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Abstract. Studying the neural components regulating movement in human locomotion is obstructed by the
inability to perform invasive experimental recording. Neuromechanical simulations can provide insights by
modeling the locomotor circuits. Past neuromechanical models proposed control of locomotion either driven
by central pattern generators (CPGs) with simple sensory commands or by a purely reflex-based network
regulated by state-machine mechanisms. However, the physiological interpretation of these state-machines
remains unclear. Here, we present a physiologically plausible model to investigate spinal control and modulation
of human locomotion. We propose a bio-inspired controller composed of two coupled central pattern generators
(CPGs) that produce the rhythm and pattern and a reflex-based network simulating low-level reflex pathways
and Renshaw cells. This reflex network is based on leaky-integration neurons, and the whole system does
not rely on changing reflex gains according to the gait cycle state. The only component of the controller
that maintains a state-machine mechanism is the balance controller of the trunk. The musculoskeletal model
is composed of a skeletal structure and 9 muscles per leg generating movement in sagittal plane. After
optimizing the open parameters, human locomotion replicating kinematics and muscle activation naturally
emerged. Furthermore, when CPGs were not activated, no stable and physiologically plausible gaits could be
achieved through optimization, suggesting the necessity of this component to generate rhythmic behavior without
a state machine mechanism regulating reflex activation. The controller could reproduce a wide range of speeds
from 0.3 to 1.9 m/s. The results also showed that the net influence of feedback on motoneurons during perturbed
locomotion is predominantly inhibitory and that the CPG network provides the timing of motoneurons’ activation
by exciting or inhibiting muscles in specific gait phases. The proposed bio-inspired controller could contribute
to our understanding of locomotor circuits of the intact spinal cord and could be used to study neuromotor
disorders.

Keywords: human locomotion, simulations, sensory feedback, central pattern generators, gait
modulation

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525432doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525432
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

1. Introduction

Limbs movements result from the complex interaction between brain centers, the spinal cord,
and the musculoskeletal system [40]. The spinal network is essential in the control, coordina-
tion, and modulation of locomotion [27]. While there is direct evidence of a CPG in mammals
and vertebrates [27, 1], the lack of direct experimental access in humans means that there is
only indirect evidence [34]. Furthermore, sensory feedback pathways may play a major role
compared to other mammals, and lower vertebrates in humans [29, 21, 22, 20]. Different stud-
ies suggested that the muscle activity observed during human locomotion may be controlled
by five locomotor primitives that could be generated by rhythmic neural circuits [25, 10].
Hypothesizing these questions about the roles of different spinal components in controlling
locomotion is challenging since we possess only partial knowledge of the interaction between
the different subsystems involved in this process. On top of that, limited experimental access
complicates the observation of the sub-components functions leading to difficulties in model
validation. Computer simulations are necessary and have been proven useful in the past by
evaluating the contribution of each control component by evaluating different models, and
parameters [24, 15, 18, 36, 14, 3, 44].

Various neuromechanical models have been proposed in the past to address these questions. In
1995, Taga proposed a musculoskeletal system controlled by a neural rhythm generator com-
posed of 7 pairs of neural oscillators and simple sensory-motor signals [45]. Successively,
in 2001, Ogihara and Yamazaki developed a neural controller composed of motoneurons re-
ceiving inputs from a common CPG and reflexes from stretch and force receptors, where the
spindle reflexes had inhibitory inputs to antagonist’s muscles [35]. In the context of loco-
motion controlled by CPG mechanisms, Aoi et al. (2010) constructed a CPG model based
on a two-layered hierarchical network composed of a rhythm generator (RG) and a pattern
formation (PF) layer. The RG model produced rhythmic information using phase oscillators
and was regulated by phase resetting based on foot-contact gait events, whereas the PF model
generated feedforward commands composed of five motor primitives based on the muscle
synergies analysis performed by Ivanenko et al. [3, 25]. On the other hand, Geyer and Herr
demonstrated that the kinematics and muscle activation observed in human locomotion could
be reproduced without CPG commands by relying purely on sensory feedback activated at
specific gait cycle phases [18]. A similar controller with partial modifications has been then
proposed by Ong et al. [36]. In these studies, the activation of sensory responses in the gait
cycle is regulated by a state-machine mechanism, hinting at the need for a more sophisticated
circuit that controls the underlying reflexes. Other studies have integrated CPG commands on
top of these purely sensory-based controllers, showing the benefits of rhythmic circuits in gait
modulation [15, 48].

In this study, we propose a novel bio-inspired controller composed of a feedforward network
inspired by Aoi et al. consisting of two CPGs that produce the locomotor rhythm and patterns
and a new physiologically plausible implementation of spinal reflexes based on neurophys-
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iological studies in locomotion [51, 49] without relying on any state machine mechanism.
This network controls 9 muscle actuators generating torques in a previously assessed muscu-
loskeletal model [13]. The performance of this controller in replicating the behavior of human
locomotion and its modulation are investigated and compared with previous experimental and
neuromechanical studies. In addition, we investigate the performance of the sensory feedback
controller alone to verify whether it is possible to generate human walking behavior with a
purely reflex-based controller without relying on state machine mechanisms and to verify the
benefit of CPG mechanisms. Finally, we examine the contribution given by pattern genera-
tion and reflex circuits to the motoneurons at slow, intermediate, and fast speeds performing
a correlation analysis to identify possible parameters responsible for speed modulation. With
these experiments, we aim to address the following questions:

• What is the role of CPGs and reflex circuits in the generation of muscle activation in
human locomotion?

• Can low-level feedback circuits produce stable locomotion without a CPG or state-
machine?”

• Is the contribution of these two neural components changing with increasing of gait
speed?

Our results show that the reflex rules implemented in previous models [18, 36] could be
reproduced into less abstract models of neural circuits. The insights given by the proposed
controller suggest that spinal reflexes alone could not reproduce rhythmic locomotion without
a state machine mechanism regulating the activation of reflexes in specific phases of the gait
cycle. CPG networks appear to play the role of state machines in previous models and to
be necessary to promote muscle activation in specific gait cycle phases. In addition, the
modulation of CPG frequency seems necessary to modulate step duration. The modulation of
either reflexes, CPG network, or both could generate gaits in a wide speed range, highlighting
the high level of versability of the neurospinal control of human locomotion.

2. Methods

This study used the SCONE software simulation framework [17], which was extended to
implement and optimize the new spinal model generating gait simulations of 10 s. The
SCONE simulation comprises the following four blocks:

• An OpenSim musculoskeletal model.

• A controller.

