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Abstract:  
Fast enrichment of cells based on morphological information remains a challenge, limiting 
genome-wide perturbation screening for diverse high-content phenotypes of cells. Here we show 
that multi-modal ghost cytometry-based cell sorting is applicable to fast pooled CRISPR screening 20 
for both fluorescence and label-free high-content phenotypes of millions of cells. By employing 
the high-content cell sorter in the fluorescence mode, we enabled the genome-wide CRISPR 
screening of genes that affect NF-κB nuclear translocation. Furthermore, by employing the multi-
parametric, label-free mode, we performed the large-scale screening to identify a gene involved in 
macrophage polarization. Especially the label-free platform can enrich target phenotypes without 25 
invasive staining, preserving untouched cells for downstream assays and unlocking the potential 
to screen for the cellular phenotypes even when suitable markers are lacking. 

 
 
One-Sentence Summary:  30 
Machine vision-based cell sorter enabled genome-wide perturbation screens for high-content cell 
phenotypes even without labeling 
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Main Text:  
CRISPR-based pooled screening has several advantages over conventional array-based 
approaches for genome-wide perturbation screens: notably increased throughput, reduced cost, and 
smaller well-to-well batch effect (1) (2). In the pooled phenotypic screening, cells and intracellular 
molecules have been labeled with fluorescent dyes, reporters, or immunofluorescent antibodies. 5 
Cell phenotyping typically requires the quantification of explicitly defined features where 
fluorescence-based labeling is advantageous due to its high specificity and sensitivity to the 
molecules of interest (3). For example, representative values such as total fluorescence are 
measured from temporal signals obtained in fluorescence-activated cell sorting (FACS), or further 
detailed features such as molecular localization and morphologic parameters are evaluated from 10 
optical microscopic images (4) (5) (6) (7) (8) (9). On the other hand, when suitable biomarkers or 
staining methods are not available and cell phenotypes can only be assessed without labeling, 
image analysis based on human-recognizable features can become challenging. To solve this issue, 
machine learning-based analysis of the label-free high-content cell phenotypes is an emerging, 
promising approach beyond the bias of human recognition (10) (11). 15 
 
Here, we present a versatile approach to genome-wide pooled CRISPR screenings for not only 
fluorescence but also label-free high-content cell phenotypes using a machine vision-based cell 
sorter (MViCS), which we newly developed based on our ghost cytometry (GC) technologies. The 
heart of GC is a machine learning-based direct and integrative analysis of cellular morphological 20 
information without image production (11) (12). The high-content information is obtained by 
flowing cells through a structured light illumination and simultaneously detecting multiple 
different ghost motion imaging (GMI) waveforms in a temporal domain through different optical 
paths: fluorescence GMI (flGMI) waveforms excited by a 488 nm laser as well as forward 
scattering GMI (fsGMI), backscattering GMI (bsGMI), diffractive GMI (dGMI), and bright field 25 
GMI (bfGMI) waveforms are generated by a 405 nm laser are measured as analogs to their 
corresponding microscopic images (Fig. 1A left, see Methods). In the development of a classifier 
model based on a support vector machine (SVM), we first define the target high-content 
phenotypes by using the multimodal GMI waveforms with ground truth labels as a training data 
set. After training, the classifier becomes able to predict the labels directly from the GMI 30 
waveforms based on SVM-based scoring. Herein the SVM scores provide users with estimated 
sorting performance such as a precision-recall (PR) curve as well as an area under the receiver 
operating characteristic curve (ROC-AUC) score (Fig. 1A right, see Methods). 
 
Fig. 1B shows the workflow of CRISPR-based pooled screening using the trained classifier in 35 
MViCS. First, cells expressing Cas9 protein are transduced with pooled CRISPR lentiviral 
libraries for loss-of-function of gene sets and selected for stable viral integration. Next, the pooled 
knockout cell library is treated with compounds or reagents and displays a variety of phenotypes, 
where additional assays such as immunostaining can be performed if necessary. We then apply 
MViCS with a machine learning model trained in advance to the library for selectively enriching 40 
cells that exhibit desired high-content phenotypes. Finally, the sorted cells can be subject to various 
types of biological assays including gene analysis such as genome sequencing, protein assays, and 
cell-based functional analysis. In the case of a standard CRISPR perturbation screen, after 
extracting genomic DNAs from the sorted cells, the regions of single-guide RNAs (sgRNAs) are 
amplified by polymerase chain reaction (PCR), pooled, and then read by commercially available 45 
NGS platforms to identify genes that induced the target phenotype. When live cells are sorted, 
transcriptomic analysis using single-cell RNA sequencing methods as well as cell-based functional 
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assays becomes widely applicable.  

