extent this dataset contains SVs that exhibit population differentiation measured 
by Wright’s fixation index FST. There are 2,072 deletions and 21 duplications with FST>0.2 between 
European (EUR, N=79,874) and African (AA, N=41,756) individuals (Figure 3C), the two 
ancestries that make up the majority of this cohort (Figure 1A). Of these high Fst SV, 929 
deletions (44.84%) and 14 duplications (66.67%) overlap genes. Because this sample size 
enables the study of rare SVs, it potentially contains rare events that show population 
differentiation (excluding singletons). However, among this pair of populations there were no 
deletion SVs with FST>0.2 with an allele frequency less than 0.05. This is consistent with previous 
observations that FST is lower at lower allele frequency41 or is dependent on methods of 
estimation42. In addition, we identified 187 genes (Supplementary Table 4) with a high FST from 
0.2 to 0.54. Although there is a high correlation between FST calculated for deletion loci in this 
sample and FST calculated for matching variants discovered in the 1000 Genomes Project6 
(r2=0.87), there are 1,063 deletion loci not discovered in this study with FST>0.2 not found in the 
smaller studies. 
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SV annotation and potential impact 
To investigate the potential impact of the SVs (see Methods) we used AnnotSV43 for the gene 
annotation, which reports overlapping genes as well as genes directly impacted by the breakpoint 
of an SV itself (see Methods). Many SVs (47.05%) overlap genes given the nature of our call set 
(average SV size 52.5 kbp), but we restricted our analysis to common events with an allele 
frequency above 5%. We identified 2,295 genes overlapping deletions of 5% allele frequency or 
higher, and 22.18% of these were impacted by more than one structural variant. These genes 
were significantly enriched across cell junction (FDR: 1.4E-7), ATP binding (FDR: 1.9E-8), and 
other GO terms and impacted 27 KEGG Pathways (FDR smaller 8.8E-2) with the glutamatergic 
synapse pathway being the most significant (FDR: 6.3E-4). We investigated the genes impacted 
by duplications that have an allele frequency of 5% or higher. Across this list, genes with 
alternative splicing were enriched (FDR: 8.1E-14) as well as zinc finger (FDR:4.1E-7). The genes 
that were impacted by duplications also showed a significance of the keyword polymorphism 
(FDR: 6.1E-3) and sequencing variant (1.5E-2). These could again highlight the role of 
duplications in the promotion of other types of genomic variants. We investigated if these genes 
overlap any medically relevant genes to determine potential impact on disease. For this, we 
utilized a list of 5,131 genes previously annotated44. Interestingly, 1,351 medically relevant genes 
were impacted by deletions (AF>5%), which represents a slight majority (58.87%) of all genes 
impacted by deletions in our call set. For duplications (AF>5%) we identified 801 genes that are 
impacted and medically relevant. Again, we observed a similar small majority (56.41%) across all 
genes impacted by these duplications.  
 
We identified SVs that are present in a large portion of the population (AF>90%) and thus likely 
represent a minor allele in the available reference. For deletions, 113 genes were identified to be 
potentially impacted. Of these, 65 (57.52%) medically relevant genes are overlapping deletions 
with AF>90%, which highlights the importance of this SV catalog for ongoing association studies. 
The TPTE gene was the only one reported to be potentially impacted multiple times, which is a 
paralog of TPTE2. We identified 55 genes overlapping duplications that are highly shared, 
meaning that it is likely a copy is deleted on the reference genome. Of these 55 genes, 34 
(61.82%) are recorded to be medically relevant in different databases. Two genes GUSBP1 and 
MUC3A are reported with two highly shared duplications.  
 
Finally, we investigated SVs that occurred in 20 (AF=0.0001) to 100 (AF=0.0007) individuals only. 
These represent very low allele frequency cases that other studies were potentially under 
powered to detect. This range includes 13,320 deletions and 10,268 duplications of which 74.40% 
and 52.28% are present in gnomAD SV, respectively. Across these deletions, we identified 3,360 
genes that are potentially impacted. Next, we investigated if these genes are reported to be 
medically relevant based on an annotated list44 and found that 1,884 (56.07%) of these genes are 
reported to be medically important. The list of enriched GO terms was very diverse as expected, 
with intracellular signal transduction being the most significant (FDR: 9.7E-4). Interestingly, the 
number of genes impacted by duplications in this low-frequency spectrum has slightly increased 
compared to deletions to 3,842 genes. Further, we identified 2,200 (57.26%) genes that are 
overlapping with previously reported medically relevant genes. Similar to deletions, we also 
observed intracellular signal transduction being the most significant (FDR: 1.8E-2) GO entry.  
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A component of the AnnotSV43 method is to leverage ClinGen ranking34,45,46 annotations of 
regions with potential haploinsufficiency (HI) and triplosensitivity (TriS) with respect to SVs. HI is 
the genetic relationship of a loss of one copy introducing a phenotypic effect. TriS is where an 
additional copy of a gene may lead to a phenotypic effect. Figure 4A shows the SV counts by 
annotation across three allele count bins. In total, 25,645 SVs have HI annotation, within which 
3,514 SVs are VUS with 55.29% being deletions and 4,132 SVs pathogenic (50.39% deletions). 
For TriS, we observed fewer SVs (22,065) with proportions of VUS (366) and pathogenic (17) 
SVs, likely due to the curation criteria. Of the 4,149 SVs annotated as HI or TriS pathogenic, 85% 
have an allele count less than 20. SVs associated with Hi and TriS remain to be investigated when 
combined with traits collected from the TOPMed studies. 

