
1 
 

Title:  1 

Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from 2 

cue-induced imagery 3 

Authors: 4 

Yiheng Hu1,2, Qing Yu1,* 5 

Affiliations: 6 

1Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, 7 

Chinese Academy of Sciences, Shanghai, China 8 

2University of Chinese Academy of Sciences, Beijing, China 9 

 10 

*Correspondence should be addressed to: 11 

Qing Yu 12 

Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, 13 

Chinese Academy of Sciences 14 

Shanghai, 200031, China 15 

Email: qingyu@ion.ac.cn 16 

 17 

 18 

 19 

Keywords: visual imagery, frontal cortex, early visual cortex, reverse hierarchy, self-generated 20 

imagery; fMRI; EEG 21 

 22 

 23 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525474
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 24 

Visual imagery, the ability to generate visual experience in the absence of direct external stimulation, 25 

allows for the construction of rich internal experience in our mental world. Most imagery studies to 26 

date have focused on cue-induced imagery, namely the to-be-imagined contents were triggered by 27 

external cues. It has remained unclear how internal experience derives volitionally in the absence 28 

of any external cues, and whether this kind of self-generated imagery relies on an analogous cortical 29 

network as cue-induced imagery. Here, leveraging a novel self-generated imagery paradigm, we 30 

systematically examined the spatiotemporal dynamics of self-generated imagery, by having 31 

participants volitionally imagining one of the orientations from a learned pool; and of cue-induced 32 

imagery, by having participants imagining line orientations based on associative cues acquired 33 

previously. Using electroencephalography (EEG) and functional magnetic resonance imaging 34 

(fMRI), in combination with multivariate encoding and decoding approaches, our results revealed 35 

largely overlapping neural signatures of cue-induced and self-generated imagery in both EEG and 36 

fMRI; yet, these neural signatures displayed substantially differential sensitivities to the two types 37 

of imagery: self-generated imagery was supported by an enhanced involvement of anterior cortex 38 

in generating and maintaining imagined contents, as evidenced by enhanced neural representations 39 

of orientations in sustained potentials in central channels in EEG, and in posterior frontal cortex in 40 

fMRI. By contrast, cue-induced imagery was supported by enhanced neural representations of 41 

orientations in alpha-band activity in posterior channels in EEG, and in early visual cortex in fMRI. 42 

These results jointly support a reverse cortical hierarchy in generating and maintaining imagery 43 

contents in self-generated versus externally-cued imagery. 44 

 45 

Introduction 46 

Visual imagery is the ability to generate visual experience from the internal world, in the absence 47 

of direct external stimulation 1. It remains a fundamental capability of human cognition, and is 48 

central to the understanding of how our mental world is constructed. Unlike visual perception which 49 

is primarily driven by physical external stimulation and can be measured via standardized paradigms, 50 

visual imagery by definition involves cognitive processes that are ambiguous and difficult to 51 

measure in nature. Consequently, various behavioral paradigms have been used to study visual 52 

imagery; these paradigms might fundamentally differ in the exact cognitive processes involved, yet 53 
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most of them share a cue-induced nature in common, namely the contents of imagery are induced 54 

by externally presented cues. Overall, two types of imagery tasks are most frequently used: the first 55 

type of imagery task employs semantic 2-4 or associative cues 5 to trigger retrieval of imagery 56 

contents from long-term memory. In these tasks, the to-be-imagined contents are not directly 57 

accessible on the screen, but can only be inferred from long-term memory. The other type of imagery 58 

task utilizes retrocues 6,7 or mental rotation cues 8,9 to access specific memorized contents 59 

maintained or manipulated in working memory. These cue-induced imagery tasks, albeit 60 

significantly differed in their way to cue imagery, have led to several consistent observations in 61 

visual imagery: first, imagery and perception share common neural codes in early visual cortex for 62 

simple visual features 8, in object-selective high-level visual cortex for complex visual objects 2,10. 63 

and in alpha-band activity in electroencephalography (EEG) 4, suggesting the depictive nature of 64 

visual imagery; second, neural processing during imagery follows a reverse cortical hierarchy from 65 

that during perception, which is supported by larger spatial overlap of univariate BOLD activations 66 

between imagery and perception in higher-order frontoparietal than in occipitotemporal cortex 3; an 67 

increased top-down signal flow in imagery compared to perception, from frontal 11,12 or parietal 13 68 

to occipital cortex; and a reversal of object representations from high-level to low-level visual cortex 69 

2,14,15. These findings together indicated that visual imagery involves a distributed cortical network 70 

from low-level visual cortex to higher-level visual and frontoparietal cortex 3,16, and provided 71 

empirical support for the reverse visual hierarchy model, which proposes that, as opposed to 72 

perception which triggers a feedforward sweep of neural activations along the posterior-to-anterior 73 

cortical hierarchy, imagery is initiated by top-down signals generated in higher-level cortex that 74 

trigger a cascade of neural processing in the downstream cortical areas eventually 1,17. 75 

However, imagery experience by definition can be generated in the absence of any external 76 

stimulation, including external cues. In this context, imagery is entirely perception- or cue-77 

independent, and the contents of imagery are self-generated from the internal world. This self-78 

generated imagery can be regarded as a part of self-generated cognitive processes, during which an 79 

internal experience arises from intrinsic changes within an individual, rather than extrinsic changes 80 

cued from the external environment 18. As such, self-generated imagery is much less prone to 81 

external influences, and may better reflect “pure” internally-generated mental processes. Although 82 

there have been studies on self-generated cognitive processes related to imagery, such as recalling 83 
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memories, envisioning the future, and mind wandering 18,19, those studies engaged complex 84 

cognitive processes wherein imagery was only a part of the processes. The neural mechanism of 85 

pure self-generated imagery has remained elusive. Specifically, it remains unclear whether self-86 

generated imagery works fundamentally differently from cue-induced imagery, and whether the 87 

neural principles with classic cue-induced imagery paradigms would hold with self-generated 88 

imagery.  89 

Given that self-generated and cue-induced imagery differ primarily in the origin of imagery 90 

contents, it is plausible that when participants orient internally and determine their imagery contents 91 

volitionally, the reverse cortical hierarchy might be involved differently from that during cue-92 

induced imagery. A previous study has observed increased decoding performance of imagined 93 

objects, as opposed to degraded decoding performance of perceived objects, from low-level to high-94 

level visual cortex 2. The rationale is that if one brain region serves as the neural locus that initiates 95 

imagery contents signals at the top of the reverse hierarchy, this region should demonstrate better 96 

decoding performance of imagined than perceived contents, compared to other downstream brain 97 

regions. With this logic, we would expect to see differential representational signals between self-98 

generated and cue-induced imagery along a reverse hierarchy of imagery, due to the internal origin 99 

of self-generated imagery.     100 

Here we set out to address these questions by comparing the neural processes underlying self-101 

generated imagery with those of cue-induced imagery. To study self-generated imagery in well-102 

controlled settings and to reduce ambiguity in imagery contents, participants’ imagery contents were 103 

constrained to a pool of seven fixed line orientations throughout the experiment. In self-generated 104 

imagery, participants determined their imagery content freely without any associative sensory input, 105 

one at a time from the seven orientations on each trial; In cue-induced imagery, participants 106 

imagined one orientation based on an externally-presented associative cue, and the associations 107 

between orientations and cues were learned prior to the task. We investigated the spatiotemporal 108 

dynamics of these two types of imagery in a series of two experiments, using EEG (in Experiment 109 

1) and fMRI (in Experiment 2), respectively. In both experiments, neural representations of imagery 110 

contents were characterized using inverted encoding models (IEMs), which have been shown to be 111 

a powerful tool in unveiling population-level, feature-selective representations across visual, 112 

parietal, and frontal cortex in the visual working memory literature 20-22. 113 
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To preview, across two experiments, we demonstrated self-generated and cue-induced imagery 114 

shared common neural representations within multiple neural signatures, while preserving 115 

substantial differences in terms of the strength of representations at different levels of cortical 116 

hierarchy: in EEG, enhanced orientation representations were observed in self-generated imagery 117 

compared to cue-induced imagery in sustained potentials in central channels, and the opposite was 118 

true in alpha-band oscillatory activity in posterior channels. In fMRI, enhanced orientation 119 

representations were observed in self-generated imagery in right superior precentral sulcus (sPCS) 120 

of frontal cortex, and the reverse was true in early visual cortex (EVC). In other words, the relative 121 

representational strength of self-generated and cue-induced imagery also followed a frontal-to-122 

occipital reverse hierarchy. Together, these results provided the first empirical evidence, to our 123 

knowledge, that frontal cortex plays a critical role in the generation and maintenance of self-124 

generated imagery contents, supporting and extending the reverse hierarchy theory of imagery. 125 

 126 

Results 127 

EEG Behavior results 128 

In Experiment 1, participants performed an imagery task along with EEG recording (Figure 1A), 129 

during which their imagery contents were either cued by one of seven pairs of learned associations 130 

between kaleidoscope images and line orientations (Cue-induced Imagery), or self-generated from 131 

the same set of seven orientations (Self-generated Imagery). During the learning session, 132 

participants successfully acquired the associations between kaleidoscope images and line 133 

orientations with their mean absolute recall errors being below 10°. During the EEG session, 134 

participants performed the cue-induced imagery task with a mean absolute recall error of 9.47° (SD 135 