 
We first investigated the capability of MViCS to assess the range of fluorescence high-content 
cellular phenotypes (Figs. 2). Figs. 2A to D shows example images of an intracellular phenotype, 
nuclear translocation of NF-κB protein in THP-1 cells, and procedure for developing and 5 
evaluating its classifier in MViCS. In the training of a classifier for nuclear translocation, we 
prepared a cell mixture consisting of LPS-stimulated and unstimulated THP-1 cells stained with 
the combination of anti-NF-κB primary antibody and Alexa Fluor 488-conjugated secondary 
antibody; we stained only the unstimulated cells with a ground truth marker dye before mixing 
them. Note that the total fluorescence intensity for NF-κB staining was similar between the LPS-10 
stimulated and unstimulated cells in the training sample; the two phenotypes were difficult to 
distinguish using a conventional FACS (Fig. 2B). Instead, we trained the SVM-based classifier for 
flGMI waveforms representing the nuclear translocation phenotypes using 1,250 cells for each 
ground truth label. When the trained model is applied to a data set comprising 1,000 waveforms, 
the histogram of returned scores showed bimodal peaks colored based on ground truth labels, 15 
resultantly showing robust and high performance with an AUC score of 0.98 (Figs. 2C, 2D, and 
fig. S1). Similarly, we tested the capability of MViCS to distinguish the fluorescence distribution 
in different organelles of adherent HEK293 cells (Figs. 2E to H, and fig. S2) and TFE3 protein 
subcellular localization in adherent HAP1 parent and FLCN-KO cells (13) (Figs. 2, I to L, and fig. 
S3). As a result, the models for each case exhibit high performances with AUC scores of 0.96 and 20 
0.90. The results show that MViCS is able to classify various types of fluorescence high-content 
phenotypes. 
 
Herein, we focus on nuclear translocation as the target fluorescence high-content phenotype for 
the pooled CRISPR screening. NF-κB molecules downstream of the Toll-like receptor 4 (TLR4) 25 
pathway are translocated to the nucleus upon the activation by lipopolysaccharide (LPS) 
stimulation (14) (Fig. 3A). As an initial evaluation, we first applied a trained classifier in MViCS 
for a small-scale pooled cell library in which 60 genes including downstream of the TLR4 pathway 
were perturbed by using the CRISPR-based system. We prepared 40 sgRNAs targeting 10 genes 
downstream of the TLR4 signal pathway as positive controls and 20 sgRNAs outside of non-TLR4 30 
signaling pathways as negative controls (table. S1). The cells exhibiting suppression of NF-κB 
nuclear translocation were sorted and processed for subsequent deep sequencing. The result 
successfully shows a significant enrichment of cells containing sgRNAs downstream of the TLR4 
pathway in the sorted samples (Fig. 3B, figs. S4, and S5). We then conducted the screening at a 
larger scale using 7,290 sgRNAs targeting 729 kinase genes. We ran 6,000,000 cells through the 35 
system and sorted the target cells within 2 hours (S6 and S7). Analysis of the deep sequencing data 
shows that enriched cells contained sgRNAs targeting MAP3K7, IRAK4, IKBKB, and IKBKG 
genes, which are downstream of the TLR4 pathway (Fig. 3C, fig. S8, and S9). Thus, we have 
demonstrated that the GC-based pooled CRISPR screening is applicable for fluorescent high-
content phenotypes at a large scale.  40 