 

 
Figure 4: Overview of the impact of the SVs and their clustering along the genome. A) SVs 
identified and clustered based on their haploinsufficiency (HI) and triplosensitivity (TriS) potential 
across different allele counts. B) Overview of SV hotspots and deserts across the TOPMed cohort. 
Here deserts are regions of the genome with no SV identifiable despite the large collection of 
individuals in this study.  

Identification of genomic SV hotspots and deserts across individuals 
The large number of individuals in this study gives us the opportunity to further investigate the 
mutational landscape of SVs across the human population. Figure 1C already indicated multiple 
hotspots or deserts along the genome. To do this more systematically we identified potential 
hotspots and deserts (0 SV) across the TOPMed SV call set, which represent either higher levels 
of SVs or potentially conserved regions. We identified hotspots and deserts using a window 
approach (100 kbp): if the number of SVs is more or less than three times the standard deviation 
of the mean (see Methods), that window is assigned to be a hotspot or desert, respectively. Using 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525428doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525428
http://creativecommons.org/licenses/by-nd/4.0/


 

14 

this method we identified 502 deserts and 188 SV hotspots, as shown in Figure 4 B. The deserts 
could represent SV regions that were flagged during QC or ignored by the calling due to 
repetitiveness or incoherent alignments; to address this question, we compared the locations with 
the long-read based SV calls from the Human Genome Structural Variation Consortium (HGSVC) 
from their high-quality assemblies (see Methods). An average of 10.6 TOPMed SV and 1.4 HGSV 
SV were found in windows with a standard deviation of 12.4 and 2.8, respectively. Doing so 
identified 226 (45.02%) SV deserts that HGSV and our call set agreed on. Of these 226 
candidates, 104 (46.02% of all deserts) overlap 91 genes (Supplementary Table 5, see 
Methods). A standard GO-term analysis did not reveal any significant enrichments. The 91 genes 
contained 12 long noncoding RNAs, 8 microRNAs, and 7 long intergenic non-protein coding 
genes. In addition, we also predicted 14 (2.79%) SV desert regions of the genome that disagree 
with HGSV. This represents only a small fraction of our genomic candidates. Furthermore, we 
identified 262 (52.19%) deserts that were not classified as deserts or valleys over the analysis of 
HGSV data. These could be either identified based on the fact that our call set is much larger 
compared to the 32 genomes that we used here from HGSV, or it could in fact represent additional 
missing SVs. Overall, our SV desert regions did not show a clear correlation with SNV indicating 
that an SV desert could still include a multitude of SNV. For hotspots, we only observed an 
agreement of 4 regions with respect to HGSV data sets. The majority of our predicted hotspots 
(119, 63.30%) are not classified as either based on the HGSV data set. In contrast, 65 (34.57%) 
of our predicted hotspots were classified as valleys in HGSV assemblies, which probably 
highlights lower frequency variations in our call sets. Our SV catalog enables a deeper insight into 
the regions of the genome that appear ultraconserved (SV deserts) or highly variable for SVs. 
The latter especially is highly important to consider for SNV and other genetic analyses as they 
could manifest in incorrectly mapped reads47. Further analysis should be conducted to determine 
if these regions have an impact on phenotype, or if they represent normal genomic variability in a 
population.  
 

Structural Variants in chromosome X 
The previous analyses and variant counts reflect structural variants in the autosomes only. The 
nature of the sex chromosomes adds an additional complexity in the interpretation of 
heterozygous vs. homozygous calls across males and females. The current methods do not allow 
for accurate genotyping on chromosome Y due to the variation in mapping and read depth and a 
haplotype based genotyping method is under investigation for application to the Y chromosome. 
Similar to the autosomal SV calls, we leveraged the two control samples to identify a core set of 
SVs for studying sex chromosome X specific events. Using this call set we measured an average 
0.94 and 0.788 positive predictive value for deletions and duplications, respectively. The two 
replicate subjects are one male and one female and we observed similar PPV for deletions (0.945 
and 0.948) and higher PPV for the female replicate subject’s duplications (0.729; 0.843). We 
compared the SV calls on chromosome X with those available in gnomAD and 1000 genomes 
and identified 51.6% of chrX calls that were not previously reported. Separated by project, 22.2% 
of the TOPMed SVs overlap with 1KGP SVs and 40.5% overlap gnomAD while 14.5% of our 
chromosome X SVs overlapped with both gnomAD and 1KGP. We identified a significant 
(p=0.0294, Fisher exact test) difference between known males vs. female SV. Supplementary 
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Table 6 shows the results of known and novel SV with respect to gender. Overall, there are 8,956 
(60.16% novel) SV specific to females and 2,973 (57.89%) SV specific to males.  
 
In total we identified 9,814 deletions, 6,756 duplications and 2,597 inversions across the 
chromosome X. Per-sample, we find an average of 181 deletions, 12 duplications, and 3 
inversions. As expected, we observed 1.5 times more SVs per-sample across the 75,547 
(53.54%) female samples of TOPMed compared to the 65,582 male samples, which averages to 
235 SVs for females and 148 SVs for males. Furthermore, in females we observed a het/hom 
ratio of 3.06 for deletions, 3.35 for duplications, and 1.98 for inversions. For homozygous 
alternative SVs we observe a few more SVs in males (149 SVs) vs. females (58). 