= 14.28°). 136 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525474
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 137 
Figure 1. Experimental paradigms and behavioral results. 138 
A. Kaleidoscope images and line orientations used in the current study. Two sets of kaleidoscope 139 
images were used, each consisted of seven distinct images. The specific set of kaleidoscope images 140 
used for each condition (cue-induced or self-generated imagery) was counterbalanced across 141 
participants. The specific association between each kaleidoscope image and each orientation was 142 
also randomized across participants. B. Trial structure of learning and test tasks. On learning trials, 143 
participants passively viewed one kaleidoscope image, followed by its associated line orientation. 144 
On test trials, participants viewed one kaleidoscope image, and were required to report its associated 145 
orientation. Feedback was provided at the end of each trial. C-D. Trial structure of the main task. A 146 
similar trial structure was used in Experiments 1 (C) and 2 (D), and only the timing of events and 147 
the type of responses differed. Each trial began with the presentation of two consecutive 148 
kaleidoscope images followed by a retrocue. In cue-induced imagery, participants actively imagined 149 
the line orientation associated with the cued kaleidoscope image during delay; in self-generated 150 
imagery, participants freely chose one from the seven learned orientations and imagined the self-151 
generated orientation during delay. In Experiment 1, participants reported the imagined orientation, 152 
the precision, and the intensity of their imagery; In Experiment 2, participants reported the imagined 153 
orientation and 1-4 points of vividness rating. Catch trials were interleaved to maintain participants’ 154 
attention on the kaleidoscope images, and participants needed to choose the cued kaleidoscope from 155 
two probe images after retrocue. E-I. Behavioral performance in Experiments 1 and 2. E. Results of 156 
mean recall error in each condition (absolute recall error in cue-induced imagery, and relative recall 157 
error in both conditions) of Experiment 1. Colored bars indicate group mean (error bars denote ±1 158 
SEM), gray lines indicated results from individual participants. Asterisks on top denote significance 159 
of pairwise comparisons between conditions, n.s., not significant, *: p < 0.05, **: p < 0.01, ***: p 160 
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< 0.001. F. Same as E, but with results of intensity of imagery experience in Experiment 1. G. Same 161 
as F, but with results of precision of imagery experience in Experiment 1. H. Same as E, but with 162 
results from Experiment 2. I. Same as E, but with results of vividness rating of Experiment 2. 163 

 164 

Because there were no correct answers on self-generated imagery trials, to compare the 165 

behavioral performance between conditions, we took the least circular distance of responses to the 166 

seven specific orientations as relative recall errors in both conditions. We first showed that relative 167 

and absolute errors correlated with each other in cue-induced imagery (r = 0.54, p = 0.006; Figure 168 

S1A), suggesting relative error may be treated as an approximation of absolute error when the latter 169 

was not available in self-generated imagery. Meanwhile, relative error was significantly smaller 170 

than absolute error in cue-induced imagery, t(23) = 11.25, p < 0.001. When comparing relative error 171 

between conditions, we found that the mean relative error in cue-induced imagery (5.11° ± 3.58°) 172 

was slightly but significantly smaller than that in self-generated imagery (5.58° ± 3.72°), t(23) = 173 

2.49, p = 0.020 (Figure 1E). Furthermore, because participants were required to randomly select one 174 

from seven learned orientations in self-generated imagery, we examined whether participants’ 175 

responses were biased towards specific orientation bins. We binned all responses into seven bins, 176 

each centered at one of the seven orientations (Figure S2A, S2B). We observed a slight bias in 177 

participants’ response distribution in both conditions. To avoid potential influence of these biases 178 

on subsequent neural analyses, we balanced the number of trials within each response bin for all 179 

neural analyses (see Methods for details). Lastly, we confirmed that participants did not respond by 180 

simply entering the initial orientation of the response wheel (Figure S2C, S2D). Together, these 181 

results suggested that participants faithfully followed task instructions and randomly selected one 182 

from seven orientations in self-generated imagery. 183 

Besides recall errors, participants were also measured on the vividness of their imagery, by 184 

reporting both the precision (as characterized by the angle of the response wedge) and the intensity 185 

(as characterized by the darkness of the response wedge) of their imagery experience. Overall, 186 

participants’ subjective experience was more vivid in cue-induced imagery than in self-generated 187 

imagery: participants reported a more intense imagery experience in cue-induced imagery (0.18 ± 188 

0.13) compared to in self-generated imagery (0.21 ± 0.14) condition, t(23) = 3.37, p = 0.003 (Figure 189 

1F). On the contrary, difference in precision between conditions was numerically but not statistically 190 

different (12.96° ± 11.47° in cue-induced imagery; 14.24° ± 12.48° in self-generated imagery; t(23) 191 
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= 1.43, p = 0.17; Figure 1G). These results indicated that self-generated imagery produced an 192 

attenuation of subjective experience in terms of subjective intensity, but not in subjective precision. 193 

Moreover, in self-generated imagery, precision significantly correlated with intensity (r = 0.58, p = 194 

0.003, Figure S1C) and relative errors (r = 0.40, p = 0.050, Figure S1D) across participants, while 195 

the correlation between intensity and relative errors was not significant (r = 0.07, p = 0.747, Figure 196 

S1H). Follow-up stepwise regression analysis confirmed that intensity and relative error explained 197 

distinct variance in precision (ps = 0.002 and 0.032, respectively). In comparison, no correlation 198 

was observed between any two of the behavioral measures in cue-induced imagery (rs< 0.40, ps > 199 

0.05). 200 

 201 

Sustained potentials and alpha-band oscillatory activity showed differential sensitivity to self-202 

generated and cue-induced imagery 203 

Having established that participants could faithfully perform the self-generated imagery task 204 

following task instructions, we next seek to investigate neural signals that could potentially 205 

distinguish self-generated from cue-induced imagery. For this purpose, we chose to focus on 206 

stimulus-specific neural representations of imagery contents (i.e., orientations in the current study). 207 

Specifically, we used participants’ responses on each trial to reconstruct population-level, 208 

orientation-selective representations from EEG signals using multivariate inverted encoding models 209 

(IEMs). This approach has been successfully applied to investigate orientation representations in 210 

various cognitive functions, for both maintenance in working memory 20,21 and retrieval from long-211 

term memory 23. Previous studies have successfully decoded imagery contents from alpha-band 4 as 212 

well as voltage signals 6 in EEG. On the other hand, recent studies on working memory 24,25 indicated 213 

that alpha power and sustained potentials in EEG might reflect signals from distinct cognitive 214 

processes. Given the close link between imagery and working memory 8, here we performed IEM 215 

analyses on both voltage and alpha-band (8 – 12 Hz) oscillatory signals (Figure 2A), to investigate 216 

whether voltage and oscillatory signals played differential roles in self-generated and cue-induced 217 

imagery. 218 

 219 
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 220 
Figure 2. EEG analysis pipeline and results. 221 
A. Pipeline of EEG analyses. Raw EEG data were collected for all electrodes. After preprocessing, 222 
preprocessed voltage data were fed into IEM analyses. Alternatively, preprocessed voltage data 223 
underwent time frequency decomposition, and the obtained power data of different frequency bands 224 
were fed into IEM analyses. B. IEM results from voltage data in all electrodes. The left panel shows 225 
time course of the strength of orientation reconstructions in cue-induced (red) and self-generated 226 
imagery (blue), from -0.2 s prior to stimulus onset until end of delay. Y axis denotes orientation 227 
representational strength, quantified using the slope of orientation reconstructions. Colored lines at 228 
the bottom denote significant time points of the corresponding condition, corrected for multiple 229 
comparisons using a cluster-based permutation method (p < 0.01). The vertical dashed line denotes 230 
onset of delay (at 1.3 s). The horizontal dashed line denotes baseline of reconstructions. Shaded 231 
areas denote error bars (±1 SEM). The right panel shows orientation reconstructions averaged over 232 
the selected time period of significance (0.6 – 1.7 s), in cue-induced (red) and self-generated imagery 233 
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(blue). X axis represents distance from response orientations, with 0 representing the response 234 
orientation of each trial. Y axis represents reconstructed orientation channel responses in arbitrary 235 
units. Colored asterisks denote significance of the corresponding condition, and black asterisk 236 
denotes significance of difference between conditions. n.s., not significant, *: p < 0.05, **: p < 0.01, 237 
***: p < 0.001. C. same as B, but with results from alpha-band power data in all electrodes, and 238 
orientation reconstructions were computed over a time window of 2-3.3 s. D. IEM results from 239 
voltage data in posterior (top), central (middle), and frontal (bottom) electrodes, using the same 240 
analyses and illustrations as in B. E. IEM results from alpha-band power data in posterior (top), 241 
central (middle), and frontal (bottom) electrodes, using the same analyses and illustrations as in C. 242 

 243 

Our results demonstrated that imagined orientations were represented in both voltage and 244 

oscillatory signals during memory delay. Interestingly, the temporal evolution of imagery 245 

representations significantly differed in these two types of signals: in voltage signals, significant 246 

representations of self-generated imagined orientations ramped up around retrocue period (0.6 s 247 

after trial onset) and sustained till the end of delay; whereas significant representations of cue-248 

induced imagined orientations emerged later in time and was much less stable (Figure 2B; all results 249 

reported here and in subsequent analyses were corrected for multiple comparisons using a cluster-250 

based permutation method). We quantified this difference by comparing the representational 251 

strength of self-generated imagery and that of cue-induced imagery during a temporal epoch around 252 

retrocue (0.6 – 1.7 s after trial onset): the representational strength of orientations in self-generated 253 

imagery was significant, t(23) = 3.97, p = 0.0003, and was significantly higher than that in cued-254 

induced imagery, t(23) = 3.15, p = 0.002. Meanwhile, the representational strength of orientations 255 

in cue-induced imagery did not reach significance, t(23) = 0.14, p = 0.447. By contrast, in alpha-256 

band activity, significant and stable representations of both self-generated and cue-induced 257 

imagined orientations ramped up around midway into the delay (2 s after trial onset; Figure 2C). 258 