 
In addition, we tested whether the degree of cellular phenotype can be quantified using 
fluorescence GC to the same extent as image analysis using microscopy. Concretely, we compared 
SVM-based analysis of GMI waveforms and nuclear translocation scores obtained by analyzing 
images taken with a commercial image flow cytometer for CRISPR knockout cell lines 45 
individually targeting MYD88, MAP3K7, IRAK4, and TNFRSF, respectively. SVM-based 
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prediction probabilities were calculated as values ranging from 0 to 1 using the trained SVM 
classifier (see Methods), and nuclear translocation scores were obtained as the degree to which 
two images (i.e., NF-κB and nuclear images) are overlapped using analysis software equipped with 
the image flow cytometer (15) (16). The correlation coefficient between these scores was high (R 
= 0.914) and this result suggests that GC-based phenotypic screening is comparably quantitative 5 
as the high-content microscopic image analysis (Figs. 3D, 3E, and fig. S10). 
 
Again, we first investigated the capability of MViCS to assess the range of label-free high-content 
cellular phenotypes: cell polarization, cell differentiation, and cell exhaustion (Figs. 4). Figs. 4A 
and 4B show example microscopic images and average scattering properties of label-free 10 
morphological phenotypes associated with the polarization of THP-1 cells from M0 to M1 
macrophages, respectively. Figs. 4C and 4D show a procedure for developing and evaluating their 
morphological classifier in MViCS. In the training of a classifier in MViCS, we separately 
prepared M0 and M1 macrophages and then mixed the two populations as the training sample (17) 
(fig. S11). Herein we used the combination of FSC, BSC, and the label-free fsGMI and bfGMI 15 
waveforms to train SVM-based classifiers with 1,000 cells for each ground truth label. When the 
trained model is applied to a data set comprising 1,000 waveforms, the histogram of returned 
scores showed bimodal peaks colored based on validation labels, resultantly showing a high 
performance with an AUC score of 0.89, enabling the classification of the high-content phenotypes 
of M0 and M1 macrophages in the absence of surface markers. While we note that M0 and M1 20 
polarized macrophages were apparently not easily distinguishable by brightfield microscopy or 
FACS (Figs. 4A and 4B), this, in turn, supports the MViCS’s ability of robust and accurate 
classification. Similarly, we tested the capability of MViCS to classify another label-free high-
content phenotype of cell differentiation such as THP-1 monocytes and THP-1-derived 
macrophages  (Figs. 4E to G) as well as that of exhausted (LAG3/PD-1 double positive) and non-25 
exhausted (LAG3/PD-1 double negative) human primary T cells (17) (18) (Figs. 4H to J). As a 
result, the models for each case exhibit high performances with AUC scores of 0.94 and 0.92 (Fig. 
4G, 4J, figs. S12 and S13). The results show that MViCS is able to classify various types of label-
free high-content phenotypes. 

 30 
Herein, we focus on the morphological change in the polarization from inactivated macrophage 
(M0 macrophage) to classically pro-inflammatory macrophage (M1 macrophage) as the target 
label-free phenotypes and apply the pooled CRISPR screening to identify the genes involved. 
Macrophages are key cell types in innate immune systems such as tissue repair, inflammation, and 
cancer, and polarize to different subtypes with various functions including the ability of cytokine 35 
secretion and that to respond to injury or pathogenic damage (19) (20). It is often difficult to define 
their biological functions with only a few surface markers such that the isolation of live cell 
populations based on their functions becomes challenging. Thus, assuming that the macrophage 
polarization correlates with their morphology, we here intend to test if our systems can screen the 
involved genes based on the change in the label-free high-content cell morphological information 40 
without relying on any surface markers. In the training of a classifier in MViCS, we separately 
prepared M0 and M1 macrophages and then mixed the two populations as the training sample; 
only M0 macrophages were stained as a ground truth label before mixing with the M1 
macrophages. Using the trained classifier and the kinase library, we conducted a large-scale pooled 
CRISPR screening, where the cells exhibiting suppression of M1 polarization phenotype were 45 
sorted and subjected to deep sequencing (Fig. 4A to D, fig. S11, S14 and S15). 
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By analyzing the enrichment of sgRNA after the sorting, we identified several genes that 
potentially induced macrophage polarization (Fig. 5A, fig. S16, S17, table S2, and table S3). 
Notably, the top hit gene, BRD2, has been reported as an essential gene for pro-inflammatory 
cytokine production in macrophages (17) (21). The results of decreased expression of the M1 
marker and secretion of pro-inflammatory cytokines such as IFNγ and TNFα in BRD2 CRISPR 5 
knockout M1 cells supported the hypothesis that the BRD2 gene is an important modulator of the 
M1 inducer gene (Figs. 5B, 5C, and fig. S18). Thus, we demonstrated that the large-scale GC-
based pooled CRISPR screening is applicable for label-free high-content phenotypes, which can 
be difficult to distinguish with human-defined features by using standard FACS and possibly even 
conventional microscopes. 10 

