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Abstract—Label-free cell imaging, where the cell is not ”la-
beled” or modified by fluorescent chemicals, is an important
research area in the field of biology. It avoids altering the cell’s
properties which typically happens in the process of chemical
labeling. However, without the contrast enhancement from the
label, the analysis of label-free imaging is more challenging than
label-based imaging. In addition, it provides few human inter-
pretable features, and thus needs machine learning approaches
to help with the identification and tracking of specific cells. We
are interested in label-free phase contrast imaging to track cells
flowing in a cell sorting device where images are acquired at
500 frames/s. Existing Multiple Object Tracking (MOT) methods
face four major challenges when used for tracking cells in
a microfluidic sorting device: (i) most of the cells have large
displacements between frames without any overlap; (ii) it is
difficult to distinguish between cells as they are visually similar
to each other; (iii) the velocities of cells vary with the location
in the device; (iv) the appearance of cells may change as they
move in and out of the focal plane of the imaging sensor that
observes the isolation process. In this paper, we introduce a
method for tracking cells in a predefined flow in the sorting
device via phase contrast microscopy. Our proposed method is
based on DeepSORT and YOLOv4 and exploits prior knowledge
of a cell’s velocity to assist tracking. We modify the Kalman filter
in DeepSORT to accommodate a non-constant velocity motion
model and integrate a representative velocity field obtained
from fluid dynamics into the Kalman filter. The experimental
results show that our proposed method outperforms several MOT
methods for tracking cells in the sorting device.

Index Terms—Machine learning, Cell tracking, Phase contrast
imaging, Image processing, Single cell isolation, Cell isolation,
Label-Free cell sorting

I. INTRODUCTION

Label-free cell imaging is increasingly gaining interest
in biomedical research, as chemical labeling processes risk
altering the cells’ properties and should be avoided, especially
if the cells are to be used further for clinical applications
[1]. 1 However, label-free imaging is more challenging to
be analyzed than traditional label-based imaging, such as
fluorescent imaging, since the contrast between the cell and
the image background is typically low [2], the signal-to-noise
ratio is often low as well [3], and specific molecular markers

1The use of the terms ”label” or ”labeling” in this paper indicates the
process of adding labels such as dyes, dye functionalized probes (e.g., dye
functionalized antibody), or particles to the cells, which binds to the cells
and alters the cells’ optical properties and enhances their contrast during
imaging. It is not to be confused with the ground truthing the images, which
in the machine learning community is also sometimes referred to as ”label”
or ”labeling”.

Fig. 1: A phase contrast microscopy image of the cell sorting
device or chip. The flow direction is shown in red arrows.
A stream of cells enters the chip from the bottom inlet, the
dielectrophoretic force guides the cells to two different outlets.

for tracking are generally unavailable. Furthermore, label-
free imaging provides few human-interpretable image features
(HIFs) and thus can benefit from machine learning approaches
to help with identification and tracking of specific cell types.
HIFs include cell sizes and shapes, nucleus sizes and shapes,
textures, and morphologies [4].

In this paper, we focus on phase contrast imaging of mam-
malian cells, which is a common type of label-free imaging
technique [5]. We use phase contrast microscopy to track
cells flowing in a microfluidic sorting device. (referred to as
the “chip” in this paper). Microfluidics is increasingly used
for high throughput cell manipulations, including for clinical
applications [6], and thus label-free tracking of cells in a
flow is rapidly gaining importance. Figure 1 shows a frame
taken of the microfluidic cell sorting device or the ”chip”.
The chip operates by a hydrodynamically focusing stream
of cells that enters the chip hardware from the bottom inlet.
Dielectrophoretic force guides the cells to two different outlets
based on the polarization of the cells in an alternating current
electric field. Since the cells are in a suspension state (i.e.,
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suspended in a fluid as opposed to attached to a surface), they
exhibit even fewer HIFs relative to their adhered state (they
are adhered to a surface) and are thus difficult to track.