Discussion  
The resource described includes 355,667 well-curated structural variants (SVs) from 138,134 
diverse human whole genomes (Figure 1A). These highly accurate calls coupled with the 
extensive phenotype data available for the TOPMed cohorts provide an unmatched opportunity 
to identify associations and ultimately study mechanisms by which these variants impact disease 
onset and progression. This is already exemplified by Wheeler et all.35 who analyzed the SV calls 
from a subset (N=50,675) of samples for which multiple blood traits had been measured to identify 
phenotypic associations. They identified 33 independent SVs (23 common and 10 rare) implicated 
across multiple phenotypes. Interestingly, most of the SVs seem to impact the regulation of genes 
rather than showing a direct impact on the coding regions35. Most SVs were observed around 
regions of the genome that had previously been identified to play a role in blood traits. However, 
one SV was shown to impact KCNJ18, which represents a novel finding based on this SV catalog. 
In another instance, Wheeler et al show a ~13kbp deletion (chr7) which includes the EPO 
promoter and was associated with HGB/HCT trait and in strong LD with a previously reported 
SNV (rs4729607)35,48. The same deletion was also shown in a previous study to impact the 
expression of genes2 including TFR2 and EPHB4 that are involved in iron metabolism and 
erythropoiesis49,50 Thus highlighting the importance of the SV as potentially causative instead of 
the SNV alone. We anticipate additional disease trait associations as we have identified a large 
number of genes, including those designated as medically relevant, which contain SVs that are 
expected to alter expression.  
 
The large sample size across multiple populations and inclusion of low frequency SVs (20-100 
individuals, AF 1E-3 to 7E-3) enables exploration of alleles that may be absent from other studies. 
For example, in 1KGP and gnomAD SV, these low frequency SVs would most often appear as 
singletons and on average will only be present in 0.25 or 1.4 individuals, respectively. We note 
that these rare events show an impact across 1,884 medically important genes in the TOPMed 
call set. This is likely a result of the broad range of disease cohorts that are represented in 
TOPMed and highlights the diversity across some of these genes. In addition, the large sample 
size and uniform data quality enabled us to identify different hotspots and deserts of SVs. Despite 
the large number of individuals, we still identified multiple deserts (regions with no SVs present) 
and compared them with other studies. Characterization of these patterns can be medically 
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relevant and is important for disease biology, but also may provide valuable insights on human 
evolution and selection. 
 
The large volume of the TOPMed whole genome sequencing data provides ample opportunity for 
discovery, however it presents computational and management challenges when generating 
cohort wide variant resources. To accommodate this scale we implemented the Parliament2 and 
muCNV framework. Cloud computation was leveraged and the crams were analyzed directly in 
their native GCP environment, obviating any egress charges. In order to effectively scale to the 
sample size present in TOPMed, we optimized the runtime of the 5 selected SV callers to fully 
leverage a 16 core cloud instance. For example, we reduced the wall time of Lumpy from 6.45 to 
0.45 hours and for Delly from 8.52 to 0.67 hours. This enabled efficient and accurate processing 
of individual samples. Despite a high precision rate from Parliament227, processing such a large 
number of samples results in a high rate of false positives due to the inferential nature of SV 
callers. To mitigate this we implemented muCNV, which utilizes coverage, split and discordant 
paired-end reads together to jointly genotype and filter SVs. muCNV achieves a higher precision 
by computationally validating each SV site across all individuals simultaneously. In addition to 
muCNV, we leveraged multiple populations and long read-based comparison filtering steps 
outlined in the methods to achieve a highly accurate SV resource.  
 
It is well established that long read technologies (e.g Pacific Biosciences and Oxford Nanopore) 
more accurately resolve SVs and have recently shown marked improvement in overall data 
quality. Despite improvements in quality, price point and capacity, long-read sequencing is still 
prohibitive for large scale human WGS studies. While there is a natural tension between cost and 
comprehensiveness, there are opportunities for complementarity where the resolution offered by 
long read data can be leveraged to improve large scale short read resources. Long read efforts 
such as GIAB and HGSVC promote SV calling optimizations and the development of novel 
methodologies to improve the detection of SVs across complex regions in short read data. We 
demonstrated how long-read control samples from such programs can be used to assess the 
accuracy of a population-based SV catalog. Nevertheless, by doing so we also discovered slight 
disagreement between two state-of-the-art benchmark methodologies (Truvari and TTmars). 
While this might be a minor point of this manuscript, it shows that the SV field has not yet found 
a standard or agreement of how to compare SV alleles and speaks to the need for continued work 
in this area.  
 
As a result of this comprehensive analysis of short read sequence data and precise SV calling, 
this TOPMed resource will provide unparalleled discovery opportunities by presenting allele 
frequencies across a wide range of individuals and populations. With the ever-increasing number 
of available Illumina WGS datasets, this call set will provide continued utility in identifying novel 
associations between complex alleles and disease phenotypes. 
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Methods  

SV call set generation  

Parliament process 
For SV calling we deployed our Parliament227 method. Parliament2 processes aligned Illumina 
paired-end reads and identifies SVs via five programs: Manta51, Delly52, Lumpy53, Breakseq54, 
and CNVnator55. Subsequently, we merged the SV calls of the same type using SURVIVOR10 
merge with a 1 kbp wobble distance between breakpoints. The single sample calling was done in 
parallel across Google Cloud instances and the results were written to a bucket on DNAnexus. 
Then another population merge was performed with SURVIVOR merge (1 kbp wobble) and type 
matching following recommended parameters on a per-chromosome basis. We ignored any 
translocation calls among the samples. The population VCF file of SV candidates generated by 
SURVIVOR was passed along for population genotyping.  