• A cost function composed of several locomotion metrics

• An optimizer that optimizes the initial conditions and controller parameters to minimize
the cost function.
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2.1. Musculoskeletal model

The musculoskeletal model (Figure 5) has the skeletal structure presented by Delp et al. [13]
with a height of 1.8 m and weight of 75.16 kg. The model is constrained in the sagittal plane
and has a total of nine degrees of freedom (DoFs): a 3-DoFs planar joint between the pelvis
and the ground and 3 rotational DoFs per leg: hip flexion/extension, knee flexion/extension,
and ankle dorsiflexion/plantarflexion. Three spheres per leg are used as contact models with
the ground: one of radius 5 cm at the calcaneus and two of radius 2.5 cm at the toes. The
musculoskeletal model is actuated by nine Hill-type muscle-tendon units per leg: gluteus
maximus (GMAX), biarticular hamstrings (HAMS), biceps femoris short head (BFSH), rectus
femoris (RF), iliopsoas (ILPSO), vasti muscle group (VAS), gastrocnemius (GAS), soleus
(SOL), and tibialis anterior (TA).

Figure 1: Musculoskeletal model used to study human locomotion. The model is constrained
in the sagittal plane and has 9 DoFs: hip and knee flexion/extension, ankle plantar/dorsal
flexion for each leg, and a 3-DoFs planar joint between the pelvis and the ground. Movements
are generated by the activation of 9 muscles per leg: gluteus maximus (GMAX), biarticular
hamstrings (HAMS), biceps femoris short head (BFSH), rectus femoris (RF), iliopsoas
(ILPSO), vasti (VAS), gastrocnemius medialis (GAS), soleus (SOL), and tibialis anterior
(TA).

2.2. Controller

Muscle activation is regulated by the excitation provided by the motoneurons. The
motoneurons are stimulated or inhibited by the different components of the bio-inspired
controller: the balance controller of the trunk and the spinal network, composed of the
CPGs and spinal reflexes. The balance controller and the CPGs are modeled at an abstract
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level. Indeed, the former provides balance inputs in specific phases of the gait cycle with
Proportional Derivative (PD) controllers, and the latter is composed of two abstract oscillators
generating primitive patterns. By contrast, the spinal reflexes are modeled at a lower level of
abstraction and are structured in different leaky integrator neurons divided into three types:
somatosensory neurons (S Ns), interneurons (INs), and motoneurons (MNs). The overall
structure of the controller is reported in Figure 2. The balance controller of the trunk regulates
only the activation of hip muscles in specific phases of the gait cycle, whereas CPGs and spinal
reflex controllers provide inputs to all muscles and are not regulated by any state-machine
mechanism. We chose to maintain the state machine for the balance controller in order to
simplify the balance control since our main goal is the simulation of locomotor movement.
A physiological neuromechanical model of trunk balance control is a complex task that is
outside the scope of this study. Muscle excitation is triggered by the motoneuron output with
values between 0 and 1 since motoneurons can only provide excitation to muscle fibers and
cannot have negative outputs. To keep a reasonable level of abstraction and complexity, we
will assume that the neuron’s output noutput follows the dynamics of a leaky integrator:

τ
dy
dt
= −y + uinput

uoutput = f (y),
(1)

where y is the neuronal response, uinput is the neural input, τ the time constant (typically 0.01),
uoutput the output of the neuron, and f the activation function. The activation function used
for motoneurons is the min-max operator ( f (x) = min(max(0, x), 1)), and the neural input is
defined as:

uinput =
∑

j

w juoutput j, (2)

where w j is the weight associated with the jth connection, and uoutput j the output of the jth

neuron. The motoneuron receives inputs from the CPGs’ network (uCPGs) and the reflex
circuit (ure f lexes). These inputs are integrated according to equations 1 and 2 and generate the
motoneuron output moutput. ILPSO, GMAX, and HAMS also receive inputs from the balance
controller (ubalance). To avoid the activity of the balance controller from being inhibited by
the other neural circuits possibly preventing the correct balance of the trunk, ubalance is not
integrated into the motoneuron dynamics, and the final motoneuron output for hip muscles
m̃output is defined by the following equation:

m̃output = (ubalance + moutput)+ (3)

where moutput is the motoneuron output resulting from the integration of uCPGs and ure f lexes and
ubalance represents the balance controller effect on the hip muscles. The operator ()+ represents
only the positive part of the selected signal. The amplitude of all components is regulated
by the controller’s parameters tuned by the optimization algorithm. The muscle activation a
responds to the excitation moutput (or m̃output for hip muscles) as defined by Thelen et al. [46].

The following sections will describe in detail how each neural input is computed (ubalance,
uCPGs, and ure f lexes).
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Figure 2: Control diagram: the bio-inspired controller is composed of the balance controller
of the trunk and the spinal controller divided into CPGs and spinal reflexes. The balance
controller aims at keeping the balance of the trunk by stimulating the hip muscles’
motoneurons, whereas CPGs and spinal reflexes generate rhythmic behavior stimulating all
muscles’ motoneurons. Reflexes and CPGs are integrated by motoneurons, whereas balance
inputs are summed separately. (Created with BioRender.com)

2.2.1. Balance controller of the trunk The balance controller is the one proposed by Ong
et al. [36], and it is the only controller part where a state-machine mechanism is present. A
proportional derivative control strategy (PD) is used to activate the hip muscles balancing the
forward lean angle of the trunk. ILPSO, GMAX, and HAMS receive inputs from the balance
controller during the stance phase. The excitation given by the balance controller to the hip
motoneurons is described in equation 4.

ubalance = kp(θ(t − tD) − θ0) + kvθ̇(t − tD), (4)

where kp and kv are the proportional and derivative controller’s gains, and the constant θ0 is
the desired forward lean angle regulating the proportional feedback of the actual forward lean
angle θ. tD represents the time delay, corresponding to tD = 5ms for the hip muscles. The
balance controller has a total of 9 parameters.

2.2.2. Central Pattern Generators (CPGs) The central pattern generators (CPGs) were
implemented as two coupled oscillators (one per side) composed of rhythm generator, and
pattern formation layers [41, 31] inspired by the work of Aoi et al. [3, 2]. The rhythm
generator dictates a period command synchronized with the environment through afferents
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triggered by the heel-strike event. Based on Aoi’s model, two coupled differential equations
govern the CPG dynamics:

ϕ̇le f t = ω − γsin(ϕle f t − ϕright − π)

ϕ̇right = ω − γsin(ϕright − ϕle f t − π),
(5)

where ϕle f t/right denotes the phase of each leg, ω(t) is the basic angular frequency, and γ is the
coupling constant.

The differential equation contains events that reset ϕle f t/right when the leg touches the ground
in order to synchronize the CPGs’ phases with the environment. This is the only feedback
mechanism present in the CPGs model, and it is described in equation 6:

ϕle f t/right(t) =

0, if the leg touches the ground

ϕle f t/right(t) otherwise,
(6)

In our simulations, the angular frequency ω has a constant value and represents one of the
parameters under optimization.