Moreover, when comparing the representational strength of imagery between conditions, a reversed 259 

pattern was observed during late delay (2 - 3.3s): the representational strength of orientations in 260 

self-generated imagery was significantly weaker than that in cue-induced imagery, t(23) = 3.18, p = 261 

0.002. To validate the opposite results in voltage and oscillatory signals, we sorted participants’ 262 

responses into seven bins and performed multi-class classification on binned orientations using 263 

support vector machines (SVMs). Representational differences between conditions in both alpha-264 

band and voltage signals remained during late delay (2 - 3.3s) with the decoding approach (Figure 265 

S3). This result confirmed that the observed pattern was robust across different analytical 266 
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approaches used to reveal orientation representations. 267 

To examine the spatial configuration of electrodes that might have contributed to the 268 

representational differences between conditions, we restricted the IEM analyses to frontal, central 269 

and posterior EEG electrodes, respectively. We found that, for voltage signals, only central 270 

electrodes showed earlier emergence of self-generated representations, and stronger orientation 271 

representations in self-generated than in cue-induced imagery (t(23) = 2.31, p = 0.015; Figure 2D), 272 

suggesting that self-generated representations might primarily derive from central electrodes 273 

activity. In frontal and posterior electrodes, only self-generated imagery demonstrated weak 274 

orientation representations, and no difference remained in terms of either temporal dynamics or 275 

representational strength between conditions (frontal: t(23) = 1.97, p = 0.030 in self-generated 276 

imagery, t(23) = 0.80, p = 0.217 in difference; posterior: t(23) = 2.12, p = 0.022 in self-generated 277 

imagery, t(23) = 1.13, p = 0.134 in difference). In alpha-band activity, the representational strength 278 

of orientations in cue-induced imagery was higher than that in self-generated imagery in posterior 279 

electrodes (t(23) = 2.96, p = 0.004; Figure 2E). Similar but weaker patterns were observed in central 280 

(t(23) = 2.21, p = 0.018) and frontal electrodes (t(23) = 3.44, p = 0.001). In addition, to examine the 281 

specificity of the effect to alpha-band activity, we repeated the analyses across frequencies ranging 282 

from 3 to 45 Hz in posterior electrodes. We confirmed that among all frequencies, alpha-band 283 

demonstrated the strongest orientation representations, as well as differences between conditions. 284 

In addition, similar results were also observed in part of beta- and theta-band, but the effects were 285 

overall weaker and less stable (Figure S4).  286 

In Experiment 1, we demonstrated that while self-generated and cue-induced imagery shared 287 

representations in both voltage and alpha-band oscillatory signals, the strength of orientation 288 

representations carried in these two types of signals significantly differed between conditions in at 289 

least two aspects: first, orientation representations in self-generated imagery was stronger than those 290 

in cue-induced imagery in voltage signals, and the reverse was true in alpha-band signals. Second, 291 

difference in voltage signals was mainly contributed by central electrodes, while difference in 292 

oscillatory signals was mainly contributed by posterior electrodes. Because the trial structure of 293 

these two conditions were identical, and the only difference was that imagery contents were 294 

determined by different sources (self-generated versus externally-cued), we speculated that the 295 

differences in signal types and spatial configurations might have reflected differences in internally-296 
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generated versus externally-driven imagery: voltage signals from more anterior electrodes might 297 

have reflected contents derived from self-generated imagery, and alpha oscillations from more 298 

posterior electrodes might have carried information related to externally-driven processing. This 299 

anterior versus posterior contrast in the spatial layout of electrodes might reflect a reverse hierarchy 300 

in processing information from self-generated versus externally-cued imagery. However, due to the 301 

limited spatial resolution of EEG signals, we refined our approach in a second experiment during 302 

which we leveraged fMRI to investigate possible neural loci of the reverse hierarchy. 303 

 304 

fMRI Behavior results 305 

In order to identify brain regions that might underlie the representational differences between 306 

cue-induced and self-generated imagery in voltage and alpha-band signals, we had participants 307 

performed the imagery task inside an MRI scanner in Experiment 2. The procedure of Experiment 308 

2 was similar to that of Experiment 1, except that the timing of events and type of responses were 309 

adjusted to better suit for fMRI. Specifically, the delay period was prolonged to compensate for the 310 

sluggishness of BOLD signals, and vividness rating of 1-4 points was used in order to shorten the 311 

response time inside the scanner (Figure 1D). 312 

The behavioral results in Experiment 2 largely replicated those in Experiment 1: the mean 313 

absolute error in cue-induced imagery was 9.30° (SD = 14.15°); the mean relative errors were 5.41° 314 

(SD = 3.64°) in cue-induced imagery and 5.94° (SD = 3.71°) in self-generated imagery. Relative 315 

errors were significantly smaller in cue-induced compared to self-generated imagery, t(19) = 2.78, 316 

p = 0.012 (Figure 1H). In terms of vividness rating, participants reported a more vivid experience 317 

in cue-induced imagery (3.42 ± 0.63) than in self-generated imagery (3.20 ± 0.71), t(19) = 2.98, p 318 

= 0.008 (Figure 1I). Moreover, vividness did not correlate with relative errors in either condition, rs 319 

< 0.24, ps > 0.32. In combination with results from Experiment 1, these results together suggested 320 

that precision and intensity likely reflected two different dimensions of vividness, with intensity 321 

producing qualitatively similar measures as vividness ratings. 322 

 323 

Whole-brain identification of representations of imagined orientations 324 

To localize brain regions showing differences in representations of imagined orientations between 325 

self-generated and cue-induced imagery, we conducted a whole-brain searchlight analysis in 326 
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combination with IEM. Considering a typical hemodynamic lag of 4-6 s, the searchlight was 327 

performed on data of the memory delay period (9 -12 s). Significance of searchlight results were 328 

evaluated using one-tailed t-test (p < 0.05) and multiple comparison correction (FWE-corrected p < 329 

0.01) to obtain the statistical parametric maps. 330 

 The whole-brain searchlight revealed largely overlapping brain regions for both cue-induced and 331 

self-generated imagery: significant clusters with robust neural representations of imagined 332 

orientations were found in a distributed network of cortical regions, including primary visual cortex 333 

(V1), extrastriate cortex, intraparietal sulcus (IPS), middle and superior temporal sulcus (STS), left 334 

superior precentral sulcus (sPCS), left superior medial gyrus and left middle and inferior frontal 335 

gyrus. Besides these common brain regions with shared neural representations, additional clusters 336 

were identified separately for the two conditions: in cue-induced imagery, imagined orientations 337 

were represented in right inferior frontal sulcus (Figure 3A); in self-generated imagery, imagined 338 

orientations were represented in right sPCS and right rostral lateral prefrontal cortex (rlPFC; Figure 339 

3B).  340 

Previous studies have revealed shared representations of perception and imagery in EVC. In the 341 

current study, participants were not exposed to physical line orientations in either condition 342 

throughout the imagery task. To investigate the nature of the imagery representations and to verify 343 

that participants did engage visual imagery in Experiment 2, we had participants performed a 344 

perception task of orientations inside the scanner following the main imagery task. We then trained 345 

an IEM with perception data, and tested the perception model on imagery data in a second 346 

“perception” searchlight analysis. The perception searchlight revealed similar clusters in visual 347 

cortex (Figure S5), confirming a perception-like neural representation of orientations in our imagery 348 

task. Additionally, similar clusters in STS for both conditions, as well as bilateral superior parietal 349 

lobule and sPCS in self-generated imagery, were also identified using this perception searchlight. 350 
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 351 

Figure 3. Whole-brain neural representations of imagery contents in late delay. 352 
A. Searchlight parametric map of the strength of orientation representations in late delay (9-12 s; 6 353 
s after retrocue) in cue-induced imagery. Colors on the cortical surface denote brain regions with 354 
significant orientation representations, corrected using a cluster-based permutation method (p < 355 
0.01). For demonstration purposes, clusters were thresholded at 50 voxels. B. Same as A, but with 356 
results from self-generated imagery. C. Difference map of orientation representations in A and B, 357 
with positive values denoting stronger orientation representations in cue-induced imagery, and 358 
negative values denoting stronger orientation representations in self-generated imagery. Orientation 359 
reconstructions obtained from the two significant clusters were shown, with right sPCS (top panel) 360 
demonstrating stronger orientation representations in self-generated imagery, and right extrastriate 361 
cortex demonstrating stronger orientation representations in cue-induced imagery. X axis represents 362 
distance from response orientations, with 0 representing the response orientation of each trial. Y 363 
axis represents reconstructed orientation channel responses in arbitrary units. Colored asterisks 364 
denote significance of cue-induced (red) and self-generated (blue) imagery, and black asterisk 365 
denotes significance of difference between conditions. n.s., not significant, *: p < 0.05, **: p < 0.01, 366 
***: p < 0.001.  367 

 368 

After identifying brain clusters with robust orientation representations in the two imagery 369 

conditions, we next seek to identify clusters with significant representational differences between 370 

the two. We found significant lateralization of representational differences between conditions, with 371 

right sPCS demonstrating stronger orientation representations in self-generated imagery, and right 372 

extrastriate cortex demonstrating stronger orientation representations in cue-induced imagery 373 

