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Abstract

Motivation: Many computational tools attempt to infer gene regulatory networks (GRNs) from single-
cell RNA sequencing (scRNA-seq) data. One recent advance is DeepSEM, a deep generative model
generalizing the Linear Structural Equation Model (SEM) that improves benchmark performance over
popular GRN inference methods. While DeepSEM is promising, its results are not stable over multiple
runs. To overcome the instability and resolve dropout handling concerns, we propose GRN-VAE.
Results: GRN-VAE improves stability and efficiency while maintaining accuracy by delayed introduction
of the sparse loss term. To minimize the negative impact of dropout in single-cell data, GRN-VAE trains
on non-zero data. Most importantly, we introduce a novel idea, Dropout Augmentation, to improve model
robustness by adding a small amount of simulated dropout to the data. GRN-VAE compares favorably to
other methods on the BEELINE benchmark data sets, using several collections of "ground truth" regulatory
relationships, and on a real-world data set, where it efficiently provides stable results consistent with
literature-based findings.
Conclusions: The stability and robustness of GRN-VAE make it a practical and valuable addition to the
toolkit for GRN inference from single-cell data. Dropout Augmentation may have wider applications beyond
the GRN-inference problem.
Availability and implementation: Source code is available at https://bcb.cs.tufts.edu/GRN-VAE
Contact: hao.zhu@tufts.edu; donna.slonim@tufts.edu

1 Introduction
Gene regulatory networks, or GRNs, have long being used as an
effective tool to represent and study the complex regulatory relationships
among genes (Davidson and Levin, 2005; Karlebach and Shamir, 2008;
Penfold and Wild, 2011). Understanding these interactions is crucial for
gaining insight into developmental biology as well as identifying key
points of regulation that may be amenable to therapeutic intervention
(Emmert-Streib et al., 2014).

Inferring GRNs from gene expression has long been an active research
area, because gene expression captures a snapshot of the current cell state,
lends insight into gene interactions, and is widely available (Mercatelli
et al., 2020). Methods for GRN inference can broadly be classified into
three categories, respectively relying on Mutual Information, Decision
Trees, or Bayesian Networks.

Mutual information measures the statistical dependence between two
random variables and is used in methods such as ARACNE (Margolin
et al., 2006), CLR (Faith et al., 2007), MRNET (Meyer et al., 2007), and
PIDC (Chan et al., 2017). Decision Tree-based methods, such as GENIE3
(Huynh-Thu et al., 2010) and GRNBoost2 (Moerman et al., 2019),
rely on variable importance, a metric to rank variables while creating
trees. Bayesian Network-based methods model GRNs as causal inference
problems. Examples include G1DBN (Lèbre (2009)) and ebdbNet (Rau
et al. (2010)). By representing GRNs as Bayesian networks, or directed
acyclic graphs (DAG), these methods account for gene interactions,
approaching the problem from a network perspective.

In recent years, as single-cell RNA-sequencing (scRNA-seq) data has
become more widely accessible (Svensson et al., 2018), inferring GRNs
from scRNA-seq data has drawn a lot of attention. ScRNA-seq allows
researchers to analyze transcriptomic profiles on an individual cell level,
providing a more detailed and accurate view of cellular diversity than
traditional bulk RNA-seq methods. With scRNA-seq data, researchers can
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2 Zhu and Slonim

gain a more comprehensive understanding of gene regulation and its role
in shaping cellular behavior.

However, using scRNA-seq data does introduce new challenges, which
extend beyond the task of predicting GRNs. First, scRNA-seq data
generally includes an excessive number of zero expression counts, often
referred as "dropout." In nine scRNA-seq datasets used in Ghazanfar et al.,
2016, 57.7% - 92.3% of the count data are zeros. The noisy nature of
scRNA-seq data makes it difficult to apply many statistical inference and
machine learning methods directly. Second, compared with traditional
bulk data, scRNA-seq introduces both spatial (via cell type) and temporal
(via cell state or pseudo-time cell trajectory) variations (Nguyen et al.,
2021). How to handle these two axes is not often considered in traditional
methods. Finally, as the size of scRNA-seq data sets grows, the speed
and efficiency of inference algorithms becomes a limiting factor. It is
challenging to apply computationally-heavy algorithms to single-cell data
sets in reasonable amounts of time. One common work-around is to apply
heavy filtering on genes and cells. However, filtering out too many genes
or cells are filtered out limits the capacity to generate useful and novel
regulatory knowledge.