The pattern formation layer is composed of phase-dependent primitive patterns. Each pat-
tern resembles a bell-shaped waveform with a defined width that can be centered around a
specific phase value and is implemented as a raised-cosine function:

p(ϕ̄; µ, σ) =

 1
2

(
1 + cos(ϕ−µ

σ
π)
)
, µ − σ <= ϕ <= µ + σ

0 otherwise,
(7)

where ϕ̄ is the normalized gait phase, µ is the value corresponding to the peak of the bell
shape, and σ is the half-width of the curve. The pattern formation layer is composed of five
primitives of the same half-width and centered at different times of the gait phase (Figure 3a):

• P0: µ = 0.1, σ = 0.2

• P1: µ = 0.3, σ = 0.2

• P2: µ = 0.5, σ = 0.2

• P3: µ = 0.7, σ = 0.2

• P4: µ = 0.9, σ = 0.2

The choice of modeling the CPG network as the generation of five locomotor primitives
derives from the observations done in past experimental studies where five bell-shaped
synergies active at different phases of the gait cycle were identified in human studies [25, 26].
Each motoneuron receives a weighted neural excitation or inhibition uCPGs from all primitive
patterns (Figure 3b) according to the following equation:

uCPGs =

4∑
k=0

wm,k pk(ϕ; µk, σk), (8)
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where wm,k is the weight parameter of the pattern k to the motoneuron m to be determined
through optimization. The total number of parameters to optimize corresponds to 5 weights
per pattern to each specific muscle and the oscillatory frequency. Therefore, the number of
parameters for the CPG network is 48. The possible values assigned to wm,k are [-1:1].

(a) Pattern formation

m

Pk

wm,k

(b) Synergy motoneuron exci-
tation

Figure 3: CPG structure: 3a) The CPG generates five bell-shaped primitives centered
at different times of the gait cycle. 3b) Each k-pattern stimulates all the m-motoneurons
depending on the assigned weight wm,k that can be positive or negative. (Created with
BioRender.com)

2.2.3. Spinal reflexes To implement a physiologically realistic model of sensory-motor
control in human locomotion, we model and investigate five spinal reflexes:

• Ia afferents provide monosynaptic excitation to motoneurons innervating the same
muscle and disynaptic inhibition mediated by Ia inhibitory interneurons to antagonistic
motoneurons (Figure 4a) and model the velocity-dependent response to stretch [9].

• II afferents provide disynaptic excitation to motoneurons innervating the same muscle
and disynaptic inhibition to antagonistic motoneurons mediated by excitatory and
inhibitory interneurons, repectively(Figure 4b). This reflex models the excitatory role
of group II afferents [30] responding to changes in muscle length during stretch.

• Ib afferents provide disynaptic inhibition to motoneurons innervating the same muscle
mediated by inhibitory interneurons.These interneurons reciprocally inhibits with
antagonistic Ib-interneurons (Figure 4c). This reflex is triggered by the Golgi
tendon organs and it is introduced to protect muscles when large forces are detected
[7]. Additionally, Ib afferents provide dysinaptic excitation to extensor motoneurons
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innervating the same muscle mediated by excitatory interneurons. These connections
model the positive force feedback reversal commonly observed in experimental studies
[39, 19, 41] (Figure 4d).

• Renshaw cells are inhibitory interneurons providing inhibitions to motorneurons and Ia-
interneurons innervating the same muscle. Additionally, these cells reciprocally inhibits
with antagonistic Renshaw cells [50] (Figure 4e). Renshaw cells are activated by
motoneurons innervating the same muscle though synaptic excitation inhibiting these
motoneurons when a large activity is detected.

The spinal sensory feedback network is composed of three types of leaky integrator neurons:
somatosensory neurons (S Ns), interneurons (INs), and motoneurons (MNs). Each of these
neurons model the activities of neural populations in the physiological spinal cord. INs
have the same properties of MNs responding to the dynamics described in equations 1 and
2 and with the same activation function f (x). S Ns instead presents a rectifier function
( f (x) = max(0, x)) as activation function, and also the neural input is slightly different:

uinput = r(t − dt), (9)

where r(t − dt) is the receptor function and dt the delayed value of the receptor. Transmission
delays are known and can be determined according to the proximity of the receptors [15]. The
expressions of the receptors follow the equations:

rIa(t) = 65/200
√

max(0, ṽm(t))

rII(t) = l̃m(t)

rIb(t) = f̃m(t)

r f (t) = f̃ f (t),

(10)

where ṽm(t)), l̃m(t), f̃m(t), f̃ f (t) are respectively the normalized quantities for contraction
velocity, muscle length, muscle force, and cutaneous forces due to ground-foot contact.
We choose to consider the normalized quantities to be able to easily scale for different
muscles with different values of length and strength. Here, the expression for rIa was
inspired by Prochazka [38] and modified such that only lengthening ṽm > 0 triggers a
response while ignoring length and activity-dependent terms. We deliberately simplified
these expressions because we wanted to capture the general trend and prevent an excessive
number of physiological parameters. In Figure 4, we present the primitive reflex pathways
that govern the connectivity within a single spinal cord segment. These rules are used to
build the topological network by assuming that muscles can be categorized as agonists (A),
antagonists (N), and extensors (E) or flexors (F).

The relation between agonist and antagonist muscles defines the mutual inhibitions de-
scribed in Figure 4a, 4c, 4b, and 4e. In addition, a muscle can be defined as extensor of flexor.
In case it is an extensor muscle, the additional connections of Ib disynaptic extensor facilita-
tion described in Figure 4d are included. Some bi-articular muscles can be considered both
extensors and flexors since they have different effects on different joints and the Ib disynaptic
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Figure 4: Reflex pathways. Green, blue and red stand for somatosensory (S NA/N), inter
(INA/N), and motor neurons (MNA/N), respectively. The connection tip o stands for inhibition
while < is for excitation. Subscript letters A, N, and E denote agonist, antagonist, and
extensor muscles, respectively. The rules are repeated for all antagonist muscles. (Created
with BioRender.com)
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Agonist-antagonist muscle relationship
Agonist Antagonist Role
ILPSO GMAX, HAMS Flexor
GMAX ILPSO Extensor
HAMS VAS, RF Extensor/Flexor

RF HAMS, BFSH Extensor/Flexor
BFSH VAS, RF Flexor
VAS HAMS, BFSH Extensor
GAS TA Extensor/Flexor
SOL TA Extensor
TA GAS, SOL Flexor

Table 1: Agonist-antagonist relationship among muscles modeled. Each antagonist
relationship implies the corresponding reciprocal inhibition of Ia, II, and Ib connections,
and the reciprocal excitation connections of RC. The table specifies whether the agonist is
considered an extensor, which includes the disynaptic excitation from Ib+, or flexor.

extensor facilitation is included also in this case. Table 1 describes the relations among agonist
and antagonist muscles assigned in our models. Accounting for all the weighted connections,
the sensory feedback controller has a total of 183 parameters.