(Figure 3C). To better illustrate the effects, we extracted multi-voxel activation patterns from the 374 

two regions of interest (ROIs) and generated reconstructions of imagined orientations of both 375 

conditions in each ROI. The representational strength of orientations in self-generated imagery was 376 

significantly higher than that in cue-induced imagery in right sPCS (t(19) = 3.13, p = 0.003). Notably, 377 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525474
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

orientation reconstruction was significant in self-generated imagery (t(19) = 3.54, p = 0.001), but 378 

not in cue-induced imagery (t(19) = 0.69, p = 0.250). In addition, the representational strength of 379 

orientations in cue-induced imagery was higher than that in self-generated imagery in right 380 

extrastriate cortex (t(19) = 3.76, p = 0.001), with significant orientation representations in both 381 

conditions (t(19) = 6.32, p < 0.001 in cue-induced imagery, t(19) = 3.79, p = 0.001 in self-generated 382 

imagery). This posterior versus anterior differences in orientation representations resembled our 383 

findings in Experiment 1 which showed differential results in posterior and anterior electrodes. 384 

If enhanced neural representations of orientations in sPCS supported the generation and 385 

maintenance of self-generated imagery, we would anticipate the representational strength of 386 

orientations in this region should be predictive of that in lower-level extrastriate cortex. Indeed, 387 

Pearson correlation analysis between the two revealed significant positive correlation in self-388 

generated imagery (Figure S6B), r = 0.48, p = 0.034, but less so in cue-induced imagery (Figure 389 

S6A), r = 0.4, p = 0.077.  390 

Lastly, as a control, we repeated the searchlight analysis on data from an earlier epoch of the trial 391 

(Figure 4, 6-9 s; 3 s after the retrocue). The representational strength of orientations in cue-induced 392 

imagery was significantly higher than that in self-generated imagery in bilateral V1 (t(19) = 3.76, p 393 

= 0.001) and right extrastriate cortex (t(19) = 4.29, p < 0.001; Figure 4C). These results were 394 

consistent with a previous fMRI study demonstrating successful decoding of retrieved stimulus-395 

driven memories in early visual cortex following the onset of an associative cue 5. On the other hand, 396 

although there was no significant difference in right sPCS, there was a significant cluster in right 397 

sPCS in self-generated (Figure 4B) but not in cue-induced imagery (Figure 4A), suggesting that 398 

involvement of sPCS in self-generated imagery started early in the trial and became progressively 399 

larger into late memory delay. 400 

 401 
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 402 

Figure 4. Whole-brain neural representations of imagery contents in middle delay. 403 
A. Searchlight parametric map of the strength of orientation representations in middle delay (6-9 s; 404 
3 s after retrocue) in cue-induced imagery. Colors on the cortical surface denote brain regions with 405 
significant orientation representations, corrected using a cluster-based permutation method (p < 406 
0.01). For demonstration purposes, clusters were thresholded at 50 voxels. B. Same as A, but with 407 
results from self-generated imagery. C. Difference map of orientation representations in A and B, 408 
with positive values denoting stronger orientation representations in cue-induced imagery. 409 
Orientation reconstructions obtained from the two significant clusters were shown, both clusters 410 
showed stronger orientation representations in cue-induced imagery: in right extrastriate cortex, 411 
only orientation representations in cue-induced imagery were significant: t(19) = 4.05, p < 0.001 in 412 
cue-induced imagery, t(19) = 0.61, p = 0.724 in self-generated imagery. In V1, orientation 413 
representations in both conditions were significant, t(19) = 4.15, p < 0.001 in cue-induced imagery, 414 
t(19) = 1.86, p = 0.039 in self-generated imagery. X axis represents distance from response 415 
orientations, with 0 representing the response orientation of each trial. Y axis represents 416 
reconstructed orientation channel responses in arbitrary units. Colored asterisks denote significance 417 
of cue-induced (red) and self-generated (blue) imagery, and black asterisk denotes significance of 418 
difference between conditions. n.s., not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. 419 

 420 

Discussion 421 

Even in the absence of any external stimulation, people can still self-generate contents in visual 422 

imagery. How would the neural underpinnings of self-generated imagery differ from those of classic 423 

cue-induced imagery? Here, we investigated (1) the temporal dynamics of self-generated imagery 424 

in an EEG experiment and (2) the spatial layouts of neural representations in self-generated imagery 425 

in an fMRI experiment, and contrasted the spatiotemporal dynamics of self-generated imagery with 426 

those of cue-induced imagery. Our results revealed an enhanced involvement of frontal cortex in 427 

generating and maintaining contents in self-generated imagery, as evidenced by enhanced neural 428 
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representations of orientations in sustained potentials in central channels in EEG, and in sPCS of 429 

frontal cortex in fMRI. By contrast, cue-induced imagery was supported by enhanced neural 430 

representations of orientations in alpha-band activity in posterior channels in EEG, and in visual 431 

cortex in fMRI. Taken together, these results jointly support a reverse cortical hierarchy in 432 

representing imagery contents in self-generated versus externally-cued imagery. 433 

Previous work on visual imagery has mostly utilized cue-induced paradigms, namely the to-be-434 

imagined contents were guided by externally presented cues, either from long-term 2-5 or working 435 

memory 6-9. One advantage of using cue-induced imagery paradigms is that contents of imagery can 436 

be better controlled, compared to uncontrollable situations such as mind wandering. However, real-437 

life imagery often requires imagery contents to be generated freely of external controls, yet the 438 

neural mechanisms of self-generated imagery have remained largely unexplored due to limitations 439 

in experimental paradigms. Although there have been several recent attempts to tackle on a related 440 

problem 26,27, it has remained unclear how contents of self-generated imagery were generated and 441 

how self-generated imagery differed from classic cue-induced imagery. To balance the needs for 442 

well-controlled experimental settings as well as for self-generating imagery contents, here we 443 

designed a novel experimental paradigm to investigate the neural mechanism of self-generated 444 

imagery: participants decided freely what to imagine on each trial, with the constraint that imagery 445 

contents were limited to a set of seven pre-learned line orientations. Combining the new behavioral 446 

paradigm with multivariate inverted encoding models allowed us to examine the neural 447 

representations of self-generated imagery contents (orientations in our case), and how these 448 

representations differed from those of cue-induced imagery, beyond univariate activation changes 449 

between conditions. The present study revealed several distinctive features of self-generated 450 

imagery: behaviorally, the vividness of self-generated imagery was significantly reduced compared 451 

to that of cue-induced imagery; neurally, self-generated imagery shared representational codes with 452 

perception as well as with cue-induced imagery in early visual cortex; more interestingly, 453 

converging evidence from EEG and fMRI suggested enhanced orientation representations in frontal 454 

cortex in self-generated compared to cue-induced imagery. We interpreted these representational 455 

differences as reflecting a reverse cortical hierarchy in representing imagery contents that were 456 

generated either via internal drives or external cues. Below we discuss our findings in EEG and 457 

fMRI in more details: 458 
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According to the reverse visual hierarchy model, imagery signals are initiated in the more anterior 459 

part of cortex such as frontal cortex, and the signals trigger a cascade of neural processing along the 460 

anterior-to-posterior cortical hierarchy 1,17. Because the initiation signals in self-generated and cue-461 

induced imagery derived from completely different origins, we hypothesized that anterior cortex 462 

would act differently in self-generated and cue-induced imagery. Our results from both EEG and 463 

fMRI supported this notion: in EEG, we found that imagery contents were decodable in sustained 464 

potentials in central but not in posterior electrodes in both conditions, and more importantly, 465 

orientation representations emerged earlier in time in self-generated imagery, and remained stronger 466 

than those in cue-induced imagery in central electrodes. Due to the poor spatial resolution of EEG 467 

signals, we next turned to fMRI for the neural loci of such representational differences. Consistent 468 

with the EEG findings, we observed that right sPCS of frontal cortex maintained robust orientation 469 

representations of self-generated imagery but not cue-induced imagery, in both middle and late delay 470 

periods. Together, these results indicated anterior cortex, especially right sPCS in the current study, 471 

might serve as the critical neural locus that initiates and maintains contents in self-generated imagery.  472 

The results of sPCS in the current study are broadly in line with previous work implicating a role 473 

of sPCS in visual working memory 20-22. Our results extended this finding to the imagery domain, 474 

and more specifically, we demonstrated that sPCS contributed to self-generated imagery in a way 475 

that was specific to imagined stimuli. Recent debates in the field of working memory have argued 476 

about the specific role of higher-order frontal cortex in working memory maintenance 28,29, partially 477 

due to the fact that stimulus-specific representations observed in frontal cortex during working 478 

memory were substantially more variable compared to low-level visual cortex. Our finding added 479 

new insights into this line of research, by demonstrating that stimulus-specific representations in 480 

frontal cortex were enhanced when the level of “internality” increased as in self-generated imagery. 481 

In other words, our work clearly indicated the origin of stimulus-specific representations in sPCS 482 

was internal rather than external. Moreover, we demonstrated significant functional coupling 483 

between stimulus-specific representations in sPCS and those in EVC in self-generated imagery, in 484 

support of the view that sPCS exerts top-down control over lower-level visual cortex 30,31. 485 

Intriguingly, in another recent work from our lab (unpublished), we have identified a similar reverse 486 

hierarchy between EVC and IPS, for cue-induced imagery as compared to perception. The fact that 487 

the top node of the reverse hierarchy moved more anteriorly from IPS to sPCS, when imagery 488 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.25.525474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525474
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

contents became more “internally-generated”, possibly implied a flexible reverse hierarchy that 489 

depends on the “internality” of the specific cognitive process. Last but not least, it should be noted 490 

that the function of sPCS can be better understood when taking into account the type of imagined 491 

stimuli used in the current study. sPCS shows robust stimulus representations for spatial or space-492 

related stimuli such as locations and orientations 20-22, but less so for non-spatial stimuli such as 493 

colors 21,32. Whether there remains a more domain-general, stimulus-nonspecific brain region in 494 

self-generated imagery requires further future work to elaborate on.  495 

Turning to lower-level visual cortex, imagery and perception have been shown to share neural 496 

codes in early visual cortex 8,33. Relatedly, a recent EEG experiment found imagery and perception 497 

shared neural representations in alpha-band oscillatory activity in posterior electrodes 4. In our EEG 498 

experiment, although we failed to find orientation representations from sustained potentials in 499 

posterior electrodes, we found imagery contents were indeed represented in alpha-band oscillatory 500 

activity in posterior electrodes. Interestingly, orientation representations in alpha-band activity 501 

demonstrated a reversed pattern from those in sustained potentials, and orientation representations 502 

were stronger in cue-induced imagery rather than in self-generated imagery. Our fMRI searchlight 503 

also demonstrated an analogous pattern that first emerged in V1 and moved onto extrastriate cortex 504 

in late delay, and orientation representations of both self-generated and cue-induced imagery shared 505 

common neural codes with perception in visual cortex. Moreover, the emergence of orientation 506 

representations in posterior electrodes was much later in time, compared to those in central 507 

electrodes in sustained potentials. Given that alpha-band oscillations carry feedback information 34-508 

