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ABSTRACT Membrane surface reconstruction at the nanometer scale is required for understanding mechanisms of subcellular
shape change. This historically has been the domain of electron microscopy, but extraction of surfaces from specific labels
is a di�cult task in this imaging modality. Existing methods for extracting surfaces from fluorescence microscopy have poor
resolution or require high-quality super-resolution data that is manually cleaned and curated. Here we present a new method for
extracting surfaces from generalized single-molecule localization microscopy (SMLM) data. This makes it possible to study the
shape of specifically-labelled continuous structures inside of cells. We validate our method using simulations and demonstrate
its reconstruction capabilities on SMLM data of the endoplasmic reticulum and mitochondria. Our method is implemented in the
open-source Python Microscopy Environment.

SIGNIFICANCE We introduce a novel tool for reconstruction of subcellular membrane surfaces from single-molecule
localization microscopy data and use it to visualize and quantify local shape and membrane-membrane interactions. We
benchmark its performance on simulated data and demonstrate its fidelity to experimental data.

INTRODUCTION
Changes in cellular membrane shape are linked to viral replication, Alzheimer’s disease, heart disease and an abundance
of other maladies (1–7). Understanding the morphological mechanisms behind these diseases requires imaging not only the
locations of protein clusters causing structural changes in a membrane, but finding the underlying shape of the membrane at
relevant size scales. Some membranous organelles, such as the endoplasmic reticulum (ER) and the Golgi, have diameters as
small as ⇠ 50 nm, requiring an image resolution of 25 nm or better to properly resolve structure (8, 9).

Electron microscopy (EM) techniques have a resolution of 2 nm or better and are well-suited to imaging membranes.
However, segmentation of membrane structures from EM images can be arduous (10, 11) and it can be di�cult to label and
identify specific proteins in EM samples. Immunolabeling with gold nanoparticles, the most common method for specifically
labeling proteins in EM samples, requires fixation methods that often destroy cellular structures, and gold nanoparticle locations
must be individually extracted from among other, unstained cellular features (12, 13).

Fluorescence microscopy techniques can be used to spectrally separate multiple fluorescent labels, allowing for easy
identification of both membrane-associated and membrane-interacting proteins. However, conventional fluorescence microscopy
techniques achieve a resolution no better than 250 nm and are therefore unable to visualize membrane curvature at true size
scales. Single-molecule localization microscopy (SMLM) techniques, such as PALM, STORM, and PAINT, image the positions
of proteins with ⇠ 10 � 20 nm resolution (14). This is su�cient for imaging membrane structural changes of interest (15). In
contrast to EM imaging techniques, which show a continuous membrane, SMLM yields a sparse and noisy point cloud of
fluorophore locations, each with an uncertainty that depends on the brightness of the underlying blinking event. To visualize
and quantify a membrane, it is necessary to interpolate a continuous surface through these positions.

In the fields of remote sensing (16) and 3D scanning (17), Screened Poisson Reconstruction (SPR) (18) is often used to
extract surfaces from point clouds. SPR reconstruction is designed to follow point locations exactly, giving it high fidelity to
collected positions. SPR has been applied to SMLM data (19), but this required extremely high quality data that was manually
curated and pre-processed. Due to labelling ine�ciencies and sampling, SMLM data often shows holes in large regions of a
structure. Fluorescent labels often bind to not only molecules of interest, but to other, non-specific targets in the sample. This
and sample autofluorescence can generate spurious background localizations (20). The stochastic nature of SMLM imaging
means each fluorescent molecule may blink multiple times thus appearing as multiple points, each in a slightly di�erent spot.
Adhering strictly to all of these points will not necessarily generate an accurate surface approximation of the underlying structure
the point cloud represents.
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In order to generate an accurate surface from general SMLM data, it is necessary to account for the localization precision of
each point. By weighting each point’s influence on surface structure by its precision, a surface is allowed to move away from
points with low uncertainty while still adhering to the data. This makes it possible to ignore contributions of poorly-localized
spots arising from auto-fluorescence and non-specific binding. Zhao et al. developed theory for incorporating localization
uncertainty to fit SMLM data sets, but did not create an implementation (21). To our knowledge, no research group has
demonstrated a general method for fitting surfaces to SMLM data that leverages information about localization uncertainties.