 

Machine learning models trained in GC can flexibly target a variety of high-content cell 
phenotypes, depending on the characteristics of the cell population and the classification objective. 
In this study, we have trained models with each pair of two cellular phenotypes explicitly defined 
with a ground truth marker and demonstrated the high performances of these classification models. 15 
This approach is extensible to cases where only one phenotype can be defined in the screening 
process by employing anomaly detection methods such as one-class SVM, which can be readily 
implemented in the current MViCS. However, there are often cases where no appropriate 
molecular markers or staining methods are available to define a cell phenotype and the cells of 
interest show morphological heterogeneity in the pooled population. In such cases, it becomes 20 
important to be able to define and sort the desired phenotype by using only the GMI waveforms. 
To investigate this potential capability of MViCS, we visualized GMI waveforms shown in Figs. 
2C and 4C with uniform manifold approximation and projection (UMAP). We performed UMAP 
after reducing the dimensionality of GMI waveforms with principal component analysis (22). (Figs. 
6). In Fig. 6A, the UMAP projection of fluorescence GMI waveforms obtained for the mixture of 25 
LPS-stimulated and unstimulated cells containing fluorescently labeled NF-κB molecules exhibit 
clearly distinct two clusters; we confirmed that the two are LPS-stimulated and unstimulated ones, 
respectively. The distinct representation of LPS-stimulated and unstimulated populations indicate 
that we can potentially train classification models based on the populations defined in the UMAP 
space as we do for molecular marker-based populations. In addition, Fig. 6B shows that cells 30 
represented as distinct in the UMAP space have different SVM scores, which were quantified in 
Fig. 2D. This result indicates that morphological differences identified in supervised learning 
algorithms can also be captured by unsupervised learning algorithms including UMAP and other 
dimensionality reduction methods. In Fig. 6C, same as the fluorescence case, we projected the 
label-free GMI waveforms obtained for the mixture of THP-1-derived M0 and M1 macrophage 35 
cells in UMAP with colors assigned based on the ground truth labels. As a result, Although M0 
and M1 macrophages were not represented as distinct clusters in the UMAP projection, Fig. 6D 
shows that their distributions are still consistent with the SVM score obtained from the 
classification model in Fig. 4D. These analysis results strongly support that the GMI waveforms 
alone will allow us to define the target high-content cellular phenotypes if the morphological 40 
difference is discernible in unsupervised manners. 

 
A technical advantage of MViCS-based CRISPR screening over conventional FACS-based 
screening is that it integratively analyzes more detailed information about cells for a more accurate 
cell selection. In fluorescence-based cell phenotyping, this method is shown to be powerful when 45 
there is no significant difference in total fluorescence intensity despite different cell phenotypes, 
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such as subcellular localization of proteins or changes in different organelles (Figs. 2). The 
advantage of utilizing high-dimensional GMI waveforms is also true for the case of label-free 
cellular phenotyping (Figs. 4). Indeed, only with conventional FSC and SSC (Fig. 4B), the 
classification of macrophage polarization states becomes difficult even if the SVM method is used 
(fig. S11D). The analysis in fig. S11D also shows that the combinatorial use of the average 5 
characteristics of FSC and SSC with the detailed GMI waveforms constructively improves the 
classification accuracy. Similarly, we can also foresee that the combinatorial use of surface 
markers-based cell definition with the label-free high-content cellular phenotyping in MViCS is 
beneficial to look at finer cell differences between cell subtypes of immune cells and cell states 
such as activation, exhaustion, and differentiation. 10 