Due to the high dimensional and noisy nature of single-cell data,
many researchers have turned to deep neural networks as a means of
addressing these challenges. Among the various network structures,
variational autoencoders (VAEs) (Kingma and Welling, 2013) have
garnered significant attention. A VAE consists of an encoder and a decoder,
which respectively compress and reconstruct the input data through a low-
dimensional latent representation. While classic autoencoders are trained
using reconstruction loss alone, VAEs consider the latent variable as a
random variable sampled from a parameterized distribution. As a result,
VAEs are trained by optimizing the sum of the reconstruction loss and
the Kullback-Leibler (KL) divergence between the posterior and prior
distributions, or the evidence lower bound (ELBO). This KL divergence
term in the objective function encourages a more evenly distributed latent
space. This evenness helps to ensure that the values in the latent space
remain meaningful.

VAEs have been widely applied in various fields, including computer
vision and natural language processing, for tasks such as representation
learning (encoder) and content generation (decoder). They offer several
advantages, including the ability to process noisy data and no requirement
for additional labeled data. These advantages make VAEs well-suited
for handling noisy single-cell data. In prior work, Wang and Gu, 2018
proposed using VAEs as a dimension reduction tool and demonstrated their
effectiveness in cell population clustering and visualization. Grønbech
et al., 2020 introduced scVAE, which uses VAEs to estimate expected
gene expression values and improve cell clustering.

However, vanilla VAEs struggle to accurately infer GRNs because
they do not naturally incorporate notions of causality or regulation. To
support such concepts, VAEs could be transformed into a form of structural
equation model (SEM), which is a class of statistical models that measures
the relationships among variables. This approach was first proposed in
DAG-GNN (Directed Acyclic Graph - Graph Neural Network) by Yu et al.,
2019. Shu et al., 2021 then relaxed the acyclic graph constraint, adapting
this method for GRN inference. DeepSEM reports better performance on
most BEELINE benchmarks (Pratapa et al., 2020) and runs significantly
faster than many current methods. However, we find that its results
are unstable over multiple runs, resulting in considerable performance
variation and differences in the inferred networks (Fig 1b).

Here, we propose GRN-VAE which stabilizes the results of DeepSEM
by only restricting the sparsity of the adjacency matrix at a later stage.
It also comes with a simplified, bare-bones VAE design that removes the
weight connections between encoders and decoders.

Further, we introduce the idea of dropout augmentation, or simulating
a small amount of additional dropout, to improve the robustness of learning

models. While this is a common approach in many other neural network
applications, it appears to be novel for inferring networks from single-cell
data. Here we demonstrate its utility in stabilizing inference methods.

2 Materials and Methods

2.1 Datasets Used

2.1.1 BEELINE single-cell benchmarks
In this study, we compare the performance of our proposed method, GRN-
VAE, with the DeepSEM approach using the seven scRNA-seq datasets
from the BEELINE benchmarks (Pratapa et al., 2020). The BEELINE
benchmarks consist of both synthetic expression data based on curated
ground truth networks, as well as seven pre-processed real single-cell
RNA-seq datasets. These scRNA-seq datasets come from both human
and mouse samples and have undergone different pre-processing steps,
including normalization, depending on the original data format (e.g. raw
counts, transcripts per million). In some aspects, this variety reflects the
wide array of differences in real-world data.

Next, BEELINE combines the scRNA-seq data with three different
sources of "ground truth" data about regulatory relationships, including
the functional interaction network STRING (Szklarczyk et al., 2019), non-
cell-type specific transcriptional networks, and cell-type specific networks.
The non-cell-type specific network combines links from DoRothEA
(Garcia-Alonso et al., 2019), RegNetwork (Liu et al., 2015), and TRRUST
v2 (Han et al., 2018)). The cell-type specific networks are created by the
BEELINE authors for each dataset by searching through the ENCODE,
ChIP-Atlas and ESCAPE databases. To generate a benchmarking dataset,
BEELINE identifies highly variable transcription factors and genes and
randomly samples from this pool to create a benchmark with desired size.