Finally, Figure 5 shows the whole spinal network implemented between agonist and antago-
nist muscles including the reflex pathways and CPGs inputs. On top of this network, ILPSO,
GMAX, and HAMS also receive inputs from the balance controller.

2.3. Optimization process

In total, the controller’s parameters are 256, accounting also for 16 additional parameters
regulating initial positions and velocities of the model’s DoFs. Because of the large size of
the parameters’ space and the difficulties in obtaining a stable solution when the network is
in an arbitrary state, the optimization process is divided into three steps: imitation objective,
optimization for stability, and optimization of metabolic energy. In the first stage, we try
determining the network’s parameters such that the output of neurons is within a plausible
range and motoneurons’ activity resembles normal gait solutions. To achieve this, we begin
with a previously obtained stable gait simulation generated by a simpler controller [36].
Given that we know the whole state trajectories of the musculoskeletal system, we can
compute the sensory afferent inputs required by the bio-inspired controller. Therefore, we
can optimize for network parameters efficiently without numerically integrating the equations
of the musculoskeletal system. We call this step imitation learning because we try to
imitate a simulated behavior without yet producing dynamically consistent stable gaits. The
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Figure 5: Spinal network between a muscle and its antagonist. The network includes reflexes
driven by Ia, II, Ib afferents and Renshaw cells and inputs from CPGs’ patterns. Connections
from patterns to motoneurons are represented by back arrows since these connections be both
inhibitory and excitatory. ILPSO, GMAX, and HAMS also receive inputs from the balance
controller. (Created with BioRender.com)

optimization objective is defined as follows:

minimize
p⃗

Nt∑
t

Nm∑
m

(
eS

m(t) − eN
m(t, x⃗(t); p⃗)

)2
, (11)

where eS
m(t) denotes the target simulated excitation of muscle m at time t, and eN

m the exci-
tation of the network that depends on time t, the known state variables x⃗(t), and parameters
p⃗. The above parameter solution does not produce stable gaits if we evaluate the model by
numerically integrating the equations of motion. Our initial goal was to calibrate the network
behavior within a reasonable range of operation in order to avoid neuron activities that are
extreme and always make the model fall and optimization diverge. In fact, the imitation is
only done to obtain a first usable solution for further optimization.

The second optimization aims at obtaining dynamically consistent stable gaits. To do so, we
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start integrating numerically the equation of motion producing dynamical gaits by minimizing
the distance between the model’s and reference’s states as already expressed in equation 11,
penalizing unstable falling solutions and solutions outside the desired range of speed, min-
imizing metabolic effort and joint limit torques. With this process, we aim to obtain stable
solutions generated with our bio-inspired controller with physiological kinematics and muscle
activation. The optimization is done using a CMA-ES algorithm with parameters λ = 40 and
σ = 5 [23]. The cost function for this optimization is defined as follows:

minimize
p⃗

Jmimic + Jgait + Jeffort + Jlimit + Jhead. (12)

The term Jmimic, represents the model mimicking the reference states as expressed in equation
11, Jgait penalizes the solution where the center of mass velocity is outside the [vmin, vmax] range
(1.10-1.25 m/s for healthy human gait at normal speed) and the falling solutions. The model
is considered to fall when the ratio between its center of mass height (hCOM) to the initial state
(hCOM,i) is smaller than a termination height threshold set to 0.8 ( hCOM

hCOM,i
< 0.8). The term Jeffort

defines the rate of metabolic energy expenditure [47] normalized by the product of body mass
and distance traveled. Jlimit is associated with joint minimization of soft joint limit torques
at the knee and ankle joints in order to avoid excessive joint angles [14]. Finally, Jhead helps
to maintain head stability by minimizing horizontal and vertical head accelerations outside
the following ranges: [−4.90 − 4.90]m/s2 in the vertical direction, and [−2.45 − 2.45]m/s2

in the horizontal direction, as previously done by Ong et al. [36]. Concerning the weights,
we assigned wmimic = 10, wgait = 100, weffort = 1, wlimit = 0.1, and whead = 0.25 in order to
promote mainly stability and mimicking. Following this optimization, we use the resulting
stable solution as initial condition to find the optimal that minimizes metabolic energy. To do
so, we remove the mimicking component of the cost function and optimize for

minimize
p⃗

Jgait + Jeffort + Jlimit + Jhead. (13)

Jgait allows the stability of future explored solutions and Jeffort allows convergence toward gait
efficiency. In addition, we apply external perturbations to the pelvis and randomized internal
perturbations to muscle excitation to obtain more robust and stable gaits. The external pertur-
bation is a force of 100 N applied in the forward and backward direction for a duration of 0.2 s
respectively after 3 s and 4 s after the beginning of the simulation. The internal perturbations
are applied to sensory receptors. For each controller timestep, a random white Gaussian noise
is sampled from a normal distribution with a standard deviation of s ∗ noisep, where noisep is
the proportional standard deviation of the normal distribution, and s is the perturbed sensory
signal.

This three steps optimization process was used only to find a proper local optimum to repli-
cate human gait behavior with a high number of parameters tuning the bio-inspired controller.
However, once the local optimum is found, different gait behaviors can be reached starting
from this solution by only optimizing according to equation 13 with the different gait behav-
iors targeted by Jgait. These experiments are explored in the following section.
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2.4. Gait modulation

To study the capability of the proposed bio-inspired controller to reproduce different gait
behaviors in human locomotion, we focus mainly on the modulation of locomotor speed.
In this way, we aim to evaluate our controller’s performance, checking the maximum and
minimum speeds it can achieve. Additionally, we evaluate gait analysis and muscle activation
for three selected solutions far from the extremes of the achieved speed range since very slow
or very fast speeds are more subject to producing artifacts in gait simulations. Therefore the
three solutions selected are at 0.6 m/s, 1.2 m/s, and 1.6 m/s representing slow, intermediate,
and fast speeds, respectively. To do so, we modulate the optimization parameters [vmin, vmax]
in Jgait. Furthermore, we use the data acquired from our model to have possible insights into
the contribution of CPGs and spinal reflexes in the neuromotor control of human locomotion
and gait modulation. To do so, first, we evaluate the inputs to motoneurons from CPGs and
reflexes and how these affect the motoneurons’ output at different speeds. We then performed
additional optimization where either CPGs parameters or reflexes parameters were fixed to
investigate the modulation capabilities of each controller component. The fixed values of
parameters are extracted from a reference solution of the model walking at 1.17 m/s with 0.79
m of step length and 0.67 s of step duration. This solution is the one where the optimizer
converged without imposing any restriction on the target speed. Finally, we investigate which
parameters majorly contribute to gait modulation for the three controller configurations: full
control, fixed reflexes, and fixed CPGs. These parameters are identified through a correlation
analysis with gait speed, step length, and step duration, were parameters that have a high level
of positive or negative correlation with these three gait characteristics (above 0.80 in absolute
value) are considered the potential major contributors to gait modulation [14]. The correlation
analysis is conducted over 8 samples obtained through different target optimizations for each
of the 3 controller configurations.