We introduce a method for tracking cells in a known flow
field in the sorting device via phase contrast microscopy. We
apply this method to track cells in our chip for the isolation
of rare cells based on their electric properties. One major
application of this system is the isolation of circulating tumor
cells for therapy evaluation, where isolated cells are subject
to therapy candidates and the cells’ response is tracked. We
desire to use label-free sorting and cell tracking of these cells
to avoid the risk of the chemical labeling or staining processes
altering the cells’ response to therapy.

Furthermore, we require the sorting to be high throughput,
since clinically relevant concentrations of circulating tumor
cells can be as low as in the order of 10 cells in 1010 total
blood cells. Besides the challenges of tracking the cells in
label-free imaging, in our high speed imaging of the chip,
we chose a frame rate based on a tradeoff between the need
to track the cells for a longer time and camera data storage
limitations. This results in a relatively large cell displacement
between each frame (up to 6 to 10 cell diameters). This is
a widely encountered tradeoff when imaging high throughput
microfluidic systems with high speed cameras, which are often
available to many microfluidic and biomedical researchers.
Due to these challenges and constraints, existing multiple
object tracking techniques do not perform well for tracking
cells in the chip.

To address these challenges, we describe a new multiple
object tracking (MOT) technique for label-free imaging as-
sisted by a representative velocity field precomputed from
the flow field in the chip. We present a simple and effective
modification to the Kalman filter [7] to make full use of the
representative velocity field. We first adjust the Kalman filter
state matrix used in DeepSORT [8] to address the non-constant
velocity motion of the cells in the chip. Then we modify the
”measurement” part of the Kalman filter used in DeepSORT
to integrate the representative velocity field into the motion
estimation module.

These two modifications can be used with any MOT task
when objects’ velocities are accessible before or during the
tracking. Benefiting from these two modifications to the
baseline DeepSORT method, improvements are achieved for
both of the two commonly used metrics for MOT tasks,
MOTA (Multiple Object Tracking Accuracy) [9] and IDF1
(Identification F1 Score) [10]. We tested our proposed method
on our challenging cell tracking dataset and the evaluation
results show our method outperforms several existing MOT
methods and achieved 26.4 in MOTA and 34.7 in IDF1. Our
major contributions are summarized as follows:

• We describe a cell tracking technique for tracking multi-
ple cells in the chip.

• We propose modifications to the Kalman filter in Deep-
SORT to integrate velocity information of the tracked
objects, which improves the tracking of multiple cells.

II. RELATED WORK

In this section, we describe the existing methods in general
multiple object tracking, then we introduce some previous
work that focuses on cell tracking.

A. General Multiple Object Tracking

The goal of Multiple Object Tracking (MOT) is to analyze
a video in order to identify and track objects that belong
to one or more categories, such as pedestrians, cars, and
animals without any prior knowledge about the appearance
and the number of targets. The standard approach employed
in MOT is tracking-by-detection [11], where a set of detections
are extracted from the video frames and an association or
correspondence method that assigns the same track identity
number to the bounding boxes that contain the same object.
The association methods rely on motion information or object
appearance features (e.g., shape or edges), or both.

Motion estimation methods model how the object moves
and predicts the position of the object in future frames. The
MOT methods in [12]–[15] only used motion information to
associate a track with a set of objects. Kalman filter [7] is
commonly used for motion estimation in MOT [8], [15]–[17].
With the recent development of neural networks, the recurrent
neural network (RNN) or long short-term memory (LSTM)
network has been used for non-linear motion estimation in
several MOT approaches [12], [18], [19]. However, these
methods usually require a large amount of ground truth data
(more than 5000 tracks) to train the neural network.

The object appearance features are unique visual repre-
sentations of an object to distinguish it from other objects.
Examples of appearance features include shapes, sizes, colors,
and edges. Convolutional Neural Network (CNN) is commonly
used to extract the visual features. MOT methods described in
[8], [20], [21] utilized both motion information and appearance
features for associating tracks with particular objects. The ad-
dition of the appearance features assists the motion estimation
module to deal with the occlusion of objects and to alleviate
the problem of the objects changing their identities, therefore
achieving better tracking results than methods solely using the
motion information.