muCNV  
The muCNV pipeline is designed for whole-genome population-level joint genotyping of SVs. We 
generated summary pileups, which recorded all discordant read pairs, split reads, soft clips, 
average depth information for each candidate SV event, and average depth for each 100-bp 
interval across the whole genome in a single scan of a CRAM/BAM file29. The pileup process also 
generated per-sample GC curves for GC correction. The pileups (100 to 200MB per sample) were 
then merged across samples and sliced by chromosomal regions for efficient handling of large 
sample sizes by a single compute node, as joint genotyping needs concurrent access to pileup 
data from all samples. Joint genotyping was performed across all samples by combining all 
supporting information around each candidate SV. To genotype deletions and duplications, we 
fitted a two-dimensional Gaussian mixture model with 1) the number of supporting alignments 
(discordant read pairs, split reads, and soft clips) and 2) the normalized read depth. Some 
deletions and duplications had complex breakpoints, which resulted in a lack of alignment support 
but clear depth-based signals. These events were genotyped by fitting a mixture model with only 
read depth information. Inversions were genotyped by fitting a mixture model with only alignment 
support. We also genotyped candidate SVs with clinical implications as reported in dbVar 
(https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd102, August 2020 release), which added 453 
deletions and 65 duplications.  

Additional filtering/flagging 
We took additional steps to identify potentially low-confidence duplications as they are more 
sensitive to genomic context and sequencing depth variations. First, we flagged DUPs with 
aberrant normalized depth as measured by muCNV and highly concordant genotypes with 
significantly overlapping DUPs. This filter identified and flagged 58,322 DUPs as PreFiltered. A 
second filter involved training a support vector machine (SVM) with five SV features reported by 
muCNV. These features are mean and standard deviation of the sequencing depths both before 
(INFO field=PRE) and after (INFO field=POST) the DUP, plus the GC content of the DUP region. 
Training data were DUPs genotyped as being present in the validation replicate samples and 
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were labeled using Truvari32 (see SV validation below). Hyper-parameter tuning of the SVM’s RBF 
kernel was performed using grid search. An SVM score cutoff was manually set by evaluating 
increases in PPV versus number of DUPs flagged. As a result, 29,897 DUPs were flagged as 
being LowQual. The SVM was coded using Python version 3.7.12, scikit-learn version 1.0.1, and 
NumPy version 1.19.5. 

Chromosome X calling and filtering 
Chromosome X has been called separately from autosomes as it involves additional processing 
for joint calling of males and females. We used inferred sex information based on the ratio 
between average sequencing depths of chromosomes X and Y and normalized sequencing depth 
of male samples has been increased by 0.5 before genotyping step. Pseudoautosomal regions 
(PARs) have been excluded from genotyping. To minimize possible artifacts from depth 
compensation and mapping issues, we applied SVM-based filtering on all deletions, duplications, 
and inversions. Features used are mean and standard deviation of sequencing depths, difference 
in allele frequencies between female and male samples, difference in call rate between male and 
female samples, and also based on the existence of split-read and soft-clip based support for 
breakpoints. SVM was trained using variants labeled as true positive or false positive by Truvari32. 
The SVM was coded using Python version 3.7.12, scikit-learn version 1.0.1, and NumPy version 
1.19.5. 

SV validation 
 
We used a set of haplotype-resolved long-read assembly30.  
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA19238_hgsvc_pbsq2-
ccs_1000-pereg.h1-un.racon-p2.fasta 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA19238_hgsvc_pbsq2-
ccs_1000-pereg.h2-un.racon-p2.fasta 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA12878_giab_pbsq2-
ccs_1000-pereg.h1-un.racon-p2.fasta 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA12878_giab_pbsq2-
ccs_1000-pereg.h2-un.racon-p2.fasta 
 
We created a baseline set of SVs per haplotype via Minimap2 v2.17 using Ebert long-read 
haplotype-resolved assemblies for two subjects, and we used Truvari32  collapse v2.1 to perform 
intra-sample haplotype merging. For each sequenced replicate of the two subjects, we used 
Truvari v3.1-dev bench to compare variants that were present (i.e., non-reference homozygous 
and non-missing genotypes) to the baseline variants. Benchmarking comparison parameters 
were set at {refdist: 500, pctsim: 0.0, buffer: 0.1, pctsize: 0.5, pctovl: 0.0, typeignore: false, 
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use_lev: false, chunksize: 1500, gtcomp: false, sizemin: 10, sizefilt: 10, sizemax: 100000000, 
passonly: true, no_ref: c, includebed: null, multimatch: true}. 
 
In addition we used TT-Mars 31 with the following code: 
reference=hg38.no_alts.fasta ;output_dir=./; vcf_file=callset.vcf; 
centro_file=centromere_hg38.txt; tr_file=hg38_tandem_repeats.bed ;if_hg38=True; 
pass_only=True; seq_resolved=False; num_X_chr=2; wlen_tp=True 
 
python ttmars.py "$output_dir" "$if_hg38" "$centro_file" assem1_non_cov_regions.bed 
assem2_non_cov_regions.bed "$vcf_file" "$reference" h1.fa h2.fa 
lo_pos_assem1_result_compressed.bed lo_pos_assem2_result_compressed.bed "$tr_file" 
"$pass_only" "$seq_resolved" "$wlen_tp" 
 
python reg_dup.py "$output_dir" "$if_hg38" "$centro_file" assem1_non_cov_regions.bed 
assem2_non_cov_regions.bed "$vcf_file" "$reference" h1.fa h2.fa 
lo_pos_assem1_result_compressed.bed lo_pos_assem2_result_compressed.bed "$tr_file" 
lo_pos_assem1_0_result_compressed.bed lo_pos_assem2_0_result_compressed.bed 
"$pass_only" "$wlen_tp" 
 
python chrx.py "$output_dir" "$if_hg38" "$centro_file" assem1_non_cov_regions.bed 
assem2_non_cov_regions.bed "$vcf_file" "$reference" h1.fa h2.fa 
lo_pos_assem1_result_compressed.bed lo_pos_assem2_result_compressed.bed "$tr_file" 
"$pass_only" "$seq_resolved" "$wlen_tp" 
 
python combine.py "$output_dir" "$num_X_chr" 
 