3. Results

Figure 7 shows the controller’s performance. When minimizing the cost function without
imposing restrictions on gait speed, the model converges to a gait at 1.17 m/s of speed, 0.79
m step length, and 0.67 s step duration. Figure 6a shows qualitatively the different positions
of the model’s joints through the gait cycle. The simulated pelvis tilt, hip flexion, knee angle,
and ground reaction forces (GRFs) shown in Figure 6b faithfully represent the experimental
observations from Schwartz et al. [42] illustrated by the shaded grey areas. Some
discrepancies can be observed for the ankle angle that tends to have excessive dorsiflexion and
lacks proper plantarflexion during push-off compared to experimental observations. Indeed,
the ankle angle mostly maintains its values above the zero level of plantarflexion/dorsiflexion.
This likely depends on the weak activation of gastrocnemius and soleus observed in Figure 6c.
These muscles maintain a peak activation of 0.3 for the soleus and 0.2 for the gastrocnemius.
However, the simulation replicates the temporal activations observed in experiments from
Perry and Burnfield [37] for TA, GMAX, VAS, GAS, SOL, and HAMS. Concerning ILPSO,
the muscle is active also outside its time range, having a consistent activation also in pre-
swing. The model converges to different behaviors compared to experimental results for
BFSH and RF that are active at the beginning and at the end of the gait cycle, respectively,
rather than during swing.
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(a) Gait cycle snapshots

(b) Trunk flex/ext, gait kinematics and GRFs

(c) Muscle activation

Figure 6: Gait analysis of simulated gait at 1.17 m/s. (6a) Model position at different times
of the gait cycle. (6b) Kinematics and GRFs compared to experimental data [42]) grey
areas report the observed experimental ranges for pelvis tilt, hip flexion, knee flexion, ankle
dorsiflexion, and vertical GRFs. (6c) Muscle activation analysis: muscle activity over a gait
cycle for the 9 muscles along the gait cycle. Blue curves represent the means of the gait
signals through the gait cycles and the shaded areas the standard deviations. The activation
curves are compared with the activation timing observed experimentally [37] and represented
by the solid black lines on the top of the graphs.
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3.1. Gait modulation

By optimizing the controller’s parameters, the model could reproduce gaits from 0.3 to 1.9
m/s. Figure 7a shows the modulation of gait kinematics and GRFs at 0.6, 1.2, and 1.6 m/s
representing slow, intermediate, and fast gaits, respectively. As speed increases, the pelvis
tilt and the lean angle of the trunk increase in the forward direction by 8 degrees, and the
hip flexion oscillates between 35 and -5 degrees at slow speed and 45 and -3 degrees at fast
speed. Increasing amplitudes of knee flexion are also observed at high speed, having the peak
flexion in swing of 53 degrees at 0.6 m/s and 68 degrees at 1.6 m/s. Fast speed also presents a
consistent increase of ankle plantarflexion to -3 degrees of the ankle angle during ankle push-
off, whereas this value is maintained at around 10 degrees of ankle dorsiflexion at slow speed.
Concerning GRFs, the characteristic double peak shape is very weak at 0.6 m/s. Double peak
amplitudes increase with the increase of speed, especially the first peak that shows the reaction
with the impact with the ground during heel strike. The duration of the stance phase is reduced
from 65% of the gait cycle at 0.6 m/s to 55% at 1.6 m/s. The behaviors of kinematics and
GRFs modulation presented resemble the ones observed experimentally by Schwartz et al.
[42]. Some differences are observed with the level of ankle dorsiflexion since the model tends
to converge to a high-level of dorsiflexion that can differ from experimental data by 7 degrees
during heel strike and by 12 degrees during push-off at slow and fast speeds. Additional
differences are observed for the level of hip extension at slow speed and knee extension at
high speed. In fact, Schwartz et al. observed that the maximum hip extension decreases
at low speeds, and knee extension during stance increases at high speeds. In contrast, the
model reproduced increased knee flexion during stance at high speeds and a similar level of
maximum hip extension at 0.6 m/s compared to 1.2 and 1.6 m/s.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525432doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525432
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

(a) Gait modulation: trunk flex/ext, gait kinematics and GRFs

(b) Gait modulation: muscle activation

Figure 7: Gait modulation at 0.6, 1.2, and 1.6 m/s. (7a) Comparison of kinematics and GRFs
among the three speeds. (7b) Changing muscle activation at different speeds. The activation
curves are compared with the activation timing observed experimentally and represented by
the solid black lines on the top of the graphs.

Muscle activity is affected by gait modulation mainly through the increase of activation
with the increase in speed. In Figure 7b, ILPSO, GMAX, HAMS, TA, and SOL are the
muscles that more consistently present an increment in muscle activation. TA and HAMS
pass from a maximum activation of 0.2 at slow speed to 0.5 at fast speed, whereas ILPSO
has a similar maximum activation at fast speed and a higher activation of 0.3 at slow speed.
GMAX has the highest increment of muscle activation, passing from a maximum activity of
0.1 to 0.7. SOL also presents a consistent increase in its activity, passing from a value smaller
than 0.1 at slow speed to 0.4 at fast speed. A lower increase is present for VAS at high speed,
whereas no consistent variation in muscle activity can be observed for BFSH, RF, and GAS.
Therefore, the increased plantarflexion with speed mainly depends on the increased activity
of the soleus. In general, the activation amplitude of all muscles increases with speed, as
observed experimentally by Cappellini et al. [8].
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3.2. Gait modulation: CPGs and reflexes

Past controllers suggested spinal reflexes may be sufficient to generate human locomotion in
simulations [18, 36]. These reflexes were regulated by state-machine mechanisms. We tested
our controller to check whether the spinal connection implemented could generate rhythmic
locomotion without the state-machine regulation or the presence of CPGs. With the removal
of CPGs, the remaining parameters to optimize are 208. Even if the dimensional reduction
could in principle simplify the convergence to a stable solution, no rhythmic gait could be
reproduced, suggesting the need for the CPG networks to provide rhythm and timing in the
absence of a state machine activating sensory feedback commands at specific times of the
gait cycle. The simulation resulting from removing CPG parameters led to the human model
in a standing position with the right leg in front of the left leg. The reflexes could generate
the muscle activation necessary to maintain this position until the balance controller failed to
stabilize the trunk, causing the model to fall. Dzeladini et al. [15] suggested that the tuning of
CPGs applied only to hip muscles could easily modulate human locomotion where other mus-
cles were controlled by sensory feedback. In order to test this hypothesis in our model, we set
to 0 the CPG parameters for all muscles except hip muscles and re-optimized the parameters
according to the step explained in section 2.3. The resulting simulation showed very similar
behavior to the one obtained without any CPG parameters, suggesting CPGs inputs may have
an important contribution also for knee and ankle muscles. It should be noted that our CPG
model provides only a rough waveform (made of the 5 primitives), while Dzeladini’s CPG
provides a detailed waveform replicating the sensory-driven control signals.