Here we present a novel algorithm that creates surfaces from SMLM point clouds yielded by a sparsely-labeled, continuous
structure. Our algorithm incorporates localization uncertainty into its fitting routine and works for any SMLM data set.
Smoothing techniques are often applied to extracted surfaces to achieve reasonable shapes (22, 23), and such an approach is
used in our method. This algorithm is implemented in PYthon Microscopy Environment Visualize1 for ease-of-use, integration
with additional SMLM acquisition and analysis techniques, and the ability to pass localizations acquired via a user’s microscope
and software of choice to the algorithm (24).

MATERIALS AND METHODS
Our algorithm (a shrink-wrapping method) is sketched in Figure 1. It takes an initial, coarse surface that loosely approximates a
point cloud and iteratively refines the structure under point fidelity and curvature constraints.

Initial / starting mesh
A set of single-molecule localizations, which are expected to sample a continuous structure, are placed in a sparse octree data
structure (25). The octree is truncated at a given minimum number of localizations per octree cell (equivalent to a minimum
signal-to-noise ratio—see (26)). This has the e�ect of dividing the volume into cubic cells with sizes that adapt to local point
density. Cells will be large in areas with few localizations, and small in areas which are localization dense. Cells containing
fewer than the minimum number of points are not stored. The result is a volumetric data structure that contains the same
information as a regularly sampled grid, but requires significantly less memory. The density of localizations in each cell is
calculated. The Dual Marching Cubes algorithm is run on these cells with a given threshold density (27). The result is a
manifold triangular mesh that separates high from low density areas. Because of sparsity in SMLM labelling, the threshold
density is ideally set a bit low in order to create a single surface that encapsulates the whole structure.

Topology modification
A purposefully low threshold density occasionally misrepresents a disconnected portion of the structure sampled by the
localizations as connected. To address this, vertices with highly negative Gaussian curvature are deleted, and resulting holes in
the mesh are stitched with fresh triangles. This operation removes false, thin necks in between portions of the surface. This
operation is performed in regular intervals throughout our iterative fitting process.

Mesh quality
Our surface is periodically remeshed to improve the numerical quality of subsequent calculations (28). Remeshing consists of a
number of operations—splitting long edges, collapsing short edges, “flipping” edges where too many are incident on a vertex,
and regularly spacing vertices along the surface. Together, these remeshing operations result in a well-formed mesh where the
edge lengths are roughly constant, the number of edges incident on a single vertex is roughly constant, and the triangles are
roughly equilateral.

The minimum edge length of the mesh needs to sample all available data. This means properly sampling the size scale
of our smallest available features, which are at the size scale of the minimum localization precision in the input point cloud.
Starting from the edge length size of the input coarse isosurface, the mesh edge lengths decrease linearly with each remeshing
step toward min8 f8

2.5 –that is, toward 0.4⇥ the minimum localization precision. This ensures the iterative fitting makes large
adjustments early in the fitting and fits detailed features later on.

Mesh optimisation
The resulting mesh is refined to achieve high fidelity to the localization input data under a curvature constraint. This is expressed
mathematically as a minimization problem:

1https://python-microscopy.org
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where p is a vector containing localization positions, v is a vector containing mesh vertex positions, the p � A(v) term
represents the distances between each localization and the mesh, 2 is a vector containing localization uncertainties, B(v)
encodes a curvature penalty, and _ is a constant controlling the relative weighting of point fidelity and curvature terms. This is
iteratively solved using a conjugate gradient method (29).

If, after refinement, the mesh does not change shape significantly as compared to its shape in the previous iteration, or
if the given maximum number of iterations is reached, the algorithm terminates and the resulting surface is presented as an
approximation of the underlying structure. Otherwise, the surface is passed back to the topology modification step and all
subsequent steps repeat.

Figure 1: A flow diagram of the proposed algorithm. Localization data is first approximated by a coarse, density-based isosurface.
This surface is topologically modified to remove thin necks, remeshed for improved numerical quality, and then moved toward
the localizations subject to a curvature force constraint. The pipeline runs iteratively until stopping criteria are met. The result is
a membrane approximation of the underlying continuous structure sampled by the input localizations.