For evaluating the genotypes, we calculated non-reference error rates in all trio/duo genotypes 
by dividing the number of Mendelian-inconsistent genotypes by all sites present in at least one 
individual of the pedigree. In addition to the error rates, we calculated allelic balances by 
measuring the ratio between the reference and heterozygous genotypes in children when their 
parents had reference (REF) and heterozygous (HET) genotypes to identify possible biases in 
making genotype calls. 

PCA  
Ancestries were assigned by identifying the genetic ancestry across individuals25. Filtering was 
performed to exclude variants with AC==1. A randomized PCA was performed using scikit-allel 
v1.3.5 with n_components=10 and scaler='patterson'. 

FST 
All variants with AC==1 were excluded. Furthermore, we excluded populations with fewer than 
1,000 samples and populations with higher numbers of samples were randomly subsetted to 
7,000 samples. Hudson FST was calculated using scikit-allel v1.3.5 
(https://zenodo.org/record/4759368#.YbxgLn3MIq0). 
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SV-phenotype association in ARIC and HCHS/SOL 
The ARIC study is an ongoing biracial cohort designed for cardiovascular research, as described 
in detail previously56. HCHS/SOL is a community-based cohort study of Hispanics/Latinos 
designed to examine risk and protective factors for chronic diseases, as published previously57,58. 
For our analyses, we selected heart/lung/blood phenotypes related to cardiovascular outcomes 
that were measured across the entire cohort to maximize sample size. The list of analyzed 
phenotypes analyzed are height, body mass index (BMI), waist-hip ratio (WHR), whilte blood cell 
count, hemoglobin, hematocrit, neutrophil, platelet count, systolic/diastolic blood pressure, high-
density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride, high sensitive C-reactive 
protein (hsCRP), fasting glucose, fasting insulin, glycated hemoglobin (HbA1c), serum creatinine, 
albumin, albumin-to-creatinine ratio, estimated glomerular filtration rate (eGFR), cystatin C, 
alanine aminotransferase (ALT), aspartate aminotransferase (AST),and gamma-
glutamyltransferase (GGT). We tested statistical association of each SV with individual 
phenotypes separately on ARIC African Americans, European Americans, and HCHS/SOL 
Hispanics and then performed inverse variance weighted meta-analysis across three populations. 
We used age, sex, age by sex, age2, age2 by sex and first five ancestry principal components 
(PCs) from SNPs and five PCs from SVs as covariates in all analyses. All traits are rank-
normalized after adjustment for covariates. We excluded prevalent diabetes cases from glucose 
and insulin quantitative trait analyses, excluded prevalent CHD cases from hsCRP analyses, and 
excluded prevalent CKD cases from creatinine, albumin, cystatin C, and albumin to creatinine 
ratio analyses. Blood pressure levels of hypertension medication users were adjusted by +15 for 
systolic and +10 for diastolic blood pressure. For ARIC African Americans and European 
Americans, we used linear regression (Wald) tests for quantitative traits and logistic regression 
(Wald) tests implemented in the EPACTS pipeline (https://genome.sph.umich.edu/wiki/EPACTS). 
For HCHS/SOL Hispanic samples, we used GMMAT59 package with three random effects for 
genetic relatedness, household and census block groups to address for population and cohort 
substructures. Meta analyses were done using METAL software 60. 

Linkage disequilibrium (LD) analysis between SNPs and SVs 
We first selected SVs and SNPs with minimum minor allele frequency of 0.001 in founders using 
inferred pedigree information using KING61. We also used these founders-only subset in the 
following analysis. LD calculation was done for SNPs that are within +/- 1Mbp for each SV using 
PLINK v1.90b6.24 with –r2 –ld-window-r2 0.05 options. We used GWAS catalog downloaded 
from https://www.ebi.ac.uk/gwas/docs/file-downloads in ‘all associations v1.0’ format on 
December 13, 2021. 

Annotation of SVs and their impact over genes 
We annotated the generated population VCF file using AnnotSV34 with default parameters. 
BCFtools was used to filter and extract SVs that overlapped with genes for different allele 
frequency (AF=0.05) or allele count (AC=20) thresholds. Subsequently these gene lists were 
analyzed using DAVID62 version 6.8 to identify enrichment of Go terms or KEGG pathways. 
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AnnotSV63 v2.5 was run with default parameters, intersecting annotations with gnomad SV (v2.1), 
and Ensembl Genes (v2021-03-19).  

Hotspots + Valleys 
The TOPMed SVs were subset to events ≥50 bp. HGSV SV were downloaded from 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_call
set/variants_freeze4_sv_insdel_alt.vcf.gz and subsetted to events ≥50 bp. GRCh38 autosomes 
were split into 100kb disjointed regions with windows intersecting centromere and gap regions as 
annotated by UCSC genome tracks were removed. The number of SV for each window over the 
TOPMed variants and HGSV variants were counted. Hotspots were defined as windows with 
greater than 3x the standard deviation per-variant set. Valleys were defined as windows without 
any SV per-variant set. 