In our experiments, we are using the exact same evaluation dataset
used in the DeepSEM paper. Note that performance of all methods on the
non-cell-type-specific networks is little different from random, as reported
in (Shu et al., 2021), so we do not discuss results on those networks.

2.1.2 Hammond microglial data
To assess GRN-VAE’s performance in a more practical context, we use a
published data set from Hammond et al., 2019 (data available from NCBI’s
Gene Expression Omnibus database (Edgar et al., 2002) under accession
GSE121654). The Hammond dataset includes RNA sequencing counts
from 76,149 individual microglia in mice during multiple developmental
stages / ages and after a demyelinating injury. To compare our network
inference on this data set to that of DeepSEM, we compare networks
from 3 adult male mice subjected to demyelinating injury caused by
lysolecithin (LPC) injection to 3 adult male saline-exposed controls
(samples GSM3442041 to GSM3442046).

To preprocess the data, following suggestions from Green et al., 2022
for the same data, we filter out cells with below 400 or above 3000 unique
genes; cells with more than 10,000 UMIs, and cells with over 3% of reads
mapping to mitochondrial genes. After such filtering, there are 2,722 cells
subjected to LPC treatment and 2,623 saline-treated control cells. We also
apply a very light gene filter, selecting the 5,000 genes whose expression
values are most variable across all six samples. We then normalize the
data using natural log transformation. Note that compared to the original
Hammond et al., 2019 paper, here we are using a very different approach,
analyzing data from all cells for a condition (LPC or control) together,
instead of analyzing microglial subpopulations defined by specific injury
responsive cell clusters.
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GRN-VAE 3

2.2 Evaluation Metrics

Following the suggestions from the BEELINE paper, we choose Early
Precision Ratio (EPR) as our primary evaluation metric. Early Precision
is "the fraction of true positives in the top-k edges," where k is number
of edges in the "ground truth" network. EPR compares the ratio of the
measured Early Precision against the performance of a random predictor.

2.3 Model structure

2.3.1 SEM style VAE
Let X ∈ R|c|×|g| be a gene expression matrix from a single-cell
experiment, where |c| is the number of cells and |g| is the number of
genes. The task of GRN inference is to infer a weighted adjacency matrix
A ∈ R|g|×|g| based on the expression data X . Similar to many Bayesian
Network methods, the SEM style VAE (Yu et al., 2019; Shu et al., 2021)
starts by making a linear additive assumption that can be written as

X = XA+ Z, (1)

where Z ∈ R|c|×|g| is a random variable describing the variance.
In other words, this equation simply states that we assume the amount
of expression of any genes equals to the weighted sum of all genes that
regularize it. Starting from here, by rearranging the terms, we can easily
get the following two equations

Z = X(I −A), (2)

X = Z(I −A)−1. (3)

Equation 2 infers the random variable Z from X and Equation 3 is a
generative model that reconstructs X based on random variable Z. These
two equations naturally fit into a VAE framework with Equation 2 as an
encoder and Equation 3 as a decoder. In this case, Z is the latent random
variable. For a VAE, the problem of finding the set of parameters θ that
maximizes the log evidence log(P (X)) is intractable. Instead, people
often maximize the evidence lower bound (ELBO), which we write as

ELBO = −DKL(q(Z|X)||p(Z)) + Ez∼q(Z|X)[log p(X|Z)], (4)

where the first term is the KL divergence and the second term is the
reconstruction loss.

The authors of DeepSEM also introduced an L1 sparse loss term
that regulates the sparsity of the learned adjacency matrix, and two
hyperparameters, α and β, to control the influence of the sparse loss and
KL divergence. The final form of the objective function is to minimize the
following loss function:

Loss = −Ez∼q(Z|X)[log p(X|Z)]

+βDKL(q(Z|X)||p(Z))

+α||A||.