Point fidelity term
Notation:

p the # ⇥ 3 array of fluorophore localizations
p8 = Æ?8 the 8th localization (1 ⇥ 3)
2 # ⇥ 3 array of the uncertainty of the localizations
28 the uncertainty of the 8th localization (1 ⇥ 3)
v the " ⇥ 3 array of mesh vertices
v: = ÆE: the :th mesh vertex (1 ⇥ 3)
ÆE 9 the 9 th vertex of a given mesh face
ÆE; the ;th vertex neighbour of a given vertex

The point attraction term seeks to minimize the distance between each localization and the surface. For each localization,
we approximate its distance to the surface as the distance to a proxy point formed by a linear combination of the three vertex
positions that define its closest surface face. The weightings used in the linear combination are computed as follows, based on
the inverse distance from a localization Æ?8 to each vertex ÆE 9 in its nearest face.

F8 9 =
1

| | Æ?8 � ÆE 9 ( Æ?8) | |

,
2’
9=0

1
| | Æ?8 � ÆE 9 ( Æ?8) | |

(2)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.525798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.525798


Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

The position of the proxy point is then calculated as

A(v)8 =
2’
9=0

ÆE 9 ( Æ?8)F8 9

giving the distance metric:

[p � A(v)]8 = Æ?8 �
2’
9=0

ÆE 9 ( Æ?8)F8 9 .

This metric is asymptotically equal to the true distance to the surface at small distances, but trends to the distance between the
localization and the center of its nearest face (all vertices weighted equally) at large distances. This behaviour was deliberately
chosen to ensure sensible updating of vertex positions—for a localization close to the surface we want it to mostly pull on the
closest vertex, whereas a point that is far away (compared to the face edge length) should pull equally on all vertices of the face.

This distance metric is weighted by
1

28

⇣
[p�A(v) ]8

228
+ 1

⌘

as shown in Equation 1. The 1
28

term ensures distances near a localization produce minimal cost. The remaining fraction
de-weights localizations that are particularly far away, while still letting them exert influence on the surface. This ensures the
surface can shift to accurately fit all points in a point cloud if necessary, but places priority on moving toward the centroid of its
nearby points first. Since localizations are Gaussian-distributed, they should exercise most of their influence within 228 of their
position.

Curvature term
When minimizing curvature at a vertex, there are multiple possible formulas to choose from. One of the simplest is the Laplacian
discretization of the Canham-Helfrich bending energy (30),

⇢bend (ÆE:) =
^

2
1
⌦:

"’
;
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where ⌦: =
p

3
4

Õ
; | |ÆE: � ÆE; | |2, ÆE; is the ;th neighbor of vertex ÆE: , and ^ is the sti�ness coe�cient for the lipid composition of

the membrane. The local bending energy at vertex ÆE: can then found by minimizing
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1
#

2
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or the squared distance between a vertex and the centroid of its neighbours (Æ2:). This formulation, however, leads to a shrinking
of the membrane, with a surface constrained entirely by curvature eventually collapsing to an infinitely small sphere (a valid, but
trivial solution to the bending energy minimization problem). As a result, balancing this curvature term with a point-attraction
term will always lead to a surface approximation that lies inside the true surface. In practice, the shrinking e�ect is su�ciently
strong that a curvature weighting (_) low enough for the point attraction to prevent excess shrinkage will lead to an excessively
rough surface.

An alternative, area-preserving approach to curvature minimization (B2) is to penalise the distance between a vertex and a
location on the surface of a sphere fit to the vertex’s neighboring vertices. B2 can be approximated as

B2 = ÆE: �
1
#

’
;

"
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where Æ=: and Æ=; are the normals of vertex : and its ;th neighbour. This parameterization works when the surface is well-
constrained by localization data, leading to a smooth surface with good a�nity to the localizations, but can result in large, static
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“blebs” in areas where the starting estimate was poor and localizations are sparse. Our empirical solution is to use B2 where the
influence of localization data is high, smoothly transitioning to the area minimizing approach, B1, as influence decreases. This
gives B the following form:

B = (1 � U)B1 + UB2

= ÆE: � Æ2: � UÆ=:
1
#

’
;

(ÆE; � Æ2:) · Æ=:p
2Æ=: · Æ=; + 1

.

The empirical value for alpha is

U = min
⇣
| |A|I| |2, 1

⌘
= min ©≠

´
"’

8

F8 9

#2

, 1™Æ
¨

where A is the operator that generates point-fidelity proxy points and F8 9 is as defined in equation 2 above.

Simulation
SMLM point clouds were simulated from a theoretical figure eight, defined by a signed-distance function (see Supplementary
Information). Simulations varied point-cloud density and number of background localizations.