Data Availability 
An overview of the TOPMed participant consents and data access procedures is provided in 
Taliun et al. 25. All TOPMed WGS (cram) data are publicly available on a cloud-based platform 
with access managed by dbGaP under study specific accessions. The dbGaP accession numbers 
for all TOPMed studies referenced in this paper are listed in Extended Data Table … and a 
detailed protocol for data access and a description of the publicly accessible data resources is 
available at https://topmed.nhlbi.nih.gov/topmed-data-access-scientific-community  
 
Structural variant calls from this joint call set for each cohort will be made available under study 
specific dbGaP accessions using standardized sample IDs and formats to facilitate combined 
analyses25. The full call set including per sample genotypes is currently available via the 
TOPMed dbGap Exchange Area for approved TOPMed investigators. To further promote the 
utilization for this call set we have deposited the SV alleles together with population frequencies 
in dbVar (accession ID: Jun2023) for studies with appropriate consent. This will allow studies to 
easily compare their individual SV call sets with ours and utilize the large call set to more 
robustly annotate their individual SV with population frequencies. 
 
Long-read assemblies for NA12878 and NA19238 used for benchmarking are publicly available 
at 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA19238_hgsvc_pbsq2-
ccs_1000-pereg.h1-un.racon-p2.fasta 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA19238_hgsvc_pbsq2-
ccs_1000-pereg.h2-un.racon-p2.fasta 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA12878_giab_pbsq2-
ccs_1000-pereg.h1-un.racon-p2.fasta 
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http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20
200628_HHU_assembly-results_CCS_v12/assemblies/phased/v12_NA12878_giab_pbsq2-
ccs_1000-pereg.h2-un.racon-p2.fasta 

Code Availability 
The variant calling pipelines have been deployed and published previously Parliament227: 
https://github.com/slzarate/parliament2 MuCNV29: https://github.com/gjun/muCNV. Additional 
analysis scripts are collected here: https://github.com/BCM-HGSC/TopMedSVQC  
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support and participation in GALA II. In particular, the authors thank study coordinator Sandra 
Salazar; the recruiters who obtained the data: Duanny Alva, MD, Gaby Ayala-Rodriguez, Lisa 
Caine, Elizabeth Castellanos, Jaime Colon, Denise DeJesus, Blanca Lopez, Brenda Lopez, MD, 
Louis Martos, Vivian Medina, Juana Olivo, Mario Peralta, Esther Pomares, MD, Jihan Quraishi, 
Johanna Rodriguez, Shahdad Saeedi, Dean Soto, Ana Taveras; and the lab researcher Celeste 
Eng who processed the biospecimens. 
 
Genetic Epidemiology Network of Arteriopathy (GENOA) 
Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457, 
HL054464, HL054481, HL119443, and HL087660) of the National Institutes of Health. 
 
The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) was supported by research 
grants (U01HL072507, R01HL087263, and R01HL090682) from the National Heart, Lung and 
Blood Institute, National Institutes of Health, Bethesda, MD. 
The GGAF (Groningen Genetics of Atrial Fibrillation) is supported by funding to the 5 sources 
that form GGAF. The AF RISK study is supported by the Netherlands Heart Foundation (grant 
NHS2010B233), and the Center for Translational Molecular Medicine. Both the Young-AF and 
Biomarker-AF studies are supported by funding from the University Medical Center Groningen. 
The GIPS-III trial was supported by grant 95103007 from ZonMw, the Netherlands Organization 
for Health Research and Development. The PREVEND study is supported by the Dutch Kidney 
Foundation (grant E0.13) and the Netherlands Heart Foundation (grant NHS2010B280). 
 
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) GOLDN biospecimens, baseline 
phenotype data, and intervention phenotype data were collected with funding from National 
Heart, Lung and Blood Institute (NHLBI) grant U01 HL072524. Whole-genome sequencing in 
GOLDN was funded by NHLBI grant R01 HL104135 and supplement R01 HL104135-04S1. 
 
Hispanic Community Health Study - Study of Latinos (HCHS_SOL) The Hispanic Community 
Health Study/Study of Latinos is a collaborative study supported by contracts from the National 
Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina 
(HHSN268201300001I / N01-HC-65233), University of Miami (HHSN268201300004I / N01-HC-
65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-65235), University 
of Illinois at Chicago – HHSN268201300003I / N01-HC-65236 Northwestern Univ), and San 
Diego State University (HHSN268201300005I / N01-HC-65237). The following 
Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the 
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NHLBI: National Institute on Minority Health and Health Disparities, National Institute on 
Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial 
Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute 
of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements. 
 
Heart and Vascular Health Study (HVH) The Heart and Vascular Health Study was supported 
by grants HL068986, HL085251, HL095080, and HL073410 from the National Heart, Lung, and 
Blood Institute. 
 
Hypertension Genetic Epidemiology Network (HyperGEN) The HyperGEN Study is part of the 
National Heart, Lung, and Blood Institute (NHLBI) Family Blood Pressure Program; collection of 
the data represented here was supported by grants U01 HL054472 (MN Lab), U01 HL054473 
(DCC), U01 HL054495 (AL FC), and U01 HL054509 (NC FC). The HyperGEN: Genetics of Left 
Ventricular Hypertrophy Study was supported by NHLBI grant R01 HL055673 with whole-
genome sequencing made possible by supplement -18S1. 
 