(5)

The SEM style VAE can be viewed as a neural network with two
separate components: a parameterized adjacency matrix, and a neural
network designed for learning and reconstructing the features of genes.
During the training stage, these two networks are trained in an alternating
order with two separate optimizers.

After a model converges, we extract the adjacency matrix from the
model and convert it to an adjacency list. This list is then sorted based on
the absolute value of the edge weights. Note that positive edge weights
correspond to up-regulation or stimulation, while negative edge weights
correspond to down-regulation or inhibition.

2.3.2 Structural Differences between GRN-VAE and DeepSEM
Using the same framework and loss function, GRN-VAE and DeepSEM are
similar in terms of model design, but they have the following difference.
DeepSEM estimates a separate latent variable Y representing the prior
of the latent variable, while GRN-VAE simply assumes that the prior is
normally distributed. The benefit of this difference is that with the same
set of hyperparameters, we reduce the number of parameters in the model
by 73.2%. There is also a closed-form solution for the KL divergence.
Compared to DeepSEM, GRN-VAE is structured more like a classic VAE
model and is much easier to implement.

3 Experiments and results
In this section, we start by improving model stability when the model is
trained on the entire expression data set, as recommended in the DeepSEM
paper. Then, due to concerns about dropout, we discuss why and how to
train the model on just the non-zero data while keeping our stability gains.
Finally, using the Hammond data, we demonstrate the importance of our
work on improving model stability in generating scientifically meaningful
insights.

3.1 Improved stability when trained on entire dataset

3.1.1 Instability in Original DeepSEM
Although DeepSEM yields impressive performance compared to other
GRN inference methods (Shu et al., 2021), we found that its results were
not stable across replicated runs. As an example, on the hESC datasets
with TFs + 500 genes validated on the STRING network, the average
EPR across 10 runs reported in the BEELINE paper was 4.13. Here, we
repeat the DeepSEM algorithm 100 times on the same dataset. We find
that the EPR in 14 out of the 100 runs is smaller than 3.70, as shown
in Figure 1a. The authors of DeepSEM acknowledged this variation, but
suggested that using a different optimizer would solve this issue. However,
we found that the instability persisted regardless of the choice of optimizer
(data not shown). Further investigation showed that cases with low EPR
performance all also have low sparse loss at the point of convergence, as
shown in Figure 1b. We therefore hypothesized that when the minimization
of the sparse loss is prioritized, the predicted adjacency matrix would be
less precise.

3.1.2 Delayed Addition of the Sparse Loss Stabilizes Performance
As shown in Equation 5, the L1 sparse loss helps to regularize parameters
on the adjacency matrix and prevents it from getting too noisy. However,
it may also lead the model to converge to a local minimum during
optimization. Here we suggest a simple approach that delays the addition
of the sparse loss term for a number of iterations. In this way, the model
will have some time to "warm up." Broadly, this technique falls into the
category of progressive curriculum learning (Soviany et al., 2022; Wang
et al., 2021), where certain parts of the models are progressively updated to
guide the model from an easier task to a more complicated task. In Figure
2, we demonstrate that with as few as 10 delayed iterations before adding
the sparse loss, we see reduced variance in the results on all 7 BEELINE
benchmarks using TFs + 500 genes evaluated on the STRING network
(with similar trends observed for the other BEELINE benchmarks). The
ideal number of delayed steps may depend on the number of samples/cells
in the data. For a typical scRNA-seq data set, overall we recommend
delaying the addition of the sparse loss by ∼10-30 iterations.