 

MViCS’s unique capability of resolving both the fluorescence and label-free high-content cellular 
phenotypes holds potential for the discovery of various new targets including gene perturbations 
as well as compounds. The fluorescence mode is effective, especially when molecules or 
subcellular features of interest are predetermined, and enables the screening based on the change 15 
in the spatial distribution of the targeted molecules or features. Examples include aggregation or 
degradation of proteins as well as decomposition of intracellular organelles as indicators of 
mechanism of action (23) (24) (25). The label-free GMI waveforms uniquely capture the detailed 
morphological change as a phenotypic response of each entire cell. We further prospect that, in 
future implementations, the simultaneous use of the fluorescence and label-free GMI waveforms 20 
will enable cell-based screening based on the combinatorial analysis of the changes in 
fluorescently labeled target proteins and the detailed holistic high-content cell phenotypes (26) 
(27) (28).  

 
In summary, we report the development of high-content and large-scale pooled CRISPR screening 25 
by fast and selective sorting of cells based on machine vision on their high-content phenotypes. 
We anticipate that MViCS will be widely used for the screening of further important cellular 
phenotypes by combining various available machine learning methods and existing biomarkers 
with its high-content analysis capability. When combined with single-cell sequencing techniques 
(29) (30) (31) (32), this method is compatible with the pooled screening of various DNA-tagged 30 
perturbations including antibodies (33), compounds (34), shRNAs (35) and peptides (36). 
Importantly, not limited to the fluorescence-based cellular phenotypes, our machine learning-
based label-free high-content cell analysis enabled the enrichment of target phenotypes without 
invasive staining, preserving ‘untouched’ cells for downstream functional assays and thus finding 
a wide range of biological applications.  35 
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Fig. 1. A machine vision-based cell sorter (MViCS) employing multimodal ghost cytometry 
enabled fast pooled CRISPR screening of high-content fluorescence as well as label-free cell 5 
phenotypes. 
(A) Schematic depicting a process of simultaneously acquiring a list of cellular morphological and 
structural information as different ghost motion imaging (e.g., flGMI, fsGMI, bsGMI, dGMI, and 
bfGMI) waveforms for each cell and using these data sets for developing machine learning (ML)-
based classifier of high-content cellular phenotypes. The GMI waveforms are analogs to 10 
microscopic images and used to phenotype cells at subcellular resolutions. (B) A workflow of 
pooled high-content CRISPR screening by the MViCS. A gene-knockout cell library prepared by 
using CRISPR-Cas9 system is treated with a compound or other reagents to display phenotypes. 
The MViCS with a pre-trained machine learning model selectively enriches cells that exhibit the 
target high-content phenotype for downstream analysis. For gene analysis in this work, the sgRNA 15 
regions inserted in the isolated genomic DNAs are amplified and sequenced to determine the 
enriched/depleted genes in response to the treatment. When live cells are used, transcriptomic 
analysis and cell-based functional assays are widely applicable.  
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Fig. 2. High-content cell phenotypes distinguishable by fluorescent GC.  
Fluorescence GC classified (A-D) nuclear translocation of NF-κB proteins in suspension THP-1 5 
cells, (E-H) lysosome (Lamp1) and mitochondria (COX III) in adherent HEK293 cells, and (I-L) 
TFE3 protein subcellular localization in adherent HAP1 parent and FLCN-KO cells. (A, E, I) Cell 
images obtained with a commercial imaging flow cytometer are shown left. Scale bars are 10 μm. 
(B, F, J) Conventional FACS scatter plot of fluorescent intensity of labeling to detect cellular 
phenotyping versus that of a ground truth marker. (B) Fluorescent intensity of Alexa488-labeled 10 
NF-κB proteins versus that of Fixable Far-Red dye which labeled only LPS unstimulated cells as 
ground truth. (F) Fluorescent intensity of Alexa488-labeled Lamp1 (lysosome) and COX III 