With the latest progress in the object re-identification,
several methods [22]–[25] only used the object appearance
features for track association. However, these methods require
the appearance features of an object to be similar across the
frames, and have enough differences from other objects.

B. Cell Tracking

Although deep learning methods have dominated the anal-
ysis of the MOT problem for natural images, there are only
a few deep learning approaches for cell tracking [26], [27].
Unlike the general MOT, a very limited number of publicly
available ground truth datasets focus on cell tracking. The ISBI
Cell Tracking Challenge [28] had been the only standardized
benchmark in this area. However, the evaluation methodology
of this challenge is different from the common metrics gener-
ally used in MOT. CTMC Cell Tracking Challenge [29] is the
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Fig. 2: The block diagram of DeepSORT.

first published cell tracking dataset with an online evaluation
server using both evaluation metrics from mainstream MOT
and cell tracking communities. The difference within cell
tracking tasks, such as having distinct motion patterns and
whether containing the divisions of parent cells, are significant.
Unlike the methods designed for the challenges mentioned
above that focus on tracking live-cells’ interaction with their
surrounding environment, tracking cells in the chip involves
hydrodynamic drag force which accelerates cell movement.
This major difference brings unique challenges which cause
other cell tracking methods not to work well on tracking cells
in the chip.

III. PROPOSED METHOD

Tracking cells in the chip is challenging because the cells
have non-constant velocities and appear similar. Since the
chip utilizes a uniform dielectrophoretic force field to separate
the cells, we are able to estimate a velocity field in the
chip. We call this the representative velocity field and it
represents the estimated velocities of the cells in the chip.
We describe how we get this representative velocity field
in detail in Section IV-B. The ideal cell tracking method
should utilize both cell motion and cell appearance features
for better track association. It also needs to take advantage
of the representative velocity field to deal with the unique
motion pattern in the chip. Computational efficiency is another
important factor when analyzing long image sequences in
real applications. Therefore, we choose DeepSORT [8] with
YOLOv4 [30] detector as our baseline method and incorporate
prior knowledge of the cell’s velocity into the motion estima-
tion module.

A. Baseline Cell Tracking

Our baseline cell tracking method uses a tracking-by-
detection approach. First, we detect all the cells in each frame
and construct a bounding box around each cell. Then a cell
tracker is used to associate tracks with particular cells (track
association). YOLOv4 [30] is used as the cell detector in
our baseline method. It is an efficient and powerful one-stage
object detection and classification system which can produce
detection results in real time. DeepSORT [8] is used for
tracking the cells, which utilizes both bounding box parameters
and appearance features of the detected cells to associate the
cells to existing tracks. The block diagram of DeepSORT is
shown in Figure 2.

The motion information is estimated by using Kalman filter
[7] that predicts the bounding box parameters of a cell in the
next frame. The appearance features are determined using a
pre-trained CNN through examining the pixels in the detected
bounding box. The appearance features and the estimated
motion are then used for matching a detected cell to an existing
track. The Hungarian minimum cost method [31] is used for
matching newly detected cells to previously tracked cells with
similar motion and cell appearance.

DeepSORT [8] utilizes Kalman filter for tracking the bound-
ing boxes of the cells. It provides a prediction of the future
system state, based on the past estimation of the motion
and the measurement of the newly detected cells’ motion.
The system state vector x of the Kalman filter is defined as
an 8-dimensional vector (x, y, a, h, ẋ, ẏ, ȧ, ḣ). Where (x, y)
marks the center of the cell bounding box, h is the height
of the bounding box, a is the aspect ratio of the bounding
box (height/width), and (ẋ, ẏ, ȧ, ḣ) are their corresponding
velocities. Since the cell detector does not provide velocity
information, the velocities in the initial system state vector are
manually chosen. The measurement vector z in Kalman filter
represents a true system state y with random measurement
noise. In DeepSORT, measurement vector z only contains
cell’s bounding box information with velocities assumed 0.
By incorporating the system state estimation xn calculated
from the previous frame and the current measurement vector
zn, the Kalman filter obtains refined current system state
estimation x′

n, and uses state transition matrix F to predict the
next system state xn+1 from x′

n. The state transition matrix
F represents the system’s dynamic model, and DeepSORT
uses a constant velocity motion model. The new prediction
of the next system state xn+1 will be used as the system state
estimation for further iterations.