Quality evaluation
To assess the accuracy of the method described in this paper as compared to SPR, surfaces were fit to simulated point clouds
and then compared to the theoretical structure giving rise to these point clouds. When making this comparison we must consider
two types of error 1) the distance from the true surface to the reconstructed surface and 2) the distance from the reconstructed
surface to the true surface. Although these might seem redundant at first glance, it is possible for a surface to appear good under
metric 1 whilst having bad performance under metric 2. An example of this is a structure that mostly closely follows the true
surface, but also has “blebs” or extrusions away from the true surface. Because the distance in metric 1 just considers the parts
of the reconstruction which are closest to the true structure, “blebs” and extrusions are not penalised and metric 1 returns a
small distance. A reconstruction which follows part of the ground truth correctly, but is truncated such that it does not extend
into all areas of the ground truth, can score well on metric 2. A good reconstruction minimizes both of these metrics.

The distance between surfaces was calculated numerically as follows; a set of of noise-free verification points were simulated
exactly on the surface of the theoretical structure, and a set of noise-free points were simulated on the fit surface. The mean
squared distance from the verification point set to its nearest neighbors in the mesh point set was computed as quality metric &1.
The mean squared distance from the mesh point set to its nearest neighbors in the verification point set was computed as quality
metric &2. Mesh quality was scored as a combination of the two error types:

& =

r
&1 +&2

2

where & is the root-mean-square error, representing the average distance from the mesh to the theoretical structure.

Cell Culture
U-2 OS cells (HTB-96; ATCC; Lot: 70008732) were grown in McCoy’s 5A medium (16600-082; Gibco) supplemented with
10% FBS (10438-026; Gibco). These cells were subcultured with 0.05% Trypsin (Gibco).

Sample preparation
Immunofluorescence samples were generally prepared as follows. Approximately 1 million cells in 90 µL were transfected via
electroporation with about 10 µg of plasmid with a Super Electroporator NEPA21 Type II (Nepa Gene). The cells were then
seeded onto coverslips that were, unless otherwise noted, treated in an ozone chamber for 30 minutes. Cells were chemically
fixed the following day with 3% paraformaldehyde (15710; Electron Microscopy Sciences) and 0.1% glutaraldehyde (16019;
Electron Microscopy Sciences) for 15 minutes at room temperature while gently rocking. The glutaraldehyde fixation was
quenched by washing the samples with 0.1% sodium borohydride in 1⇥PBS for 7 minutes followed by washing with 100 mM
glycine in 1⇥ PBS for 10 minutes. Samples were then rinsed three times with 1⇥PBS followed by a 3-minute incubation at
room temperature with permeabilization bu�er (0.3% IGEPAL CA-630 + 0.05% Triton X-100 + 0.1% (w/v) BSA in 1⇥ PBS)
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and another three rinses with 1⇥PBS. Samples were blocked for 1 hour at room temperature (0.05% IGEPAL CA-630 + 0.05%
Triton X-100 + 5% normal goat serum in 1⇥ PBS), followed by an overnight incubation with the primary antibody diluted in
block bu�er at 4� C while gently rocking. The following day, the samples were washed three times with wash bu�er (0.05%
IGEPAL CA-630 + 0.05% Triton X-100 + 0.2% (w/v) BSA in 1⇥PBS), incubated with secondary antibodies diluted in block
bu�er for 1 hour at room temperature while gently rocking, washed three more times with wash bu�er, and finally rinsed three
times with 1⇥ PBS. For astigmatic/4Pi-DNA-PAINT imaging of overexpressed mCherry-Sec61V or 4Pi-DNA-PAINT imaging
of TOMM20-mCherry, samples were immunolabeled with rabbit anti-mCherry primary at a 1:500 dilution (ab167453; Abcam)
or rabbit anti-TOMM20 primary at a 1:500 dilution (sc-11415; Santa Cruz Biotechnology), respectively. Both samples were then
labeled with an oligonucleotide-conjugated goat anti-rabbit IgG secondary antibody (115-005-146; Jackson ImmunoResearch)
at a 1:200 dilution, as described previously (31). For two-color 4Pi-STORM imaging of overexpressed mCherry-Sec61V and
endogenously expressed TOMM20, samples were labeled with a combo of two mouse anti-mCherry primaries each at a 1:250
dilution (GTX630195 and GTX630189; GeneTex) and rabbit anti-TOMM20 primary at a 1:500 dilution (see above). They were
then labeled with a goat anti-rabbit secondary conjugated to AF647 at a 1:1000 dilution (20812; Biotium) and a goat anti-mouse
secondary with a single conjugated CF660C dye on each secondary antibody at a 1:1000 dilution (A21245; Invitrogen). The
mCherry-Sec61V plasmid was acquired from Addgene (49155).