To investigate the contribution of each controller component in gait modulation, we inves-
tigated the inputs from CPG circuits, spinal reflexes, and balance controller provided to the
motoneurons. Figure 8 shows how these signals contribute to generating motoneurons inputs
and outputs following equation 3. Generally, in the model, the net effect of the reflex circuits
tends mainly to inhibit the motoneurons providing a negative stimulation through the whole
gait cycle with the exception of ILPSO and TA. Reflexes also facilitate the activation of VAS
and GAS during swing for all the speed ranges and the activation of BFSH and HAMS at
slow speeds. Instead, for each muscle, CPGs present specific regions of the gait cycle where
they excite or inhibit the motoneuron. In this regard, CPGs prevent the activation of specific
muscles in specific cycle phases, such as VAS and GAS in swing that were stimulated by the
reflex circuits. CPGs’ patterns tend to increase the amplitude of inhibition or excitation with
increasing speed. This is especially the case for SOL, where the growing muscle activation
with speed is primarily due to the increased excitation from CPGs circuits. CPGs activity also
helps to have a consistent muscle activation of ILPSO in swing, but it tends to increase the ac-
tivity at slow speed, and the lower muscle activity in swing is achieved by reflexes that inhibit
ILPSO during swing at 0.6 m/s. The balance controller is applied only to ILPSO, GMAX,
and HAMS, and seems to be the leading cause of HAMS activation since the CPGs excitation
is entirely inhibited by spinal reflexes.
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Figure 8: CPGs, reflexes, and balance inputs at 0.6, 1.2, and 1.6 m/s. CPGs, reflexes, and
balance generate motoneurons inputs and outputs according to equation 3. The contribution
of the three controller components is compared through the three speeds selected.

Additionally, we performed optimizations for different target speeds by keeping fixed
reflexes parameters or CPGs parameters. Table 2 compares the achieved ranges of speed,
step length, and step duration for the controller optimizing all parameters (full control),
maintaining reflexes parameters fixed (fixed reflexes), and maintaining CPGs parameters fixed
(fixed CPGs). The optimization of all parameters allows reaching wide ranges of speed from
0.30 to 1.86 m/s with small and large step lengths (0.23 to 1.08 m) and step durations (0.53
to 0.84 s). Removing reflexes parameters’ optimization allows reaching ranges similar to
the ones obtained in full control. However, the missing optimization of CPGs parameters
significantly limits the controller’s capabilities to modulate step duration, passing from a
range covering 0.53-0.84 s to 0.64-0.67 s. Consequently, the optimization tends to achieve
slow or fast speeds, mainly modulating the step length to reach large values of 1.21 m at
high speed. The achieved value of step length is higher than the one in full control because
the model converges to a more energetically efficient gait reducing the step duration when all
parameters are optimized. By maintaining only the oscillatory frequency fixed and optimizing
all the other parameters, the controller covered a similar range compared to the configuration
with fixed CPGs, suggesting that the CPG frequency could be the principal modulator of step
duration. However, we verified that the modulation of CPG frequency alone is insufficient
to converge to different gait behaviors. Indeed, the model loses stability without significant
changes in gait speed when only the CPG frequency is tuned. This result implies that the
modulation of CPG frequency alone may be necessary but not sufficient to modulate step
duration.
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Full control Fixed reflexes Fixed CPGs
Speed (m/s) [0.30-1.91] [0.30-1.91] [0.44-1.91]

Step length (m) [0.23-1.08] [0.23-1.08] [0.30-1.21]
Step duration (s) [0.53-0.84] [0.56-0.84] [0.64-0.67]

Table 2: Evaluation of speed, step length, and step duration ranges achieved by the bio-
inspired controller in 3 configurations: full control where all parameters are optimized, fixed
reflexes where all reflexes parameters are fixed, and fixed CPGs where all CPGs parameters
are fixed.

3.2.1. Correlation analysis The correlation analysis reported in Table 3 gives indications
on which parameters had a correlation higher than 0.8 with the main gait characteristics and,
therefore, those that could be the main responsible for gait modulation in the three controllers
configurations. Specific parameters are identified as:

• Pk → M.MN for the input pattern Pk weighted connections to motoneuron M.MN,
where M is the muscle name.

• ω for phase oscillator frequency.

• M.N s
A → M.Nd

A for parameters regulating the weighted synaptic connections between
the source neuron of a specific muscle (M.N s

A) and the destination neuron of the target
muscle (M.Nd

A). N represents the type of neuron and can be either S N, IN, or MN, and
A represents the type of afferent and can be either Ia, II, Ib, Ib+, or RC

• M.NA.w0 is the activation offset of the neuron NA regulating the neuronal response.

In full control, both reflexes and patterns’ connections seem to contribute to gait modula-
tion. The first (P0) and third (P2) patterns connections to extensor muscles like GMAX and
SOL positively correlate with increasing speed and step length and decreasing step duration.
The CPGs’ frequency (ω) has a highly consistent correlation with gait speed and step du-
ration, suggesting again the direct influence of this parameter on gait frequency. The only
reflex parameter representing an excitatory connection is the monosynaptic excitation of Ia
afferents from TA (T A.S NIa → T A.MN), having a negative correlation with speed and fa-
voring increased dorsiflexion during slow gaits. Another relevant parameter is the length
offset of the II somatosensory neuron of GMAX (GMAX.S NII .w0) with a positive correla-
tion with speed and step length meaning a higher level of stretch is needed to activate length
feedback from II afferents. The other reflex parameters presented are inhibitory connections,
which implies that a highly negative correlation with a gait characteristic (either speed, step
length, or step duration) means an increased inhibition with the increase of that gait charac-
teristic. The II interneuron of ILPSO tends to decrease its inhibition to GMAX motoneuron
(ILPS O.INII → GMAX.MN) when speed increases and step duration increases, favoring
the activation of GMAX in these conditions. The same mechanism is involved in facil-
itating the activation of SOL through the decreasing inhibition from II interneuron of TA
(T A.INII → S OL.MN). The last two reflex parameters for the controller in full control con-
figuration involve the reciprocal inhibition mechanisms of interneurons and Renshaw cells.
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GAS’s Ia interneuron increases the inhibition to TA’s Ia interneuron with increasing speed
(GAS .INIa → T A.INIa), enhancing the activation of GAS itself because of the decreased in-
hibition from T A.INIa. Then, the Renshaw cell of RF decreases its inhibition to the Renshaw
cell of HAMS (RF.INRC → HAMS .INRC) with increasing speed, favoring the inhibition of
the hamstrings muscle. Indeed, from the previous analysis, the increased activation of HAMS
with speed was mainly due to the input from the balance controller.