The cell appearance feature in DeepSORT [8] is extracted
by a CNN trained on a large-scale re-identification dataset.
The appearance features of a detected cell are represented
by a 1x128 vector. The distance between appearance vectors
from the same cell across the frames should be small and
the distance between appearance vectors from different cells
should be large.

In DeepSORT, the cost C for associating two detected cells
from two frames is defined in Equation 1

C = λdm + (1− λ)da (1)

where dm is the Mahalanobis Distance [32] between the
predicted system state and the measurement motion vector of
the detected cell and da is the Cosine Distance [33] between
the appearance features of two cells. The weight λ is used to
control how much the motion features or appearance features
effect C. Pre-defined thresholds for the Mahalanobis Distance
and the Cosine Distance are used to exclude outlier cases
where two objects have significant differences in motion or
appearance.

When associating detected cells with tracks, C is computed
for each pair of an existing track and a detected cell in the new
frame (removing outliers by thresholding). If C is the smallest
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between a detected cell and a confirmed track, then this cell is
matched with the track and the unassociated age of this track
is set to zero. The unassociated age of a track is the number of
frames where a confirmed track fails to be associated with a
detected cell. If a detected cell fails to associate with any of the
confirmed tracks, then this cell is initialized as a new tentative
track. For the detected cells in the following frame, we try to
associate them with the new tentative tracks. If a new tentative
track is successfully associated with a cell, it will be updated to
a confirmed track. Otherwise, it will be removed immediately.
For the confirmed tracks which fail to be associated with
any newly detected cell in the frame, the unassociated age of
this track will increase by 1. If the unassociated age exceeds
the pre-defined maximum unassociated age, this track will be
determined as ended.

Fig. 3: The representative velocity field in the chip. The
velocity field in the chip is visualized as a collection of vectors
with the magnitude of velocity and direction for that point.

B. Integrating Velocity Prior Knowledge

Although DeepSORT has been widely used in many dif-
ferent tracking applications, it did not perform well in our
dataset due to inaccurate motion estimation. Tracking cells in
the chip requires more accurate motion estimation. The motion
estimation method used in DeepSORT is a basic Kalman filter
that assumes constant velocity which fails with non-constant
velocity. Another issue with DeepSORT is that the velocities
of newly detected cells are initialized to 0 because the de-
tector cannot measure the velocity. The fact that cells move
with different velocities and accelerations in the chip causes
inaccurate motion estimation. In our application, we can get
prior knowledge of cells’ velocities at different locations from
the microfluidic chip design, which we call the representative
velocity field. By incorporating these velocities into Kalman
filter, we are likely to get better motion estimation.

1) Modified Kalman Filter: To work with the non-constant
velocity in the chip, we modify the Kalman filter state vector

x to a 12-dimensional vector (x, y, a, h, ẋ, ẏ, ȧ, ḣ, ẍ, ÿ, ä, ḧ).
Where (x, y) marks the center of the cell bounding box, h
is the height of the bounding box, a is the aspect ratio of
the bounding box (height/width), (ẋ, ẏ, ȧ, ḣ) are their corre-
sponding velocities, and (ẍ, ÿ, ä, ḧ) are their corresponding
accelerations.

With changes in the Kalman filter state vector, the state
transition matrix F in the state extrapolation equation needs to
be adjusted to a linear constant acceleration model. Equation 2
shows the extrapolation equation and Equation 3 shows matrix
multiplication results.

xn+1 = Fx′
n (2)

where n is the frame number, x′
n is the 12-dimensional

refined system state estimation vector at frame n, xn+1 is the
estimated next system state,and F is the modified transition
matrix.

xn+1 = xn + ẋn∆t+ 0.5ẍn∆t2

ẋn+1 = ẋn + ẍn∆t

ẍn+1 = ẍn

(3)

where x is the cell bounding box center position x-
coordinate, ẋ and ẍ is its corresponding velocity and acceler-
ation. ∆t is the time between two frames n and n + 1. The
rest of the parameters in the system state vector are updated
in the same way as x.