(mitochondria) proteins versus that of Fixable Far-Red dye which labeled only cells with the 
Lamp1 proteins stained as ground truth. (J) Fluorescent intensity of Alexa488-labeled TFE3 
proteins versus that of Fixable Far-Red dye which labeled only parent (WT) cells as ground truth. 15 
(C, G, K) Example fluorescence GMI (flGMI) waveforms of 20 cells randomly selected for each 
condition. (D, H, L) Classification results of fluorescent cell phenotypes. The performances of 
ML-based classification are shown as histograms of SVM scores, wherein red and blue colors are 
assigned by using ground truth labels, and Area Under the ROC curve (AUC) scores. 
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Fig. 3. High-throughput pooled CRISPR screening of fluorescent high-content phenotypes. 
(A) Genes downstream TLR4 signaling pathway were targeted to be knocked out by using a small-5 
scale library. (B) Enrichment of gRNAs after MViCS-based enrichment based on nuclear 
translocation of NF-κB. (C) Volcano plot visualization of statistical significance (y-axis) and 
magnitude of the change (x-axis) between before and after the cell sorting, wherein the statistical 
significance was calculated with Mann-Whitney U test. Dashed lines: cutoff for hit genes (FDR: 
False discovery rate = 0.01). (D) Fluorescent images of NF-κB (green) co-localization with nuclei 10 
(magenta) inside MYD88, MAP3K7, IRAK4, and TNFRSF CRISPR-knockout cells and those of 
LPS (-) and LPS (+) cells for control (scale bars are 10 μm). (E) A correlation coefficient between 
SVM-based prediction probabilities in GC and similarity scores obtained by a conventional image 
flow cytometry was 0.914. n = 3 biological replicates. 
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Fig. 4. High-content cell phenotypes distinguishable by label-free GC.  
Label-free GC classified (A-D) THP-1-derived M0 and M1 macrophages, (E-G) THP-1 5 
monocytes and THP-1-derived macrophages, and (H-J) exhausted (LAG3/PD-1 double positive) 
and non-exhausted (LAG3/PD-1 double negative) human primary T cells. (A, E, H) Bright-field 
cell images on a dish were obtained with a microscope and those in a flow were obtained with a 
commercial imaging flow cytometer. Scale bars are 30 μm and 10 μm, respectively. (B) 
Conventional FACS scatter plot of FSC and SSC. (C, F, I) Example label-free GMI waveforms 10 
of 20 cells randomly selected for each condition. (D, G, J) Classification results of label-free cell 
phenotypes. The performances of ML-based classification are shown as histograms of SVM scores, 
wherein red and blue colors are assigned by using ground truth labels, and Area Under the ROC 
curve (AUC) scores.  
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Fig. 5. High-throughput pooled CRISPR screening of label-free high-content phenotypes.  
(A) Volcano plot visualization of statistical significance (y-axis) and magnitude of the change (x-5 
axis) between before and after the cell sorting, wherein the statistical significance was calculated 
with Mann-Whitney U test. Dashed lines: cutoff for hit genes (FDR = 0.01). (B) Expression of 
macrophage surface markers in control M0, control M1, and BRD2 CRISPR KO M1 cells, where 
we used CD11b as a pan-macrophage marker and CD38 as an M1-specific marker. n = 3 biological 
replicates. (C) Cytokine (IFNγ and TNFα) release profiling of the control M0, control M1, and 10 
BRD2 CRISPR KO M1 cells. Supernatants were collected from three independent experiments. 
Data are presented as mean ± SD; Welch’s t-test: *p < 0.05, ***p < 0.001. n = 3 biological 
replicates. 
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Fig. 6. UMAP projection of GMI waveforms. 
(A) UMAP projection of fluorescence GMI waveforms obtained for LPS stimulated (orange) and 5 
unstimulated THP-1 cells (blue). The same UMAP plot shown in A is colored according to SVM 
scores obtained in the classification of NF-kB fluorescence GMI waveforms for the LPS-treated 
cells (stimulated vs unstimulated). (C) UMAP projection of label-free GMI waveforms obtained 
for THP-1-derived M0 (blue) and M1 (orange) macrophage cells. (D) The same UMAP plot shown 
in C is colored according to SVM scores obtained in the classification of label-free multimodal 10 
GMI waveforms for the cells at different polarization states (M0 vs M1). 
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