Concerning the configuration with fixed reflexes, CPGs’ frequency (ω) highly correlates with
speed and step duration also in this case. Another modulator for step duration is the input
from the fifth pattern to TA’s motoneuron (P4→ T A.MN), which indeed increases its activa-
tion at the end of the gait cycle with increasing speed. The first pattern (P0) tends to increase
the inhibition to GAS and GMAX at the very beginning of the gait cycle with increasing
speed. Then, speed modulation through modulation of step length is enhanced by tuning the
excitation from the second pattern (P1) to SOL motoneuron (S OL.MN) in order to increase
propulsion in stance.

When CPGs parameters are fixed, speed modulation happens mainly through step length
changing because of the controller’s limited capability to modulate step duration without tun-
ing CPGs’ frequency. The controller tends to increase step length by increasing the offset
to enhance the length feedback of ILPSO (ILPS O.S NII .w0). II afferents are also involved
with the decreased length feedback of VAS muscle with speed rising through the excitation of
VAS .INII from VAS .S NII . The last two relevant parameters concern the inhibitory connec-
tions of Renshaw cells and Ib afferents. The Renshaw cell interneuron of GAS (GAS .INRC)
decreases its inhibition to the Ia interneuron of TA (T A.INIa), decreasing the activation of
GAS itself at fastest speeds. Higher speeds should, in principle, increase the activation of
GAS, but in the modulation of muscle activation, we previously observed that the optimizer
tends to maintain the same activation level for the gastrocnemius muscle during speed modu-
lation. Finally, the Ib inhibitory interneuron of TA (T A.INIb) decreases its inhibition to the Ib
interneuron of SOL, allowing the inhibition of this muscle. Indeed, we previously observed
that the increased muscle activation of soleus at higher speeds was not due to the input from
spinal reflexes but primarily due to increasing excitatory inputs from CPGs.

4. Discussion

In this study, we aim to investigate the possibility of controlling human locomotion by relying
only on spianl reflexes not regulated by a state machine mechanism and to investigate the
contribution of both CPGs and spinal reflexes in generating locomotor output. To do so, we
developed a bio-inspired controller composed of a balance controller, a CPG network, and a
sensory feedback network based on physiological spinal reflexes maintaining a state-machine
mechanism only for the balance of the trunk. The proposed controller could replicate human
kinematics and ground reaction forces (GRFs) with some limitations in the ankle angle in
which the model converges to an excessive dorsiflexion behavior. Regarding muscle activa-
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Full control
Speed Step length Step duration

P0→ GMAX.MN 0.92 0.86 -0.9
P2→ S OL.MN 0.80 0.80 -0.87

GAS .INIa → T A.INIa -0.82 -0.86 0.81
GMAX.S NII .w0 0.82 0.81 -0.86

ILPS O.INII → GMAX.MN 0.96 0.89 -0.98
RF.INRC → HAMS .INRC 0.83 0.85 -0.8

T A.INII → S OL.MN 0.9 0.89 -0.87
T A.S NIa → T A.MN -0.92 -0.83 0.9

ω 0.97 0.88 -0.98

Fixed reflexes
Speed Step length Step duration

P0→ GAS .MN -0.84 -0.74 0.83
P0→ GMAX.MN -0.83 -0.8 0.83
P1→ S OL.MN 0.85 0.94 -0.54
P4→ T A.MN 0.79 0.70 -0.85

ω 0.92 0.83 -0.99

Fixed CPGs
Speed Step length Step duration

GAS .INRC → T A.INIa 0.81 0.83 -0.67
ILPS O.S NII .w0 0.91 0.91 -0.83

T A.INIb → S OL.INIb 0.89 0.87 -0.94
VAS .S NII → VAS .INII -0.85 -0.85 0.82

Table 3: Correlations coefficients of controller’s parameters contributing to the modulation
of speed, step length, and step duration in the 3 controller’s configurations: full control, fixed
reflexes, and fixed CPGs.

tion, the model could reproduce most of muscle activation timings observed experimentally,
with the exception of BFSH, which is active outside its range in human recording. The pro-
posed network could probably generate muscle activation closer to physiological activity with
additional optimizations. However, finding this global optimal solution results challenging be-
cause of the large number of parameters.

Many aspects of speed modulation from human recordings, such as the increased amplitudes
of flexion/extension movements and the increased muscle activation with growing speed, are
also matched by the model. Concerning the role of CPGs and spinal reflexes in the neu-
ral control of human movement, we investigated the possibility of finding stable solutions
without relying on CPGs as suggested by previous neuromechanical studies [18, 36]. In our
optimizations, we could not find any stable rhythmic behavior in the absence of CPGs’ com-
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mands even if the number of parameters to optimize significantly decreased, suggesting the
need for the CPG network to provide rhythm and timing in the absence of a state machine
activating sensory feedback commands at specific times of the gait cycle. Therefore, reflex-
based circuits are always active through self-regulation by the afferents, lacking any timing
information without CPGs. Similarly, a pure CPG network without reflexes leads to unsta-
ble solutions. While we cannot rule out that a different network topology might give rise to
high-quality gaits, our model highlights the need for both types to achieve stable and natural
movements. Indeed, natural locomotor behavior emerges when both CPGs and spinal reflexes
are active. Our study suggests that the state-machines used in previous sensory-driven mod-
els [19, 36] could in fact be replaced by CPGs and that one of the main roles of CPGs, in
addition to simplifying speed control [15], is to serve as gating mechanism that ensures that
reflexes do not affect muscles all the time but only at specific moments of the locomotor cycle.