2) Velocity Field Integration: To integrate the velocity field
into the motion estimation module, we modify the ”measure-
ment” part of the Kalman filter. The measurement part takes
the detected cell motion information and uses them to refine
the Kalman filter estimated state vector. The measurement
vector z used in the original Kalman filter is a 4-dimensional
(x, y, a, h) vector. Where (x, y) are the cell bounding box
coordinates, h is the height of the bounding box, and a is
the aspect ratio of the bounding box (height/width). This
4-dimensional vector does not record any velocity informa-
tion. We modify measurement vector z to a 8-dimensional
(x, y, a, h, ẋ, ẏ, ȧ, ḣ) vector, where (ẋ, ẏ, ȧ, ḣ) are the cor-
responding velocities of the parameters in the original 4-
dimensional measurement vector. In the measurement step, the
(x, y) are obtained from the detected cell bounding box, we
use the (x, y) location to find the corresponding velocities in
the representative velocity field and use them for (ẋ, ẏ). The ȧ
and ḣ are the rate of change of the aspect ratio and the height
of the bounding box, we initialize them as 0 since the aspect
ratio and the height of the cell do not change much.

With the new system state and measurement vectors, we
adjust the observation matrix H to an 8x12 matrix with an
8x8 identity matrix concatenated with an 8x4 all zero matrix.
The observation matrix H is used to identify which states
are measured. For example, we are not able to measure the
acceleration of the cell. This adjustment ensures the velocities
of cells are passed into the measurement vector. Equation 4
shows our modification in detail.
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Fig. 4: The block diagram of the proposed cell tracking system. (The dashed line process only happens once in initialization.)

(a)

(b)

(c)

Fig. 5: Each row is the appearance of a single cell in 5 different
frames, (a)(b) are melanoma cancer cells, (c) is a white blood
cell (WBC).

zn = Hyn + vn

= H
[
x, y, a, h, ẋ, ẏ, ȧ, ḣ, ẍ, ÿ, ä, ḧ

]T
+ vn

=
[
x, y, a, h, ẋ, ẏ, ȧ, ḣ

]T
+ vn

(4)

where zn is the measurement vector at frame n, yn is the
newly measured true system state vector at frame n, vn is a
Gaussian random noise vector, x, y, a, h are obtained from the
cells’ bounding box, ẋ and ẏ are selected based on the location
of the bounding box and the representative velocity field. The
rest of the parameters are set to 0.

These modifications allow the Kalman filter motion estima-
tion module in DeepSORT to take advantage of the velocities
from the representative field and therefore model cells’ non-
constant velocities more accurately. The overall block diagram
of our proposed cell tracking system is shown in Figure 4.

IV. TRACKING CELLS IN THE CHIP

In this section, we introduce the type of data we acquired
from our rare cell isolation chip. We present our cell tracking
dataset and describe the challenges which make this cell
tracking problem unique compared to general MOT problems
and other cell tracking problems.

A. Challenges

The video frames of the chip are phase contrast microscopy
images captured by a high-speed camera attached to the
microscope. The chip is designed to separate and isolate
mixed cells, the high flow rate in this process causes large
displacement of cells between the captured video frames.
When cells move to the center of the chip, the dielectrophoretic
force field slows them down for separation, then the cells
accelerate when exiting the chip. Unlike most of the MOT
tasks, large displacement of cells means there is no overlap
of a cell’s bounding box between two frames. This unique
motion pattern of the cells in the chip causes motion estimation
methods to fail when trying to predict the location of the cells
accurately.

