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 384 

Figure 5: Morphology of encapsulated cells in patterned materials at day 1 and day 14. Phalloidin 385 
(green)/ DAPI (cyan) staining overview images at (A) day 1 and (B) day 14, with indicated pattern 386 
areas, 2x2 tile image, 10x magnification, 250 µm z-stack. Zoom-in on the individual regions of the 387 
pattern at (C) day 1 and (D) day 14, 25x magnification, 250 µm z-stack. Single cell images z-stack at 388 
(E) day 1 and (F) day 14, 40x magnification. Heat map representation of (G, I) the mean projected 389 
cell area in µm2 and (H, J) circularity (-) in the overview images, at day 1 (G, H) and day 14 (I, J). 390 
Box plots quantifying (K) projected cell area, (L) circularity, (M) filopodia number (-) and (N) 391 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525504doi: bioRxiv preprint 



 
15 

filopodia length in µm, at day 1 and day 14, showing the median and 1st and 3rd quartile of n=6 fields 392 
of view containing multiple single cells (n>50, for K and L) or n=10 cells (for M and N) in patterned 393 
materials. Statistical significance with Wilcoxon Signed Rank test for differences between groups is 394 
indicated with * and differences between time points with # (*/# = p<0.05, **/## = p<0.01). Scale 395 
bar: (A, B) 500 µm, (C, D) 200 µm, (E, F) 25 µm. 396 

Discussion 397 

The presented 3D hydrogels with stiffness-degradation spatial patterns allow cell encapsulation with 398 
high cell viability and anisotropic cell response. The hydrogel casting procedure offers the possibility 399 
of photopatterning, combining the properties of two single-phase materials in one single, 400 
multicomponent matrix, which allows emerging patterns in cell behavior in 3D. Evaluation of cell 401 
behavior in multicomponent materials is crucial in order to understand how these platforms guide cell 402 
response. In our case, we choose patterns in stiffness-degradation and evaluate anisotropic fibroblast 403 
cell morphology, as an example of the application of an image-based quantification method. 404 

All methods used for mechanical characterization led to consistent and comparable results of 405 
mechanical properties and changes over time caused by degradation. First, the methods show a 406 
decrease over time of the elastic modulus of Stiff-Deg materials compared Stiff-NoDeg materials. 407 
Second, the bulk elastic modulus of the single-phase materials is comparable to the surface elastic 408 
modulus of single-phase materials, and importantly, also consistent with the mechanical properties of 409 
the respective phases of patterned multicomponent materials. 410 

The decrease in the elastic modulus of the degradable material can be attributed to the degradation of 411 
the MMPsens peptide bonds due to the action of the enzymes secreted by the cells. A consequence of 412 
this degradation can be shown in the significant increase of the mesh size over time. There is no 413 
significant change in the mesh size of Soft-NoDeg materials, as the covalent bonds of these 414 
hydrogels are non-degradable. 415 

Our results showed that the projected cell area of 3D encapsulated cells is dependent on the matrix 416 
stiffness. At day 1, the significantly lower elastic modulus of Soft-NoDeg vs. Stiff-Deg results in 417 
significantly higher projected cell area in both single-phase and patterned materials. However, at day 418 
14, when the elastic modulus of Stiff-Deg significantly drops compared to day 1, the projected cell 419 
area significantly increases and cell circularity decreases as degradation promotes cell spreading. 420 
These results are supported by previous results related to 3D fibroblast encapsulation (37) and in 421 
contrast to cell behavior on 2D surfaces with patterns in stiffness (38), as expected.  422 

Matrix remodeling and dynamic environments are crucial to stimulate cell response (39). 423 
Degradation is essential for the formation of protrusions and we observe that Stiff-Deg materials 424 
promote longer and higher filopodia number compared to Soft-NoDeg materials. The control 425 
hydrogels formed with a non-degradable version of the peptide (MMP-scramble), showed that cells 426 
do not form filopodia in non-degradable materials (Supplementary Figure 6). These results are 427 
supported by previous findings on the effect of matrix deformation energy in the actin cytoskeleton 428 
of the cell, which has been proven to have a greater effect compared to the intrinsic matrix stiffness 429 
(40). Such findings highlight the importance of matrix degradability in enabling cell protrusions to 430 
invade into the surrounding environment, as they regulate more advanced cell processes like 431 
migration, motility, communication and differentiation (41).  432 

One important feature of this work is the combination of Stiff-Deg and Soft-NoDeg phases in one 433 
single, multicomponent matrix. Differences in cell response observed in single-phase materials are 434 
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recapitulated in patterned stiffness-degradation materials and, importantly, anisotropic cell behavior 435 
emerges with time as the Stiff-Deg component degrades. This sets the basis for future work looking 436 
at sharper material interfaces, or in contrast, gradients of stiffness-degradability by manipulating the 437 
photomask. Such multicomponent materials open opportunities to investigate anisotropic 3D cell 438 
migration, proliferation or differentiation across a cell-relevant stiffness-degradability range.   439 

To evaluate anisotropic 3D cell response in patterned materials, we have developed a new image-440 
based analysis tool and visual presentation of spatial anisotropies of material and cellular 441 
characteristics using heat maps. Various research groups have evaluated patterned materials as 442 
independent phases, not as a single, multicomponent matrix. The developed image-based method and 443 
the heat map representation of cell number and morphology (projected cell area and circularity) 444 
showed to be a valid tool to characterize and quantify anisotropic 3D cell behavior in patterned 445 
materials, as it consistently represented the anisotropic cell behavior in each phase compared to 446 
corresponding single-phase controls. This image-based analysis could be extended to other image-447 
based cellular read-outs.  448 

Despite the great advantage of our novel image-based analysis tool, there are some limitations. As 449 
input for this analysis tool, images covering the entire gel or stitched multi-tiles images are required. 450 
However, for certain features such as filopodia formation, high magnification images are necessary. 451 
Multi-tiles high magnification imaging covering the entire gel currently requires long acquisition 452 
times, which would lead to dehydration of the hydrogel. 453 

Our research demonstrates a relevant approach to investigate emerging anisotropic 3D cell behavior 454 
in stiffness-degradation patterned materials. The developed image-based analysis method provides 455 
the basis for visualizing and quantifying 3D anisotropic cell behavior with regard to cell number, cell 456 
projected area and circularity. This anisotropic 3D cell response was confirmed with high resolution 457 
quantification of filopodia number and length. Such stiffness-degradation patterned hydrogels 458 
allowing the emergence of 3D anisotropic cell response, together with the image-based analysis 459 
method for visualization and quantification of cellular read-outs, are valuable tools to understand 460 
cell-matrix interactions in multicomponent materials. 461 
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