.license
CC-BY-NC-ND 4.0 Internationalpeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was not certified bythis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.525733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.525733
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2023/1/20 — 5:04 — page 4 — #4 i
i

i
i

i
i

4 Zhu and Slonim

0

10

3.3 3.6 3.9 4.2
Early Precision Ratio (EPR)

C
o
u

n
t

a) Distribution of EPR over 100 runs on hESC *

5e-04

1e-03

3.3 3.6 3.9 4.2
Early Precision Ratio (EPR)

S
p

a
rs

e
 L

o
s
s

* The benchmark used here is hESC with TFs + 500 genes on STRING.

b) EPR v.s. Sparse Loss in the same experiment

Fig. 1. a. Original DeepSEM is not stable, producing a wide range of EPR values in repeated
runs on the same data set. b. Poorer performance appears to be correlated with the sparse
loss.
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Fig. 2. Delayed sparse losses reduce performance (EPR) variances in 50 runs on the
BEELINE benchmarks (TF + 500 genes) based on the STRING network

3.2 Improved dropout handling

3.2.1 Training Model on Non-Zero Data Only
Single-cell data is well-known to be noisy. Importantly, many counts of
zero in scRNA-seq data do not truly reflect that there is no expression of
the corresponding transcripts. Rather, these are readings missed by the
instruments, especially when the true expression counts are low. Such
zeros are referred to as "dropout."

The VAE network structure can handle a certain level of noise, but
when the noise is so prevalent and systematic, model performance will
be impacted because we are forcing the model decoder to generate more
random zeros than it truly should. One way to handle dropout is to train
the autoencoder on only the non-zero counts. In other words, when we
account for loss, we ignore prediction errors on fields where the original
expression counts are reported as zeros. In this way, all the numbers
the model encounters are real, which should theoretically improve model
performance.

However, in practice, we find that this method often hurts model
performance on many benchmarks and introduces considerable variance
in the results, as shown in Figure 3. We suspect a side effect of focusing on
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Fig. 3. Training the model on non-zero data may make the model less robust. Delayed
sparse loss helps in many cases, but not always. Results reported over 10 runs on the
BEELINE benchmarks (TF + 500 genes) based on the STRING network.
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Fig. 4. Dropout augmentation and delayed addition of sparse loss make it possible to train
with non-zero data only. Results reported in 10 runs on the BEELINE benchmarks (TF +
500 genes) based on the STRING network.

non-zero values is that it makes the model less robust and more sensitive
to random noise or other factors such as sparse loss. Which effect, the
beneficial or harmful one, is observed on a data set may depend on the
specific number and distribution of zero counts in each dataset. We note that
hESC, hHep, and mHSC-L happen to be the three datasets with the highest
percentage of zeros. Dropping the zero-count data in such cases may lead
to substantial bias in the model. Another possible reason for the differences
might be the different normalization methods used to preprocess the data
(Pratapa et al., 2020).

As shown in Figure 3, we discovered that introducing a delayed sparse
loss often helps to resolve the negative impact of training only on non-zero
counts. However, in other cases, it either has no effect or still leads to large
performance variance (e.g., sample hHep in Figure 3). This observation
encouraged us to think about other methods to improve model robustness.

3.2.2 Dropout Augmentation Keeps Models Robust
We hypothesized that further adding a small number of random zeros,
as if simulating additional dropout, could improve model robustness. We
call this method "dropout augmentation" (DA). This idea follows from a
simple assumption: if some of the original dropout in scRNA-seq data
occurs at random, then a robust model should provide similar results even
if we augment the data with some additional dropout. A random dropout
distribution is both widely assumed and occasionally contradicted in the
scRNA-seq literature. Here, we don’t actually require it to be fully correct,
but it serves to inspire the DA approach.

Our findings in Figure 4 show that an additional5−10%of DA can help
stabilize the model and enable successful training on non-zero data only.
We also notice that in most cases, a small percentage of DA improves model
performance. However, beyond some point, as we increase the amount of
dropout, convergence time may increase and performance degrade because
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Fig. 5. Comparison of GRN-VAE’s performance vs several comparator methods over BEELINE benchmarks. Comparator performance come from the DeepSEM paper.

too much noise makes it too difficult to learn. We have not yet identified a
consistent pattern across datasets, but we found that 5-10% DA works in
most cases.

3.2.3 Comparison of GRN-VAE to Prior Methods
We choose this final model with delayed loss, training on non-zero data,
and dropout augmentation, to compare to prior methods in GRN inference
on the BEELINE benchmarks. A complete comparison between GRN-
VAE and the other algorithms assessed in (Shu et al., 2021) is shown
in Figure 5. Note that for this comparison, we are using the same data
as reported in the Shu et al. (2021) paper, and the results for all the
comparitor methods except for the two versions of GRN-VAE are taken
from the supplement of the DeepSEM paper.