The use of an object’s appearance features can help over-
come the challenge of tracking objects with complicated
motion patterns. It is also used to handle the occlusions in
MOT. However, in our cell tracking problem, the difference
in appearance between each cell is difficult to distinguish. The
same individual cell may appear differently with a change of
focus or location in the chip. Figure 5 shows the appearance of
three different cells in 5 frames. This challenge demonstrates
that appearance features alone are not enough for our cell
tracking problem.

In summary, tracking cells in our chip consists of two main
challenges: (i) the unique motion pattern of the objects with
large displacements between frames, and (ii) the appearance
of a cell is not distinct, and sometimes not consistent. These
challenges exclude many well-known MOT methods for this
problem.

B. Representative Velocity Field

A cell’s velocity in the chip is determined by the su-
perposition of the hydrodynamic drag force from the local
flow velocity and a dielectrophoretic body force. In a large
portion of the flow field, the contribution of the hydrodynamic
drag force dominates. We thus used the flow velocity as the
characteristic velocity field as shown Figure 3. We calculated
this field by numerically solving the Navier-Stokes equations
[34] using COMSOL [35]. We simplified the Navier-Stokes
equations with a low Reynolds number assumption. For this
solution, we prescribed the flow rate at the inlet and assumed
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Fig. 6: Each row shows three consecutive frames from the testing dataset. The first row is the groundtruth annotation of the
cells we are interested in. The second row and the third row are the tracking results from the baseline DeepSORT method, and
our proposed method, respectively. The numbers above the bounding boxes indicate the track identifier. The track identifier of
the same object is different in the two methods’ results because methods initiated different amounts of tracks before these three
frames. We focus on the initialization and perseverance of track identifiers of same objects on each row, then compare two
methods. It can be seen that our proposed method picks up more cells as well as starts to track them earlier when compared
with the baseline DeepSORT method. A detailed analysis can be found in the discussion portion of the experimental results
section.

equal pressures at the two outlets. We are able to estimate a
cell’s velocity in the chip with this field information, and we
shall denote this field as the ”representative velocity field” of
the chip.

The representative velocity field records horizontal and
vertical velocities (urx, vry) at each location (x, y) in the chip.
We mapped the velocity field to the image space by bilinear
interpolation [36] to make sure every pixel in a frame has
a representative velocity associated with it. The interpolation
was done separately on each velocity component.

Although the representative velocity field can represent the
general motion pattern of the cells in the chip, the cells’
velocities in each experiment may be different from the

velocities obtained from the representative velocity field due
to the different types of cells, the different flow rates used,
the interactions between cells, and interaction with the chip
boundaries. However, the Kalman filter can effectively produce
motion estimation to predict the locations of the cells based
on inaccurate and uncertain measurements. Thus, we use this
representative velocity field as the prior information of a cell’s
velocity to assist the tracking system to improve the cell
tracking performance.

V. EXPERIMENTAL RESULTS

We conducted experiments using our own annotated/ground
truth cell tracking dataset and compared our proposed method

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525598doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525598
http://creativecommons.org/licenses/by-nc/4.0/


to the baseline DeepSORT and several other MOT methods.
The tracking performance is evaluated with two commonly
used metrics in MOT, which are Multi-Object Tracking Accu-
racy (MOTA) [9] and Identification F1 Score (IDF1) [10]. The
score of MOTA ranges between negative values and 100 and
IDF1 ranges between 0 and 100, both with better performance
indicated by values lying closer to 100.

Our experiments were implemented on a 10-core Intel i9-
9900X CPU@3.50GHz with an Nvidia TITAN RTX GPU. We
selected the weight which controls the influence of motion
or the appearance metric on the combined association cost
λ = 0.6. YOLOv4 was trained for 500 epochs. The confidence
threshold of the detector was set to 0.7 which means only the
detected cells with a confidence score over 0.7 will be tracked.

