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Fig. 6: Each row shows three consecutive frames from the testing dataset. The first row is the groundtruth annotation of the
cells we are interested in. The second row and the third row are the tracking results from the baseline DeepSORT method, and
our proposed method, respectively. The numbers above the bounding boxes indicate the track identifier. The track identifier of
the same object is different in the two methods’ results because methods initiated different amounts of tracks before these three
frames. We focus on the initialization and perseverance of track identifiers of same objects on each row, then compare two
methods. It can be seen that our proposed method picks up more cells as well as starts to track them earlier when compared
with the baseline DeepSORT method. A detailed analysis can be found in the discussion portion of the experimental results

section.

equal pressures at the two outlets. We are able to estimate a
cell’s velocity in the chip with this field information, and we
shall denote this field as the “representative velocity field” of
the chip.

The representative velocity field records horizontal and
vertical velocities (ury , vry ) at each location (, y) in the chip.
We mapped the velocity field to the image space by bilinear
interpolation [36] to make sure every pixel in a frame has
a representative velocity associated with it. The interpolation
was done separately on each velocity component.

Although the representative velocity field can represent the
general motion pattern of the cells in the chip, the cells’
velocities in each experiment may be different from the

velocities obtained from the representative velocity field due
to the different types of cells, the different flow rates used,
the interactions between cells, and interaction with the chip
boundaries. However, the Kalman filter can effectively produce
motion estimation to predict the locations of the cells based
on inaccurate and uncertain measurements. Thus, we use this
representative velocity field as the prior information of a cell’s
velocity to assist the tracking system to improve the cell
tracking performance.

V. EXPERIMENTAL RESULTS

We conducted experiments using our own annotated/ground
truth cell tracking dataset and compared our proposed method
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to the baseline DeepSORT and several other MOT methods.
The tracking performance is evaluated with two commonly
used metrics in MOT, which are Multi-Object Tracking Accu-
racy (MOTA) [9] and Identification F1 Score (IDF1) [10]. The
score of MOTA ranges between negative values and 100 and
IDF1 ranges between 0 and 100, both with better performance
indicated by values lying closer to 100.

Our experiments were implemented on a 10-core Intel i9-
9900X CPU@3.50GHz with an Nvidia TITAN RTX GPU. We
selected the weight which controls the influence of motion
or the appearance metric on the combined association cost
A = 0.6. YOLOv4 was trained for 500 epochs. The confidence
threshold of the detector was set to 0.7 which means only the
detected cells with a confidence score over 0.7 will be tracked.

A. Dataset

A stream of melanoma cancer cells and white blood cells
(WBC) mixture was injected into the input channel of the chip.
The cell sorting process is captured by a high speed camera
and phase contrast microscopy. The entire process contains
more than 40,000 images captured at 500 frames per second.
We randomly sampled 50 images to train the cell detector
and excluded them from the dataset. We randomly selected
the starting frame and annotated three 50-frame sequences.
One of three 50-frame sequences is used for training the deep
learning MOT methods for comparison. The other two are
used for the evaluation of cell tracking methods. None of the
three image sequences have any temporal overlap with each
other. We are only interested in tracking in-focus cells, thus
only the in-focus cells were annotated.

B. Discussion

We compare our proposed method with the baseline Deep-
SORT [8] and two other popular MOT methods, FairMOT
[25] and CenterTrack [37]. FairMOT [25] is a method which
only uses object appearance features for detection and re-
identification to get the tracking result. CenterTrack [37]
localizes tracking objects and predicts their displacement with
the previous frame to build the tracks. All these three methods
showed top performance in the MOT challenge [38] for
tracking pedestrians. We evaluate the comparison methods
using the same dataset as used for our proposed method.
The comparison results are shown in Table I. Due to limited
amount of annotated training data and the challenges men-
tioned in section IV-A, the general MOT methods in our cell
tracking task do not achieve decent results as they did in MOT
challenges [38]. Our proposed method achieves higher MOTA
and IDF1 results than all the comparison methods

Figure 6 demonstrates our proposed method improves the
cell tracking results in the chip by comparing it with the
baseline method. By making use of the representative velocity
field, our tracking method can successfully associate the tracks
to the cells with high velocities. As shown in the third row
in Figure 6, our method better capture cell 87 and cell 102 at
the input area of the chip while these two cells did not show
up in the baseline method results. Cell 7 from the third row

Methods MOTA  IDFI
DeepSORT [8] 17.9 24.6
FairMOT [25] 11.4 12.1
CenterTrack [37] 17.5 16.3
Proposed Method ~ 26.4 34.7

TABLE I: The cell tracking results of different methods

of Figure 6 is a cell approaching the separation area, which
means its motion changes from accelerating to slowing down.
This cell is picked up for tracking sooner with our proposed
method than the baseline method, which shows our method
adapts better to the unique motion pattern in the chip. The
rest of the results look similar, which means the deviation
from real velocities in the representative field is well rectified
by the modified KF and does not worsen the result.

However, tracking cells in the high velocity area of the
chip remains a challenging problem, especially when the cell’s
visual appearance is not consistent across the frames. For
example, Figure 5 shows the appearance of three cells in
different frames, we can see the appearance of melanoma
cells in (a) and (b) changes a lot within only 5 frames and
the WBC in row (c) has a blurry looking. The appearance
feature extraction model used in our method is the one used
in DeepSORT, which is trained on a pedestrian dataset. This
model may not be able to differentiate individual cells well,
and therefore may fail in associating the same cell across
frames in this challenging condition. We also notice that most
of the lost cells are WBC at the input and exit regions of the
chip. The WBC cells are smaller, thus may travel faster and
their appearance features are even less distinct, making it more
challenging to associate them with the correct tracks.

With approximately 30 MOTA and IDF1 scores, our method
still has room for improvements. On the other hand, all
three comparison methods achieve over 60 in MOTA on the
MOT16 benchmark for general object tracking of pedestrians
and cars, but below 20 in our cell tracking problem. Our
cell tracking problem is so challenging that existing MOT
methods’ performance would drop significantly. By integrating
the representative velocity field information into the motion
model, we successfully benefit from domain knowledge and
improve the cell tracking results.

VI. CONCLUSION AND FUTURE WORK

Our proposed method utilizes both cells’ motion infor-
mation and appearance features with the help of the prior
knowledge of the cells’ velocities for cell tracking works well
relative to the challenges of tracking cells in the chip. We use a
modified Kalman filter with a non-constant velocity model and
the chip’s representative velocity field as an additional input
to the Kalman filter to improve the performance of tracking
cells in the chip. In the future, we will examine other neural
networks to extract appearance features to better distinguish
and re-identify the individual cells. As more annotated data
becomes available, we will also explore deep learning motion
estimation methods and graph network based track association
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methods to better predict the cell’s complex motion pattern in
the chip.
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