GRN-VAE does not always have the highest EPR, but it is frequently
highest and always close to the best, where most other methods are either
consistently worse or have much more variable performance depending on
the data set. In particular, GRN-VAE’s EPR is quite close to DeepSEM’s.

3.3 Variational Visualization of the latent space in
GRN-VAE

The KL divergence helps a VAE enforce having a smooth and meaningful
latent space, such that when we randomly sample from the learned
distribution Z, we can always generate a truthful reconstruction. In Figure
6, we compare the UMAP (McInnes et al., 2018) visualization of the
original expression data of hESC in BEELINE with the learned latent
variable from GRN-VAE on the same data.

Although UMAP successfully separates cells into temporal clusters in
both cases, the later one has the advantage of showing the trajectory as a
clear gradient. From the perspective of representation learning, the large
blank space in the first plot does not have a practical meaning, suggesting
that the relative positions of the clusters are difficult to interpret. In contrast,
the points in the second plot are evenly distributed while the clusters remain
clearly separated. Thus, the trajectory line observed in the GRN-VAE case
is much smoother, although it still features the characteristic "arch" shown
by many such projection methods on data including a continuous latent
variable such as time (Diaconis et al., 2008). At the same time, since we
learned a probabilistic distribution on the latent variable, the variations and

Fig. 6. UMAP visualizations of the original hESC expression data and the learned latent
variable in GRN-VAE. The uncertainties in the lower plot are collected by sampling the
latent distribution three times.

uncertainties of the learned model could also be visualized by repeatedly
sampling from the learned distribution.

3.4 GRN-VAE characterizes microglial dysregulation

To evaluate how GRN-VAE could help generate scientific insights in a
real-world research scenario, we assess its ability to identify affected
regulations under induced perturbations. We apply both GRN-VAE and
DeepSEM independently on cells with LPC-injected demyelinating injury
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Fig. 7. a. Top 50 most changed regulations based on GRN-VAE and DeepSEM. Inferred links on ribosomal proteins, gene models, and mitochondrial proteins were removed prior to
ranking; b. Top 50 inferred regulations in 10 replicates based on predicted edge weight. An enlarged version of the DeepSEM + Saline graph is included in the online supplement.

and saline-injected control microglia from the Hammond dataset. As stated
in the Methods section, here we use a fixed set of the 5,000 most-varying
genes identified in data from all male mice to ensure the differences we
find are meaningful.

A comparison of the top network differences between LPC-induced
demyelinating injury and controls for both GRN-VAE and DeepSEM is
displayed in Figure 7a. This figure simply shows the inferred regulatory
relationships that appear to change most between the conditions, for each
method. The figure highlights genes that have previously been linked to
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to Multiple Sclerosis, a demyelinating condition often modeled by LPC
injection. Overall, 59% (19 out of 32) of the connected genes predicted
by GRN-VAE have been previously reported as biomarkers for Multiple
Sclerosis, while only 43% (18 out of 42) of the top genes predicted
by DeepSEM are similarly implicated in the literature. We should also
note that several "unrelated" genes in this list have been identified as
biomarkers for dementia, for which demyelination itself is suggested to
be a biomarker (Bouhrara et al., 2018). These results suggest that, while
many potential underlying relationships may not yet have been validated, a
higher fraction of GRN-VAE’s inferred changes are consistent with current
knowledge.

To further demonstrate the impact of methodological instability on
analytical results, we then repeated each of these four network inference
experiments (GRN-VAE on LPC-treated animals, GRN-VAE on Saline-
treated animals, DeepSEM + LPC, and DeepSEM + Saline) ten times.
The results of this stability test are visualized in Figure 7b. Here, the
top 50 predicted links are extracted from each replicate based on the
absolute value of the adjacency matrix; the direction of the change in
regulation is not indicated. We simply count how often the links found in
the top 50 results appear across the ten replicates. We see that most edges
are consistently repeated across the GRN-VAE replicates. However, for
DeepSEM, the most frequent edge occurred in just half of the replicates,
and the vast majority of edges were seen only once. This instability
illustrates that crucial regulatory relationships may be missed by an
unstable inference method.