36, it was likely that the orientation representations in alpha-band received feedback modulations 509 

from higher-order areas, possibly frontal cortex. 510 

How should we interpret the reversed patterns of results in alpha-band activity in EEG as well as 511 

in visual cortex in fMRI? We noticed that this neural result echoed the behavioral difference in 512 

vividness, that is, imagery experience was reported to be more vivid in cue-induced imagery than 513 

in self-generated imagery. One explanation for the reduced representational strength in self-514 

generated imagery would be attenuated sensory processing for self-generated imagery, similar as 515 

self-generated sensations that felt less salient than externally generated sensations 37-39, and as other 516 

higher-level self-generated cognitive processes such as motor imagery, inner speech, and 517 

numerosity estimation 40-42. Attenuation in self-generated imagery can be accommodated within the 518 
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internal feedforward model framework 43. This model proposes any action people take is followed 519 

by a corollary discharge, which is used to predict sensory consequences of the action. When the 520 

prediction matches the actual sensory feedback, the sensory consequences are attenuated. In self-521 

generated imagery, the prediction of imagery was always in line with self-generated contents, thus 522 

leading to weaker neural representations in sensory cortex. Consequently, the reduction in subjective 523 

experience of imagery might derive from this representational attenuation.  524 

Alternatively, these results could be accounted for by the sensorimotor recruitment hypothesis, 525 

which proposes that visual cortex is engaged in both perceiving external stimuli and maintaining 526 

mental images 44, with shared representations between perception and working memory 45, between 527 

long-term memory and perception 5, and between long-term memory and working memory 46. In 528 

these studies, significant neural representations of contents in long-term memory in early visual 529 

cortex can be explained by a neural reinstatement of the to-be-retrieved information from long-term 530 

memory, with the hippocampus possibly acting as the source of the modulatory signals 5. Because 531 

both of the imagery tasks in our current study engaged retrieval from long-term memory, it was 532 

possible that the associative cue in cue-induced imagery facilitated memory retrieval and resulted 533 

in a stronger reinstatement of imagined contents. It should be noted that the sensory attenuation and 534 

sensorimotor recruitment accounts are not mutually exclusive, and might simultaneously contribute 535 

to the current results. 536 

    It is noteworthy that in our EEG experiment, distinct result patterns were observed in sustained 537 

potentials and oscillatory activity: first, orientation representations were observed in central 538 

electrodes in sustained potentials, and in posterior electrodes in alpha-band activity; second, the 539 

differences in representational strength between self-generated and cue-induced imagery were 540 

reversed, with self-generated imagery demonstrating better orientation representation in central 541 

electrodes in sustained potentials, and the opposite was true in posterior electrodes in alpha-band 542 

activity in cue-induced imagery. While these results might seem difficult to explain at first glance, 543 

we would like to point out that several recent studies have also reported distinct cognitive processes 544 

carried by sustained potentials and oscillatory activity. For example, one study has found that 545 

sustained potentials encoded contents in working memory, whereas alpha-band activity mainly 546 

encoded spatial attention 24. However, in a different memory paradigm, unattended items in working 547 

memory could be decoded from alpha-band activity but not from sustained potentials 25,47. We think 548 
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these results would be difficult to reconcile, without a systematic examination on the effects of the 549 

two types of EEG activity along with careful experimental designs; yet, we speculated that 550 

narrowing down the focus to alpha-band activity by applying wavelet transformation to sustained 551 

potentials might filter out orientation-irrelevant signals and noise in other frequency bands, thereby 552 

increasing the signal-noise ratio (SNR) of orientation representations in posterior electrodes. By 553 

contrast, imagery-relevant signals in central electrodes might rely primarily on slow-wave cortical 554 

dynamics 48, because the pattern of enhanced self-generated representations was not observed in 555 

any single frequency band of oscillatory activity in central electrodes. It would be interesting for 556 

future studies to examine whether the observed functional differences of frontocentral sustained 557 

potentials and posterior alpha-band activity would generalize to other cognitive processes. 558 

    We have discussed several distinct features of self-generated imagery by comparing it with cue-559 

induced imagery; yet, there remain a few other interesting observations from the current study that 560 

require further work to look into. For instance, we noticed that the majority of differences between 561 

cue-induced and self-generated imagery was cortically right lateralized. Moreover, in terms of the 562 

involvement of frontal cortex, there was a hint that self-generated imagery was right lateralized, and 563 

cue-induced imagery was left lateralized. Whether this differential patterns in cortical lateralization 564 

speaks to difference between different types of imagery remains to be further investigated 49. In 565 

addition, although we removed any potential response bias from the model training stage to avoid 566 

overfitting, it would be interesting to investigate whether the two types of imagery are influenced 567 

by different cognitive factors and thereby resulting in differential response bias patterns, such as the 568 

oblique and attractor biases typically observed in working memory 50,51.  569 

In conclusion, using both EEG and fMRI, we revealed distinctive spatiotemporal neural dynamics 570 

underlying the neural basis of self-generated imagery: compared to cue-induced imagery, self-571 

generated imagery was supported by an enhanced involvement of frontal cortex, as indexed by better 572 

imagery representations in sustained potentials in central channels of EEG and in sPCS of frontal 573 

cortex in fMRI. The enhancement in frontal representations was accompanied by a decrease in 574 

orientation representations in visual cortex, which might reflect the attenuated subjective experience 575 

in vividness at the behavioral level. Research on self-generated imagery may have abundant 576 

potential uses. People who suffer from schizophrenia might either have delusions that have no basis 577 

in reality or generate hallucinations whose contents do not actually exist. Our results provide new 578 
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insights into the neural mechanisms of visual imagery, and may open up a new avenue for both 579 

experimental and clinical research on imagery. 580 

 581 

Methods 582 

Participants 583 

A total of forty-nine volunteers participated in the study, two of whom participated in both 584 

experiments. All participants had normal or corrected-to-normal vision, reported having no 585 

psychiatric or neurological disorders, provided written informed consent, and reported normal visual 586 

imagery ability assessed by the Vividness of Visual Imagery Questionnaire (VVIQ) 52. All 587 

participants were recruited at Shanghai Institutes for Biological Sciences, Chinese Academy of 588 

Sciences, and were monetarily compensated for their participation. The study was approved by the 589 

ethical committee of Center for Excellence in Brain Science and Intelligence Technology, Chinese 590 

Academy of Sciences (CEBSIT-2020028). 591 

Twenty-eight volunteers participated in Experiment 1 (EEG experiment). Four participants were 592 

excluded: two participants had insufficient data due to technical issues, one participant failed to 593 

follow instructions, and one participant dropped out from the experiment, leaving twenty-four 594 

participants in the final sample for Experiment 1 (13 females, 11 males; mean age = 24.1, SD = 2.3).  595 

Twenty-three volunteers took part in Experiment 2 (fMRI experiment), all were eligible for MRI 596 

scans. Three participants were excluded: two participants had insufficient data due to technical 597 

issues, one participant failed to follow instructions, leaving twenty participants in the final sample 598 

for Experiment 2 (11 females, 9 males; mean age = 23.6, SD = 2.3). We did not estimate sample 599 

sizes for Experiment 1 or 2 a priori, but the sample size used in both experiments were comparable 600 

to those in previous studies with similar approaches. 601 

 602 

Stimuli & Apparatus 603 

Two sets of non-semantic kaleidoscope images were used, each consisted of seven images. All of 604 

them were generated by Python2 codes used in a previous study 53. Each kaleidoscope was created 605 

by overlaying three transformed hexagons. Each hexagon had a unique color and was transformed 606 

by four rounds of side deflection at a random direction. The RGB values of colors were [(220,20,60), 607 

(70,130,180), (255,140,0)] in one set and [(50,205,50), (139,0,139), (205,155,29)] in the other set. 608 
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In Experiment 1, stimuli were presented with MATLAB (R2018b, The MathWorks) and 609 

Psychtoolbox 3 extensions 54,55. They were displayed on a 48×27 cm HIKVISION LCD screen with 610 

a 60 Hz refresh rate and a 1920 × 1080 resolution. The viewing distance was 62 cm. While 611 

performing the task, participants’ head position was stabilized by a chin rest. Responses were 612 

recorded with a keyboard and a mouse. 613 

In Experiment 2, All stimuli were presented using MATLAB (R2012b, The MathWorks) and 614 