The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State 
University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi 
State Department of Health (HHSN268201800015I) and the University of Mississippi Medical 
Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts 
from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute on Minority 
Health and Health Disparities (NIMHD). The authors also wish to thank the staffs and 
participants of the JHS. 
 
Mayo Clinic Venous Thromboembolism Study (Mayo_VTE) 
Funded, in part, by grants from the National Institutes of Health, National Heart, Lung and Blood 
Institute (HL66216 and HL83141). the National Human Genome Research Institute (HG04735, 
HG06379), and research support provided by Mayo Foundation. 
 
 
Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 
program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 
“NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was 
performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read 
mapping and genotype calling, along with variant quality metrics and filtering were provided by 
the TOPMed Informatics Research Center (3R01HL-117626-02S1). Phenotype harmonization, 
data management, sample-identity QC, and general study coordination, were provided by the 
TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics 
(HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by 
the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. 
Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and 
supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA 
investigators. Support for MESA is provided by contracts 75N92020D00001, 
HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, 
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N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 
75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-
HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-
001420, UL1TR001881, DK063491, and R01HL105756. The authors thank the other 
investigators, the staff, and the participants of the MESA study for their valuable contributions.  
A full list of participating MESA investigators and institutes can be found at 
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mesa-
2Dnhlbi.org&d=DwIGaQ&c=ZQs-
KZ8oxEw0p81sqgiaRA&r=hkDaFIlMMg5o5xD5aQ2Txzhw0BLHnUrK9Cxqzcl0pbM&m=o32ACA
oh0FIJtL7l5AXiWsB-7bcyn6az6hBBIzImDkB_5H5GFBxgq0ht1DTbWmyc&s=9-
Gwf81AIEYr7ywl6zPi7VXkojbPiptVvhZpePkr4Ag&e= . This study was also supported in part by 
the NHLBI contracts R01HL151855 and R01HL146860. 
 E.E.E. is an investigator of the Howard Hughes Medical Institute. 
My Life, Our Future: Genotyping for Progress in Hemophilia (MLOF) The My Life, Our Future 
samples and data are made possible through the partnership of Bloodworks Northwest, the 
American Thrombosis and Hemostasis Network, the National Hemophilia Foundation, and 
Bioverativ. We gratefully acknowledge the hemophilia treatment centers and their patients who 
provided biological samples and phenotypic data. 
 
Outcome Modifying Genes in Sickle Cell Disease (OMG_SCD) The OMG-SCD study was 
administrated by Marilyn J. Telen, M.D. and Allison E. Ashley-Koch, Ph.D. from Duke University 
Medical Center and collection of the data set was supported by grants HL068959 and 
HL079915 from the National Heart, Lung, and Blood Institute (NHLBI) of the National Institute of 
Health (NIH). 
 
National Institutes of Health (R01HL113326, P30 GM110766-01) 
The Pediatric Cardiac Genomics Consortium (PCGC) program is funded by the National Heart, 
Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human 
Services through grants UM1HL128711, UM1HL098162, UM1HL098147, UM1HL098123, 
UM1HL128761, and U01HL131003. 
 
Whole Genome Sequencing to Identify Causal Genetic Variants Influencing CVD Risk - San 
Antonio Family Studies (SAFS) Collection of the San Antonio Family Study data was supported 
in part by National Institutes of Health (NIH) grants R01 HL045522, MH078143, MH078111 and 
MH083824; and whole genome sequencing of SAFS subjects was supported by U01 DK085524 
and R01 HL113323. We are very grateful to the participants of the San Antonio Family Study for 
their continued involvement in our research programs. 
 
Study of African Americans, Asthma, Genes and Environment (SAGE) The Study of African 
Americans, Asthma, Genes and Environments (SAGE) was supported by by the National Heart, 
Lung, and Blood Institute of the National Institute of Health (NIH) grants R01HL117004 and 
X01HL134589; study enrollment supported by the Sandler Family Foundation, the American 
Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and 
Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II. The SAGE study 
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collaborators include Harold J. Farber, Texas Children's Hospital; Emerita Brigino-
Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley Meade, 
UCSF Benioff Children’s Hospital, Oakland; Luisa N. Borrell, City University of New York; Adam 
Davis, UCSF Benioff Children’s Hospital, Oakland and Fred Lurmann, Sonoma Technologies, 
Inc. The authors acknowledge the families and patients for their participation and thank the 
numerous health care providers and community clinics for their support and participation in 
SAGE. In particular, the authors thank study coordinator Sandra Salazar; the recruiters who 
obtained the data: Lisa Caine, Elizabeth Castellanos, Brenda Lopez, MD, Shahdad Saeedi; and 
the lab researcher Celeste Eng who processed the biospecimens. 
 
The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group'.  In any 
supplementary files please list the names in the OLAGA group, as follows:  Ranjan Deka, Dept. 
of Environmental Health,  University of Cincinnati; Nicola L. Hawley, Dept. of Chronic Disease 
Epidemiology, Yale University; Stephen T McGarvey, Dept. of Epidemiology and International 
Health Institute, and Dept. of Anthropology, Brown University; Ryan L Minster, Dept. of Human 
Genetics,   University of Pittsburgh; Take Naseri, Ministry of Health, Government of Samoa; 
Muagututi‘a Sefuiva Reupena, Lutia I Puava Ae Mapu I Fagalele; Daniel E. Weeks, Depts. of 
Human Genetics and Biostatistics, University of Pittsburgh. 
 