3.5 Runtime Analysis

The GRN-VAE algorithm runs on the entire adjacency matrix, resulting in
time complexity quadratic in the number of genes and linear in the number
of cells. More pragmatically, the GRN-VAE algorithm on one BEELINE
benchmark with 910 genes and 758 cells converges in 15.9 seconds on
a Nvidia A100 GPU. This is a significant improvement compared to the
43.2 seconds’ execution time using DeepSEM, thanks to our optimized
implementation and the 70% reduction in parameters described in the
methods section.

Furthermore, when applied to the large Hammond dataset, which
includes 5,000 genes and over 2,600 cells, our algorithm finished within
10 minutes after 500 iterations. GRN inference on such large datasets
is simply not computationally feasible for many prior algorithms without
heavy filtering or clustering. This analysis thus demonstrates the scalability
of GRN-VAE and its capacity to be applied on large real-world datasets.

4 Discussion

4.1 Rethinking dropout modeling in scRNA-seq data

Dropout is an interesting pattern inherent in scRNA-seq data. On the
one hand, it makes modeling single-cell data a challenging task. On the
other hand, evidence suggests that dropout is more likely on low counts,
suggesting that there is some information in it. It is even possible to identify
functional information by clustering cells’ dropout patterns (Qiu, 2020).

Nevertheless, instead of eliminating dropout through any form of
imputation, the dropout augmentation idea we propose in this paper
attempts to solve this problem by paradoxically adding more noise to
the data. In this way, our model becomes more robust and is essentially
"vaccinated" against dropout. Dropout augmentation is a simple concept
that can be easily adopted for many other single-cell methods. We are
not aware of any prior work using this approach on single-cell data, but
similar strategies are used in many other fields, such as computer vision
and voice recognition (Li et al. (2019); Liu et al. (2020)). In addition to
adding noise to input data, another strategy to introduce dropout robustness

is to randomly set some model parameters to zero. This is a very popular
technique that prevents model overfitting in deep learning (Srivastava et al.,
2014).

4.2 Stability & robustness are crucial for scientific insights

The stability and robustness of an algorithm may not seem exciting, but
they are crucial for generating meaningful scientific insights. Without
consistent and reliable results, a model not only undermines the
validity of scientific findings but also makes it difficult to generate new
knowledge through comparison. In this work, we focus on this aspect
of GRN inference methods. Our results on the Hammond dataset clearly
demonstrate the importance of model stability.

4.3 Limitations

Through the BEELINE benchmarks, we discovered that dropout
augmentation can enhance a model’s performance up to a certain point.
Beyond that threshold, added noise can impact the model’s ability to learn
from data and ultimately harm its performance. We also find that different
data sets have varying thresholds. For example, a 30% augmentation ratio
improves the average EPR performance for hESC + STRING with TFs
+ 500 genes to 4.78, a 16% increase over DeepSEM. However, a 30%
augmented dropout harms the method’s performance on the mHSC-E and
mHSC-GM data sets, which seem to do better with a lower augmentation
percentage around 5%. Future work should investigate ways to predict
a suitable value for a given data set. We have observed a correlation
between the percentage of zeros and the optimal dropout ratio, but more
work would be needed to demonstrate a causal relationship. Therefore
we suggest keeping the augmentation percentage as a hyperparameter and
recommend a default value of 5-10%.

5 Conclusion
GRN-VAE simplifies the most successful and fastest of recent
GRN inference methods for single-cell RNA-sequencing data. While
maintaining comparable accuracy on benchmark data sets, our method
demonstrates improved robustness, stability, and efficiency. Further,
the incorporation of Dropout Augmentation (DA) for neural network
algorithms learning from single-cell data may have wider applications
beyond GRN inference. Characterizing how best to choose the appropriate
level of DA will be essential to enabling such approaches.
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