More specifically, the performances on gait modulation while either reflex circuits or CPGs
commands were fixed, and the corresponding correlation analysis highlighted the importance
of CPGs’ frequency in changing the step duration. Therefore, in the model, CPGs have a cru-
cial role in determining gait timing. Additionally, the analysis of neural inputs to motoneurons
showed that the net inputs of reflexes are mainly inhibitory through the gait cycle for the pro-
posed model, except for ILPSO and TA, which globally receive excitatory inputs. CPGs’
patterns excite or inhibit motoneurons in specific phases of the gait cycle to allow or prevent
muscle activation. Therefore, CPGs seem to be important to determine activation timing other
than gait frequency. Such a control strategy is similar to the one proposed by Laquaniti et al.
[28] where the timing and magnitude of EMG activity are tuned via proprioceptive feedback
and CPGs that control the basic rhythms and patterns of motoneuron activation. However,
it should be highlighted that the five locomotor primitives described by Ivanenko et al. and
Laquaniti et al. [25, 28] were not equally spaced in the gait cycle phase as they are in our
controller. This is because, in these studies, the primitives were extracted with factorization
of EMG activity. Yet, this activity is the result of the global input received by muscles without
being able to distinguish which input was coming from spinal reflexes and which one from
CPGs circuits. Therefore, we decided to simplify the distribution of the five primitives and
equally space the patterns through the gait cycle since the primitives measured in experiments
could hardly be generated by the CPGs commands alone. This choice still leads to largely
reproducing the experimental activation timing.

The modulation of gait reflexes alone could still regulate muscle activation to achieve dif-
ferent gait behaviors, mainly through the modulation of step length. The correlation analysis
highlighted the possible parameters responsible for this behavior, such as the offset of II fibers
regulating the level of stretch necessary to activate length feedback for ILPSO and GMAX.
Indeed, increasing these parameters allowed larger amplitude for hip flexion/extension, pro-
moting larger step lengths.

In general, the proposed controller presents a highly redundant system where several different
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combinations of neural inputs can generate the same muscle activation. The correlation anal-
ysis gave possible insights into which parameters could be the most relevant in the control of
gait modulation. Yet, given the high redundancy, a separate and more extensive study would
be necessary. Possibly, this study should include a large dataset of optimizations and addi-
tional elements of the cost function that could guide toward the best combination of neural
inputs to generate specific muscle excitation, such as the minimization of the total neuronal
activation. Then, the results should ideally be validated by experimental measurements.

Some limitations of the proposed controller should be considered. Because of the large num-
ber of parameters, finding a stable solution replicating human walking with the proposed
controller may be challenging since it requires the three optimization stages described in sec-
tion 2.3. However, once this solution is found, it can be used as a starting point to explore
different gait behaviors by only performing the last optimization stage. In this way, we could
reproduce a wide range of speeds comparable to or larger than the ones previously obtained
by other neuromechanical controllers [43, 36, 14]. Yet, it should be highlighted that the ini-
tial stage of the optimization requires the imitation objective from a previous solution found
with a different neuromechanical controller. This step was necessary because some parameter
combinations can quickly saturate the neurons’ output and overexcite or excessively inhibit
the network resulting in permanent or no muscle activation and leading to model failures dur-
ing volatile movements. There is a low probability that a random initialization of parameters
can make the convergence to a stable solution. If the model falls initially, it is hard to learn a
good solution to improve the gait and escape the local minimum. However, the use of the imi-
tation objective implies that any lack of performance from the imitated solution in replicating
human movement will probably reflect a lack of performance of the bio-inspired controller.
This has probably been the case for the excessive dorsiflexion behavior performed by our
model since many solutions of the reflex-based controller proposed by Ong et al. [36] that
we used as imitation objective presented the excessive dorsiflexion behavior. Therefore, the
proper choice of the initial imitation objective is crucial for the correct optimization of our
model.

Further considerations should also be made for the design of the reflex controller. In para-
graph 2.2.3, we explained how we simplified the expressions for the sensory receptors to
capture the general trend and prevent an excessive number of physiological parameters. In
reality, the dynamics of these receptors are very complex [32, 33], and there is little evidence
why the same model identified in specific animal experiments can generalize to humans in the
presence of dynamic movements.

Despite these limitations, the bio-inspired controller we propose is a promising tool for in-
vestigating spinal circuits in human locomotion. Indeed, we have already shown the insights
this model could give into the relationship between CPGs and spinal reflexes. Further sug-
gestions could be provided in investigating pathological gaits. Past studies tried reproducing
neural pathologies with neuromechanical simulation by extending previous controllers, in-
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cluding specific connections to model the pathology in the desired degree of freedom [6].
However, the controller proposed could be more suitable for studying neuropathologies like
hyperreflexia considering the effects of both excessive inputs from Ia fibers and the lack of
reciprocal inhibition. Furthermore, further aspects of gait modulation regulating standing to
walking transitions and acceleration and deceleration mechanisms can be investigated. Ad-
ditionally, this controller could be used as a starting point to further extend the modeling
of the neuromotor system by including the implementation of additional spinal neural con-
nections like γ-motoneurons [16] and descending inputs from the brainstem and other supra
spinal brain areas, even though this would increase even more the controller’s complexity and
the total number of parameters. Additionally, future implementations could include less ab-
stract and more realistic CPG models, for instance, based on more detailed models previously
proposed for mammalian circuits that could potentially be taken as a reference for modeling
human locomotion [5, 4, 12, 11]. Additional connections between CPGs and spinal reflexes
may be implemented, allowing somatosensory neurons to interact and modulate CPGs’ pat-
terns and CPGs’ patterns to interact with spinal interneurons other than motoneurons.

5. Conclusions

This study proposes a novel physiologically plausible neuromechanical controller maintaining
a good balance between complexity and realism to investigate the spinal components
governing human locomotion. The controller is composed of a balance controller from Ong
et al. [36], a CPG network inspired by Aoi et al. [3], and a sensory feedback network
that takes into account the main reflex connections in the spinal cord without being tuned
by a state machine. The controller demonstrated the ability to reproduce key behaviors of
human locomotion and its modulation in simulations. Results from optimizations suggested
that rhythmic locomotion could not be achieved with the only contribution of spinal reflexes
without accounting for a state machine mechanism. This suggests the possible need for CPG
networks to generate rhythmic movements by guiding muscle activation timing in specific
phases of the gait cycle. The modulation of either CPGs or reflexes parameters or both could
reproduce wide ranges of gait behaviors, highlighting the high level of redundancy in human
locomotor control. The modulation of CPGs’ frequency appeared to be crucial for regulating
gait cycle duration. The proposed controller demonstrated to be a promising tool to provide
many other indications on how the spinal cord may produce locomotor outputs.

Supplementary materials

All the codes necessary to replicate our experiments and the parameters and files of our
simulation can be found in https://github.com/DiRussoAndrea/Spinal_controller.
The SCONE version containing the implementation of the proposed controller can be found
in https://gitlab.com/simgait/SCONE.
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