Study of African Americans, Asthma, Genes and Environment (SAGE) The Study of African 
Americans, Asthma, Genes and Environments (SAGE) was supported by by the National Heart, 
Lung, and Blood Institute of the National Institute of Health (NIH) grants R01HL117004 and 
X01HL134589; study enrollment supported by the Sandler Family Foundation, the American 
Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and 
Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II. The SAGE study 
collaborators include Harold J. Farber, Texas Children's Hospital; Emerita Brigino-
Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley Meade, 
UCSF Benioff Children’s Hospital, Oakland; Luisa N. Borrell, City University of New York; Adam 
Davis, UCSF Benioff Children’s Hospital, Oakland and Fred Lurmann, Sonoma Technologies, 
Inc. The authors acknowledge the families and patients for their participation and thank the 
numerous health care providers and community clinics for their support and participation in 
SAGE. In particular, the authors thank study coordinator Sandra Salazar; the recruiters who 
obtained the data: Lisa Caine, Elizabeth Castellanos, Brenda Lopez, MD, Shahdad Saeedi; and 
the lab researcher Celeste Eng who processed the biospecimens. 
 
Genetics of Sarcoidosis in African Americans (Sarcoidosis) National Institutes of Health 
(R01HL113326, P30 GM110766-01) 
 
The Rare Variants for Hypertension in Taiwan Chinese (THRV) is supported by the National 
Heart, Lung, and Blood Institute (NHLBI) grant (R01HL111249) and its participation in TOPMed 
is supported by an NHLBI supplement (R01HL111249-04S1). THRV is a collaborative study 
between Washington University in St. Louis, LA BioMed at Harbor UCLA, University of Texas in 
Houston, Taichung Veterans General Hospital, Taipei Veterans General Hospital, Tri-Service 
General Hospital, National Health Research Institutes, National Taiwan University, and Baylor 
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University. THRV is based (substantially) on the parent SAPPHIRe study, along with additional 
population-based and hospital-based cohorts. SAPPHIRe was supported by NHLBI grants 
(U01HL54527, U01HL54498) and Taiwan funds, and the other cohorts were supported by 
Taiwan funds. 
Treatment of Pulmonary Hypertension and Sickle Cell Disease with Sildenafil Therapy 
(walk_PHaSST) We thank Dr. Mark Gladwin and the investigators of the Walk-PHasst study 
and the patients who participated in the study. We also thanks the walk-PHaSST clinical site 
team: Albert Einstein College of Medicine: Jane Little and Verlene Davis; Columbia University: 
Robyn Barst, Erika Rosenzweig, Margaret Lee and Daniela Brady; UCSF Benioff Children's 
Hospital Oakland: Claudia Morris, Ward Hagar, Lisa Lavrisha, Howard Rosenfeld, and Elliott 
Vichinsky; Children’s Hospital of Pittsburgh of UPMC: Regina McCollum; Hammersmith 
Hospital, London: Sally Davies, Gaia Mahalingam, Sharon Meehan, Ofelia Lebanto, and Ines 
Cabrita; Howard University: Victor Gordeuk, Oswaldo Castro, Onyinye Onyekwere, Vandana 
Sachdev, Alvin Thomas, Gladys Onojobi, Sharmin Diaz, Margaret Fadojutimi-Akinsiku, and 
Randa Aladdin; Johns Hopkins University: Reda Girgis, Sophie Lanzkron and Durrant Barasa; 
NHLBI: Mark Gladwin, Greg Kato, James Taylor, Wynona Coles, Catherine Seamon, Mary Hall, 
Amy Chi, Cynthia Brenneman, Wen Li, and Erin Smith; University of Colorado: Kathryn Hassell, 
David Badesch, Deb McCollister and Julie McAfee; University of Illinois at Chicago: Dean 
Schraufnagel, Robert Molokie, George Kondos, Patricia Cole-Saffold, and Lani Krauz; National 
Heart & Lung Institute, Imperial College London: Simon Gibbs. Thanks also to the data 
coordination center team from Rho, Inc.: Nancy Yovetich, Rob Woolson, Jamie Spencer, 
Christopher Woods, Karen Kesler, Vickie Coble, and Ronald W. Helms. We also thank Dr. 
Yingze Zhang for directing the Walk-PHasst repository and Dr. Mehdi Nouraie for maintaining 
the Walk-PHasst database and Dr. Jonathan Goldsmith as a NIH program director for this 
study. Special thanks to the volunteers who participated in the Walk-PHaSST study. This project 
was funded with federal funds from the NHLBI, NIH, Department of Health and Human 
Services, under contract HHSN268200617182C. This study is registered at 
www.clinicaltrials.gov as NCT00492531. Detail description of the study was published in Blood, 
2011 118:855-864, Machado et al "Hospitalization for pain in patients with sickle cell disease 
treated with sildenafil for elevated TRV and low exercise capacity". 
 
Women's Genome Health Study (WGHS) The WGHS is supported by the National Heart, Lung, 
and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 
and UM1CA182913). The most recent cardiovascular endpoints were supported by ARRA 
funding HL099355. 
 
 
The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes 
of Health, U.S. Department of Health and Human Services through contracts 75N92021D00001, 
75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005. 
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Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was supported by 
the National Heart, Lung and Blood Institute (NHLBI). See the TOPMed Omics Support Table 
for study specific omics support information. Core support including centralized genomic read 
mapping and genotype calling, along with variant quality metrics and filtering were provided by 
the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract 
HHSN268201800002I). Core support including phenotype harmonization, data management, 
sample-identity QC, and general program coordination were provided by the TOPMed Data 
Coordinating Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We 
gratefully acknowledge the studies and participants who provided biological samples and data 
for TOPMed. 
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