Psychtoolbox 3 extensions on an SINORAD LCD projector (1280 × 1024 resolution; 60 Hz refresh 615 

rate). Participants viewed stimuli through a coil-mounted mirror in the scanner at a viewing distance 616 

of 90.5 cm. Responses were made via two SINORAD two-key button boxes. 617 

 618 

Experimental paradigm and procedure 619 

Overview 620 

The purpose of the current study was to unveil the spatiotemporal neural dynamics of self-621 

generated imagery, by contrasting with those of cue-induced imagery. In both conditions, we 622 

presented kaleidoscope images instead of the actual to-be-imagined stimuli, in order to minimize 623 

the influence of stimulus-driven activity in neural signals. In cue-induced imagery, imagery content 624 

was determined by an external cue. Seven kaleidoscope images were used, each associated with a 625 

specific line orientation. Participants were required to imagine a line with the orientation indicated 626 

by the kaleidoscope image. To further eliminate stimulus-driven activity from the kaleidoscope 627 

images, we adopted a retrocue imagery paradigm. On each trial, participants were presented with 628 

two kaleidoscope images followed by a retrocue. The retrocue indicated the specific kaleidoscope 629 

image with which the associated orientation should be imagined. In self-generated imagery, the 630 

imagery content was determined by participants volitionally. Participants needed to generate their 631 

imagery content on their own by freely choosing one from the seven learned orientations on each 632 

trial. To match the trial time course of the cue-induced imagery, seven different kaleidoscope images 633 

and a retrocue design were also used, but the kaleidoscopes were not associated with orientations. 634 

The experimental paradigm was depicted in Figure 1. The specific set of kaleidoscope images used 635 

for each condition was counterbalanced across participants. The specific association between each 636 

kaleidoscope image and each orientation was also randomized across participants. 637 

Another goal of the current study was to obtain trialwise objective and subjective measures of 638 
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imagery. At the end of each trial, participants were required to report their imagery content 639 

(orientation) and subjective vividness. In Experiment 2, due to time limitations, we used 1-4 point 640 

of vividness rating for assessing subjective vividness as used in previous studies 56. However, the 641 

standard measurement of vividness such as 1-4 point rating conflated lots of different factors of 642 

subjective experience, such as subjective specificity and subjective intensity 57. As such, to uncover 643 

specific subjective experience in different dimensions, in Experiment 1 the vividness was 644 

decomposed into two different dimensions: precision and intensity. Precision represented the 645 

confidence in the precision of orientation report, whereas intensity indicated the subjective strength 646 

of imagery content. 647 

 648 

Behavioral learning session 649 

    Prior to the main experimental session, participants first learned the associations between seven 650 

kaleidoscope images and seven specific orientations (spanning the entire orientation space and were 651 

equally distant: 15°, 40.71°, 66.43°, 92.14°, 117.86°, 143.57°, 169.29°). On each trial, participants 652 

passively viewed one kaleidoscope image followed by its associated line orientation. The 653 

kaleidoscope image was presented for 0.9 s and then the line was shown for 0.5 s, with an inter-654 

stimulus-interval (ISI) of 0.2 s in between, followed by an inter-trial-interval (ITI) of 1.2 s. Each 655 

learning block consisted of all seven association pairs presented in a randomized order. At the end 656 

of each block, participants could decide whether to perform a test on their learned associations or to 657 

continue with learning. Each trial started with a fixation period of 0.5 s, and then a kaleidoscope 658 

image was presented for 0.4 s. After a 2-s delay, participants were required to report the 659 

corresponding orientation on an orientation wheel as precisely as possible in 2.5 s. A feedback 660 

message would be presented for 0.3 s, indicating whether the response was accurate (error < 5°) or 661 

inaccurate (error >= 5°). After an interval of 0.2 s, the line with the correct orientation would be 662 

shown for 0.5 s to consolidate memory. ITI varied in 0.8-1.3 s. The test phase consisted of 28 trials. 663 

The radius of the line in both learning and testing phases varied between 3.2-4.8° on a trial-by-trial 664 

basis. Participants underwent the aforementioned procedure iteratively until the mean absolute error 665 

during test fell below 10°. 666 

 667 

Experiment 1 668 
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In Experiment 1 (the EEG experiment), each trial started with the successive presentation of two 669 

kaleidoscope images at the center of the screen (3.65°×3.65° in size), each for 0.35 s with an ISI of 670 

0.2 s. After 0.2 s, a retrocue followed for 0.2 s indicating which of the two stimuli should be used 671 

for imagery. If images had no associations (self-generated imagery), participants needed to freely 672 

choose one from seven learned orientations and imagine a line with the chosen orientation at the 673 

center of the screen; if images were associated with orientations (cue-induced imagery), participants 674 

needed to imagine the line at the orientation associated with the cued kaleidoscope image. After a 675 

delay period of 2 s, during which participants needed to keep actively imagining the orientation, 676 

participants were required to report the orientation, precision and intensity of their imagined line on 677 

an orientation wheel in 5.5 s. The orientation wheel consisted of a circle with a radius of 5°, a needle 678 

crossing the fixation point with the same radius, and a bowtie-shaped wedge centered on the needle. 679 

The orientation of the needle represented the orientation of the imagined line, which was adjusted 680 

by changing the position of the mouse cursor. The angle of wedge represented precision, which was 681 

adjusted by changing the distance of cursor to the fixation. The color of the wedge indicated intensity, 682 

which was adjusted by two buttons (increase or decrease) on a keyboard. The initial values of 683 

orientation, angle and color were randomly chosen and participants could move the cursor and press 684 

keyboard to report three variates simultaneously. Only when both operations of mouse and keyboard 685 

were finished would the trial end. ITI varied in 0.8-1.3 s. The cued kaleidoscope, cued order (first 686 

versus second), and condition were fully counterbalanced across blocks. 687 

In each block, there were three catch trials to keep participants’ attention on kaleidoscope images 688 

before delay. The catch trial had the same time course as the main task trial, except that it required 689 

participants to choose the cued kaleidoscope from two probe images after retrocue in 3 s. catch trial 690 

ITIs were fixed at 1.05 s. At the end of each block, participants received feedback on main task 691 

performance and catch trial performance. Taking account of catch trials, there were 45 trials per 692 

block. All participants needed to complete 20 blocks in Experiment 1. In total, participants 693 

performed 420 trials per condition. Seven participants performed the task without catch trials. 694 

 695 

Experiment 2 696 

Imagery task 697 

The procedure of Experiment 2 was similar to that of Experiment 1, except that the timing of 698 
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events and responses were adjusted for fMRI. Participants were shown two kaleidoscope images 699 

(3.26°×3.26° in size) successively, each in a 0.8-s stimulus window with a 0.4-s ISI. Then a retrocue 700 

was presented for 0.6 s. During the delay period, participants imagined a line for 9 s. During the 701 

response period, participants needed to rotate the needle of orientation wheel (radius = 3.7°) to 702 

match the orientation of imagined line within 3.75 s and then rated their experienced vividness on a 703 

scale from 1 to 4 points in 1.25 s, where 1 represented lowest vividness and 4 represented highest 704 

vividness. The ITI varied in 2.5 s, 4 s, 5.5 s and 7 s. Task performance and the number of missing 705 

vividness reports were provided at the end of each block as feedback. There were 16 main task trials 706 

and one catch trial per block. The response time for catch trials was 3 s, and catch trial ITIs were 707 

fixed at 4.5 s. Each participant completed 14 blocks in total, resulting in 112 trials per condition. 708 

Three participants performed the task without catch trials. 709 

Perception task 710 

Because no physical orientations were present throughout the imagery task, in order to obtain 711 

participants’ neural responses to ground-truth, sensory orientations, participants completed three 712 

additional blocks of perception task following the imagery task. On each trial, an oriented line whose 713 

orientation was randomly chosen from seven specific orientations flickered at the center of the 714 

screen for 4.5 s at a frequency of about 1.8 Hz. The radius of the line randomly varied between 3.2-715 

4.8° on a trial-by-trial basis. The ITI varied in 3 s, 4.5 s and 6 s. Participants were instructed to fixate 716 

at the white fixation point and press a corresponding button whenever the fixation point turned green. 717 

Each perception block consisted of 30 trials, and participants completed 90 trials in total. 718 

 719 

EEG recording and preprocessing 720 

EEG data were acquired using a Brain Products ActiCHamp recording system and BrainVision 721 

Recorder (Brain Products GmbH, Gilching, Germany). Scalp voltage was obtained from a broad set 722 

of 59 electrodes at 1000 Hz (FCz as reference). Vertical and horizontal EOG were recorded from 2 723 

electrodes located ~2 cm above and below the right eye, and from 2 electrodes ~1.5 cm lateral to 724 

the external canthi, respectively. Electrode impedance was kept below 30 kΩ. 725 

Preprocessing analyses were performed in MATLAB (R2021a, The MathWorks) using EEGLAB 726 

Toolbox 58. The raw EEG signals were resampled at 250 Hz. Then the data were band-pass filtered 727 

between 0.01 and 45 Hz. Epochs were segmented from -0.5 s to +3.6 s relative to the onset of the 728 
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first stimulus. The signals were baseline corrected from -0.2 s to 0 s. The epoched data were visually 729 

inspected and those containing large muscle, cardiac and respiratory artifacts (except for eye blinks) 730 

or extreme voltage offsets were manually removed. Independent component analysis (ICA) was 731 

then performed using EEGLAB’s binica algorithm for each subject to identify and remove 732 

components that were associated with eye blinks 59 and eye movements 60. Data after ICA were 733 

treated as the preprocessed voltage data. To estimate oscillatory power across time and frequencies, 734 

the voltage data from each channel and trial were convolved with a family of complex Morlet 735 

wavelets spanning 3–45 Hz in 1 Hz steps with wavelet cycles increasing linearly between 3 and 10 736 

cycles as a function of frequency. The power was calculated as the percent change of squared 737 

absolute value in the resulting complex time series relative to the baseline between −0.2 s and 0 s. 738 

 739 

fMRI acquisition and fMRI data preprocessing 740 

MRI data were recorded using a Siemens Tim Trio 3.0 T scanner (Erlangen, Germany) with a 741 

standard 32-channel phased-array head coil at the Center for Excellence in Brain Science and 742 