A. Dataset

A stream of melanoma cancer cells and white blood cells
(WBC) mixture was injected into the input channel of the chip.
The cell sorting process is captured by a high speed camera
and phase contrast microscopy. The entire process contains
more than 40,000 images captured at 500 frames per second.
We randomly sampled 50 images to train the cell detector
and excluded them from the dataset. We randomly selected
the starting frame and annotated three 50-frame sequences.
One of three 50-frame sequences is used for training the deep
learning MOT methods for comparison. The other two are
used for the evaluation of cell tracking methods. None of the
three image sequences have any temporal overlap with each
other. We are only interested in tracking in-focus cells, thus
only the in-focus cells were annotated.

B. Discussion

We compare our proposed method with the baseline Deep-
SORT [8] and two other popular MOT methods, FairMOT
[25] and CenterTrack [37]. FairMOT [25] is a method which
only uses object appearance features for detection and re-
identification to get the tracking result. CenterTrack [37]
localizes tracking objects and predicts their displacement with
the previous frame to build the tracks. All these three methods
showed top performance in the MOT challenge [38] for
tracking pedestrians. We evaluate the comparison methods
using the same dataset as used for our proposed method.
The comparison results are shown in Table I. Due to limited
amount of annotated training data and the challenges men-
tioned in section IV-A, the general MOT methods in our cell
tracking task do not achieve decent results as they did in MOT
challenges [38]. Our proposed method achieves higher MOTA
and IDF1 results than all the comparison methods

Figure 6 demonstrates our proposed method improves the
cell tracking results in the chip by comparing it with the
baseline method. By making use of the representative velocity
field, our tracking method can successfully associate the tracks
to the cells with high velocities. As shown in the third row
in Figure 6, our method better capture cell 87 and cell 102 at
the input area of the chip while these two cells did not show
up in the baseline method results. Cell 7 from the third row

Methods MOTA IDF1

DeepSORT [8] 17.9 24.6
FairMOT [25] 11.4 12.1
CenterTrack [37] 17.5 16.3
Proposed Method 26.4 34.7

TABLE I: The cell tracking results of different methods

of Figure 6 is a cell approaching the separation area, which
means its motion changes from accelerating to slowing down.
This cell is picked up for tracking sooner with our proposed
method than the baseline method, which shows our method
adapts better to the unique motion pattern in the chip. The
rest of the results look similar, which means the deviation
from real velocities in the representative field is well rectified
by the modified KF and does not worsen the result.

However, tracking cells in the high velocity area of the
chip remains a challenging problem, especially when the cell’s
visual appearance is not consistent across the frames. For
example, Figure 5 shows the appearance of three cells in
different frames, we can see the appearance of melanoma
cells in (a) and (b) changes a lot within only 5 frames and
the WBC in row (c) has a blurry looking. The appearance
feature extraction model used in our method is the one used
in DeepSORT, which is trained on a pedestrian dataset. This
model may not be able to differentiate individual cells well,
and therefore may fail in associating the same cell across
frames in this challenging condition. We also notice that most
of the lost cells are WBC at the input and exit regions of the
chip. The WBC cells are smaller, thus may travel faster and
their appearance features are even less distinct, making it more
challenging to associate them with the correct tracks.

With approximately 30 MOTA and IDF1 scores, our method
still has room for improvements. On the other hand, all
three comparison methods achieve over 60 in MOTA on the
MOT16 benchmark for general object tracking of pedestrians
and cars, but below 20 in our cell tracking problem. Our
cell tracking problem is so challenging that existing MOT
methods’ performance would drop significantly. By integrating
the representative velocity field information into the motion
model, we successfully benefit from domain knowledge and
improve the cell tracking results.

VI. CONCLUSION AND FUTURE WORK

Our proposed method utilizes both cells’ motion infor-
mation and appearance features with the help of the prior
knowledge of the cells’ velocities for cell tracking works well
relative to the challenges of tracking cells in the chip. We use a
modified Kalman filter with a non-constant velocity model and
the chip’s representative velocity field as an additional input
to the Kalman filter to improve the performance of tracking
cells in the chip. In the future, we will examine other neural
networks to extract appearance features to better distinguish
and re-identify the individual cells. As more annotated data
becomes available, we will also explore deep learning motion
estimation methods and graph network based track association
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methods to better predict the cell’s complex motion pattern in
the chip.
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