Intelligence Technology, Chinese Academy of Sciences. Functional images were acquired with a 743 

gradient echo echoplanar pulse sequence with a multiband acceleration factor of 2 (TR/TE = 744 

1500/30 ms; flip angle = 60°; matrix = 74 × 74; 46 slices; voxel size = 3 mm isotropic). T1-weighted 745 

anatomic images were collected using the Magnetization Prepared Rapid Acquisition Gradient Echo 746 

(MPRAGE) pulse sequence (TR/TE = 2300/2.98 ms; flip angle = 9°; matrix = 256 × 256; 192 slices; 747 

voxel size = 1 mm isotropic). 748 

Preprocessing of MRI data was performed using AFNI 61. The first five volumes of each 749 

functional run were removed. The EPI data were then registered to the last volume of each scan 750 

session and then to the T1 volume of the same session. Six nuisance regressors were included in 751 

GLMs to account for head motion artifacts in six different directions. The data were then motion 752 

corrected, detrended (linear, quadratic, cubic), and z-score normalized within each run. 753 

 754 

Quantification and statistical analyses 755 

Behavioral data analyses 756 

In both Experiments 1 and 2, the behavioral performance of imagery could be quantified by errors 757 

of the responses relative to the ground-truth orientations. In cue-induced imagery, error was 758 
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calculated as the circular distance between the cued and response orientations, which we referred as 759 

the absolute error. In self-generated imagery, because there were no sample orientations in self-760 

generated imagery, errors in this condition were quantified by calculating the circular distance of 761 

response orientations to all the seven learned orientations, and choosing the smallest error among 762 

all as the relative error. As a comparison, relative errors were also computed for cue-induced imagery. 763 

For vividness measurements, in Experiment 1, precision was quantified by the angle of response 764 

wedge (ranging from 2° to 180°), of which the smaller angle represented smaller uncertainty of the 765 

orientation of imagined line. Intensity was quantified by the grayscale value of response wedge 766 

(ranging from 0 to 0.5; 0 = black, 0.5 = background color). Smaller values represented a more 767 

intensive imagery experience. Thus, the smaller the values of precision and intensity, the more vivid 768 

the subjective experience. In Experiment 2, the vividness rating score represented the level of 769 

vividness, the larger the vividness score, the more vivid the subjective experience. 770 

For each participant, means of error, precision, intensity or vividness rating in each condition 771 

were calculated. We conducted two-tailed paired t tests to test the significance of the mean difference 772 

between conditions. Pearson correlations were performed between precision, intensity and error to 773 

assess their potential correlational relationships. 774 

We took several approaches to assess whether there existed any systematic biases in participants’ 775 

responses. First, we examined the uniformity of response distributions in two conditions. All 776 

responses were binned into seven bins, with each of the seven learned orientations as bin centers. 777 

Differences in distributions were statistically assessed using 𝞆2	tests. Second, we examined whether 778 

the initial orientation had a systematic influence on response, by calculating the circular distance 779 

between the initial orientation and final response orientation. Differences between bins were 780 

statistically assessed using two-tailed paired t tests. 781 

 782 

Inverted encoding model (IEM) 783 

Overview 784 

All IEM analyses were performed in MATLAB using custom codes. The inverted encoding model 785 

assumed that the signals in each unit (e.g., voltage or power in each electrode in EEG, or BOLD 786 

signal in each voxel in fMRI) reflected the weighted sum of a small number of hypothesized feature 787 

tuning channels (i.e., neuronal populations), each tuned for a different feature (i.e., orientation in 788 
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the current study). In our experiments, the number of hypothesized orientation tuning channels was 789 

set to five (36° apart, equally spaced). We modeled the response profile of each channel to a specific 790 

orientation θ as a half sinusoid raised to the 8th power (FWHM = 0.82 rad): 791 

𝑅 = cos	(𝜃 − 𝑐)! 792 

where c was the center of the channel. Since there were no correct targets in self-generated 793 

imagery, we took response orientations (round to the nearest integer) in both conditions as θ to 794 

obtain the idealized responses from basis functions, which meant the θ was possible in the 1-180° 795 

orientation space. 796 

The IEM analysis proceeded in two stages, encoding (training) and decoding (test). We 797 

partitioned our data into independent sets of training data and test data. In the encoding stage, the 798 

hypothesized channel responses (C1, k × n, k: the number of channels; n: the number of trials) were 799 

projected to actual measured signals in training dataset (B1, m × n, m: the number of units) according 800 

to an unknown weight matrix (W, m × k), which could be described a general linear model of the 801 

following form: 802 

𝐵" = 𝑊𝐶" 803 

The weight matrix (Ŵ) was obtained via least-squares estimation as follows: 804 

𝑊1 = 𝐵"𝐶"#(𝐶"𝐶"#)$" 805 

In decoding stage, the model was inverted to transform the independent test dataset (B2, m × t, t: 806 

the number of trials) into estimated channel responses (C2, k × t) by the obtained weight matrix: 807 

𝐶2% = (𝑊1 #𝑊1 )$"𝑊1 #𝐵% 808 

Following the IEM analysis in previous studies 27,62, the channel centers were not fixed but shifted 809 

from 0°, 36°, 72°, 108°, 144° to 35°, 71°, 107°, 143°, 179° in 1° step for 36 iterations. We conducted 810 

the above analysis in each iteration, such that all 180 orientations from 1° to 180° served as channel 811 

centers. All of estimated channel responses from all iterations were combined to create responses of 812 

180 orientation channels. The result, for any given orientation, can be considered a reconstruction 813 

of the model’s estimate of the neural representation of that orientation. This procedure ensured that 814 

our reconstructions were not biased by any specific channel centers. The reconstruction of channel 815 

responses was shifted to a common center (90° on x axis). 816 

To characterize the strength of reconstructions, we folded the channel responses on both sides of 817 

the common center, averaged them, fitted with linear regression, and then took the resulting slope 818 
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of linear regression as an index of the strength of reconstructions. 819 

 820 

IEM procedure with all and balanced data 821 

To reveal orientation-specific neural representations of imagery in both conditions, we used 822 

participants’ response on each trial as the target label, and used data combined from both conditions 823 

for training and testing IEMs. This mixed IEM was supposed to provide an unbiased way of making 824 

comparisons between conditions 63. To achieve this, we used a k-fold cross-validation procedure. 825 

For each participant, all data from both conditions were divided into four folds. In each iteration, all 826 

but one folds served as the training data, and the left-out fold served as the testing data. The 827 

procedure iterated until all folds had served as training and testing data, and results from all 828 

iterations were averaged, for each condition separately. 829 

However, one potential drawback with the approach was that participants’ responses were often 830 

unbalanced across different response bins. This imbalance in trial number between response bins 831 

might result in overfitting of IEM, such that orientation reconstructions from IEM might be 832 

overestimated. To avoid this, we balanced trials in a way that the trial number in each of the seven 833 

bins would be made equal. To be specific, we randomly drew a certain number of trials from each 834 

bin, and the number of trials drawn was determined by the bin with the smallest number of trials 835 

among the seven bins. This initial step would result in matched numbers of trials across bins, but 836 

not necessarily between conditions. To further balance trials between conditions, we rebalanced the 837 

trials by randomly removing one trial from a certain bin of the condition with more trials; and in the 838 

meantime, including one trial from the same bin of the condition with fewer trials, this step was 839 

iterated until the difference of trial numbers between conditions was below two. To make full use 840 

of all data, the balancing and cross-validation procedures were repeated for 50 times, and the results 841 

were averaged across repetitions. 842 

 843 

IEM analyses with EEG 844 

In EEG experiment, 59 electrodes were divided into 3 subsets of electrodes (frontal electrodes: 845 

FP1, FP2, AFz3, AFz4, AFz7, AFz8, Fz1, Fz2, Fz3, Fz4, Fz5, Fz6, Fz7, Fz8; central electrodes: FC1, 846 

FC2, FC3, FC4, FC5, FC6, FT7, FT8, Cz1, Cz2, Cz3, Cz4, Cz5, Cz6, T7, T8, CPz1, CPz2, CPz3, 847 

CPz4, CPz5, CPz6, TP7, TP8; posterior electrodes: Pz1, Pz2, Pz3, Pz4, Pz5, Pz6, Pz7, Pz8, POz3, 848 
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POz4, POz7, POz8, Oz1, Oz2). We applied IEM to voltage signals from all electrodes, frontal 849 

electrodes, central electrodes and posterior electrodes separately. After time-frequency 850 

decomposition of voltage data, the obtained power signals were averaged within alpha-band (8-12 851 

Hz). Similarly, we performed IEM analyses on alpha-band power data, separately in global 852 

electrodes and local subsets. For both voltage and power data, after balancing trials, IEM analysis 853 

was performed at each time point with a sliding window of 3 time points to obtain time-resolved 854 

orientation reconstructions. For IEM analyses on all frequencies, a similar procedure was conducted 855 

on power data of every single frequency ranging from 3 to 45 Hz. 856 

 857 

IEM analyses with fMRI (Searchlight of IEM) 858 

In Experiment 2, the IEM was combined with a roving ‘‘searchlight’’ procedure 20,64, which 859 

allowed us to reconstruct and quantify representations of imagined orientations across the entire 860 

brain. For each participant, their data in the original space were warped to the MNI template 65. We 861 

used the “sphere_searchlight” class in PyMVPA toolbox 66 to perform the searchlight analysis. We 862 

defined a spherical searchlight (radius = 9 mm) centered on each voxel of the whole-brain gray 863 

matter mask. Considering a typical hemodynamic response lag of 4-6 s, we extracted and averaged 864 

the BOLD responses in each voxel over a time period spanning 6-9 s (middle delay) and another 865 

spanning 9-12 s (late delay) following the onset of stimulus, and performed IEM searchlight within 866 

each time period. IEM analysis was performed using the data with all trials and balanced trials to 867 

calculated the slope maps separately. Results from whole-brain searchlight were displayed on the 868 

cortical surface reconstructed with FreeSurfer 67,68 and visualized with SUMA in AFNI. 869 

Because no physical lines were present during the imagery task, to compare the neural 870 

representation of imagery with that of perception, we performed a cross-task generalization IEM 871 

analysis, by training the IEM on perception data, and testing the IEM on imagery data. We extracted 872 

and averaged the responses in each voxel over a time period spanning 4.5-7.5 s of each trial of the 873 

perception task to train the IEM searchlight, and tested the model on the late delay data (9-12 s) of 874 

the imagery task. We did not balance trials for this analysis because samples in our perception task 875 

were already balanced. 876 

Note that the total trial number in each condition was smaller in Experiment 2 than in Experiment 877 

1 due to prolonged trial length in fMRI studies. To avoid false positive results from an insufficient 878 
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number of trials, we conducted the searchlight with trial balancing and without trial balancing (i.e., 879 

using all trials), and took the intersection of these two statistical parametric maps as the final result 880 

of the searchlight analyses in Experiment 2. 881 

 882 

Cluster-based multiple comparisons correction 883 

We used cluster-based permutation to correct for multiple comparisons across time points (in 884 

EEG) and voxels (in fMRI). The overarching principle for cluster-based permutation is depicted as 885 

below: all to-be-corrected test statistics were clustered in connected sets on the basis of temporal, 886 

spatial, or spatiotemporal adjacency to form contiguous clusters. Cluster-level test statistics were 887 

calculated by taking the sum of the test statistics within every cluster. The test statistics were then 888 

permuted, and the cluster-level test statistic of the largest cluster was taken from the permuted data. 889 

This procedure was repeated 10000 times to create a null distribution of test statistics. The 890 

proportion of each cluster-level test statistic in true data being smaller than the cluster-level null 891 

distribution was calculated as the p-value of the corresponding cluster. 892 

For analyses on voltage and alpha-band data of EEG, the IEM slopes from 24 participants in each 893 

condition and their paired difference between conditions were compared against zero using paired 894 

or one-sample t-test to obtain the one-tailed significance (α = 0.05) at each time point. To obtain the 895 

null distribution for multiple comparisons correction, the slopes at each time point were randomly 896 

multiplied by either 1 or -1 independently, and then performed one-tailed t-test across participants. 897 

This procedure was repeated 10000 times, creating a null distribution of the t statistics. The 898 

contiguous t statistics clusters of true data and the null distribution underwent multiple comparisons 899 

correction to threshold (α = 0.01) significant time points. For analyses on all frequency data of EEG, 900 

a similar procedure was conducted on 2D time-frequency clusters. 901 

For fMRI data, t-tests for the whole-brain slope map in each condition and their difference against 902 

zero were performed using the AFNI function “3dttest++”. To reduce the computational load in 903 

permutation, we performed a two-stage procedure 69. The randomized sign-flip procedure described 904 

above was first repeated 100 times for each participant. In a second step, the randomized samples 905 

were bootstrapped from each participant and then performed one-tailed t-test (α = 0.05) across 906 

participants to obtain a map of t statistics. The second step was repeated 10000 times to create the 907 

null distribution. The contiguous t statistics clusters of true slope maps and the null distribution 908 
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underwent multiple comparisons correction and the obtained p-values were further corrected using 909 

Family-wise Error Rate (FWE) method using a threshold of α = 0.01. 910 

 911 

Classification using Support vector machine 912 

In order to examine whether our main results would hold with a different approach for revealing 913 

orientation representations, we decoded imagery content using multi-class classification with a 914 

linear support vector machine (SVM) approach. We first labeled the responses according to which 915 

of the seven bins the responses belonged to. Then the trial number in each bin were balanced using 916 

the method mentioned above and a k-fold (k = 4) cross-validation procedure was applied to the data 917 

with balanced trials. Like the IEM analysis with balanced trials, the SVM decoding was also 918 

repeated 50 times and the results from each iteration were averaged. We used the “fitcecoc()” 919 

function with standard linear SVM classifier as the learner to decode the EEG data. 920 
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Supplementary Figures 922 

 923 

Figure S1. Correlations between behavioral measurements across participants.  924 
A. Relative errors positively correlated with absolute errors in cue-induced imagery in Experiment 925 
1. Each dot represented individual participant. Relative errors (x axis) and absolute errors (y axis) 926 
were averaged across trials for each participant. Black lines represented the best linear fit. B. Similar 927 
as A, but with correlations between precision and absolute errors in Experiment 1. C. Similar as A, 928 
but with correlations between intensity and absolute errors in Experiment 1. D. Same as A, but with 929 
results from Experiment 2. E. Similar as A, but with correlations between vividness and absolute 930 
errors in Experiment 2. F. Similar as A, but with correlations between precision and relative errors 931 
in Experiment 1. G. Similar as A, but with correlations between precision and intensity in 932 
Experiment 1. H. Similar as A, but with correlations between relative errors and intensity in 933 
Experiment 1. I. Similar as A, but with correlations between vividness and relative errors in 934 
Experiment 2. Red and blue dots represent cue-induced and self-generated imagery, respectively. 935 
Asterisks denote significance of correlations, n.s., not significant, *: p < 0.05, **: p < 0.01, ***: p 936 
< 0.001.  937 
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 939 

Figure S2. Evaluation of response biases.  940 
A. Histograms of response distributions, pooled from all participants in Experiment 1. x axis 941 
represents orientation bins, centered on the seven learned orientations, y axis represents frequency. 942 
Red and blue bars represent cue-induced and self-generated imagery, respectively. The uniformity 943 
of distribution was assessed using 𝞆2 tests: cue-induced imagery: 𝞆2(23) = 86.72, p < 0.001; self-944 
generated imagery: 𝞆2(23) =1 31.51, p < 0.001. B. Same as a, but with results from Experiment 2: 945 
cue-induced imagery: 𝞆2(19) = 5.32, p = 0.503; self-generated imagery: 𝞆2(19) = 26.26, p < 0.001. 946 
C. Mean angular differences between initial probe orientations and final responses, in cue-induced 947 
(red) and self-generated (blue) imagery in Experiment 1. Colored circles indicate group mean (error 948 
bars denote ±1 SEM), gray lines indicated results from individual participants. Differences were 949 
averaged across trials for each participant and evaluated using one-sample t-test against 0: cue-950 
induced imagery: t(23) = 0.75, p = 0.463; self-generated imagery: t(23) = 0.66, p = 0.518; D. Same 951 
as C, but with results from Experiment 2: cue-induced imagery: t(19) = 1.07, p = 0.297; self-952 
generated imagery: t(19)  =1.04, p = 0.31. 953 
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 955 

Figure S3. SVM decoding results in voltage and alpha-band activity from all electrodes. 956 
A. The left panel shows time course of decoding accuracy in cue-induced (red) and self-generated 957 
imagery (blue), from – 0.2 s prior to stimulus onset until end of delay. Y axis denotes decoding 958 
accuracy. Colored lines at the bottom denote significant time points of the corresponding condition, 959 
corrected for multiple comparisons using a cluster-based permutation method (p < 0.01). The 960 
vertical dashed line denotes onset of delay (at 1.3 s). The horizontal dashed line denotes chance 961 
level of 0.143 (i.e., 1/7). Shaded areas denote error bars (±1 SEM). The right panel shows decoding 962 
accuracies averaged over selected time periods of significance (2-3.3 s). Colored circles indicate 963 
group mean, error bars denote ±1 SEM, and gray lines indicated results from individual participants 964 
in cue-induced and self-generated imagery. Y axis represents decoding accuracy. Colored asterisks 965 
denote significance of the corresponding condition, and black asterisk denotes significance of 966 
difference between conditions. n.s., not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. B. 967 
same as A, but with results from alpha-band data in all electrodes.  968 
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 970 

Figure S4. IEM results in frequencies from 3 to 45 Hz in EEG. 971 
Orientation representational strength, as reconstructed from power data in frequencies from 3 to 45 972 
Hz in posterior electrodes of EEG, in cue-induced imagery (top), self-generated imagery (middle), 973 
and in difference between the two (bottom). X axis denotes time, and y axis denotes frequencies. 974 
Circled areas denote significant clusters determined using a cluster-based permutation method. 975 
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 977 
Figure S5. Whole-brain neural representations of imagery contents in late delay with a perception 978 
IEM. 979 
A. Searchlight parametric map of the strength of orientation representations in late delay (9-12 s; 6 980 
s after retrocue) in cue-induced imagery, using an IEM trained from perception data. Colors on the 981 
cortical surface denote brain regions with significant orientation representations, corrected using a 982 
cluster-based permutation method (p < 0.01). For demonstration purposes, clusters were thresholded 983 
at 50 voxels. B. Same as A, but with results from self-generated imagery.  984 
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 986 

Figure S6. Correlations between the representational strength in right extrastriate cortex and sPCS. 987 
A. Pearson correlation between the representational strength in right extrastriate cortex and that in 988 
right sPCS in cue-induced imagery. B. Pearson correlation between the representational strength in 989 
right extrastriate cortex and that in right sPCS in self-generated imagery. Each dot represented 990 
individual participant. Representational strength in right extrastriate cortex (x axis) and 991 
representational strength in right sPCS (y axis) were averaged across trials for each participant. 992 
Black lines represented the best linear fit.  993 
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