Microscopy
4Pi-SMS two-color samples of TOMM20 and mCherry-Sec61V were prepared and imaged using ratiometric dSTORM as
described previously (32). 4Pi-SMS one-color DNA-PAINT samples were imaged on the same custom microscope, but with
fluorogenic DNA-PAINT (see DNA-PAINT method below). Astigmatic data was collected using a custom-built microscope
described previously (33) with the only filter used being a bandpass filter (FF01-694/SP; Semrock). Astigmatism was
implemented by adding a cylindrical lens to the fluorescence light path.

DNA-PAINT
All DNA-PAINT data was collected using the fluorogenic DNA-PAINT method described previously (31). Briefly, samples
were imaged using the following imager probe containing a dye and a quencher: 5’ - Cy3B - AAGAAGTAAAGGGAG - BHQ2
- 3’. This imager probe was diluted to 10 nM for both astigmatic and 4Pi imaging of mCherry-Sec61V and 1 nM for 4Pi-SMS
imaging of TOMM20-mCherry in a high ionic-strength PBS-based bu�er (1⇥PBS, 500 mM NaCl, 20 mM Na2SO3, and 1 mM
Trolox, pH 7.3-7.5).

RESULTS AND DISCUSSION
Validation on test structures
A three-dimensional figure eight (two toruses touching) was simulated with both varying localization density and background
(see Supplementary Information). For each condition, the parameters for both SPR and the method described in this paper were
grid searched. The resulting meshes were scored as described in Quality evaluation. For each condition, the mesh with the
lowest RMS error (&, see Quality evaluation) from each method was selected for comparison. The results are shown in Figure 2.

Both our method and SPR work well when there is a high density of points and low background. As density decreases and
background increases, SPR has a harder time fitting an accurate surface. Our method continues to work, with RMS errors to the
theoretical surface less than the localization precision (2) of the point cloud over a greater range of SMLM-like densities and
backgrounds than SPR.

Application to SMLM data
4Pi PAINT SMLM

An SMLM image of overexpressed mCherry-Sec61V was taken using fluorogenic DNA-PAINT on a 4Pi-SMS microscope as
described in Sample preparation. 4Pi imaging provides isotropic resolution (32, 34). Our algorithm was applied to this data,
resulting in a visually accurate surface fitting of ER, as shown in Figure 3. This surface carries quantitative information, such
as axial position (Figure 3A and C) and curvature along the surface (Figure 3A and D). Cross-sections of the data show an
accurate fitting of the surface to the point-cloud data (Figure 3E-G). Quantification of ER tubule diameter in a portion of this
image is shown in Figure S1 and is in good agreement with previously reported values (35).
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Figure 2: A comparison of SPR and our method on simulated point clouds of a 3D figure 8, which is approximately 800 nm in
diameter and 100 nm thick. A, Our simulation method of going from a signed distance function to a set of localizations to a
fit surface. B, Heat map plots of Screened Poisson Reconstruction and our method (Shrinkwrap) as a function of simulated
localization density and background.

Multimodal SMLM
To demonstrate the algorithm’s use under varying conditions, surfaces were generated from data collected using 4Pi fluorogenic
DNA-PAINT, 4Pi two-color dSTORM, and conventional astigmatism with fluorogenic DNA-PAINT. Our shrink-wrapping
algorithm is able to produce reasonable surface estimations for these data sets, as shown in Figure 4. In two-color data, each
color channel can be fit independently to yield relationships between surfaces (Figure 4 D-F). For example, the distance between
surfaces can be calculated and visualized on the surfaces themselves (see Figure S2). This particular use has the potential to
provide information about the location of membrane contact sites between the ER and other organelles that exhibit exceptionally
small distances, 10 to 30 nm, between membranes (36). Poorer axial localization precision in the astigmatic data (Figure 4 G-I)
leads to greater uncertainty in the fit along this direction. However, by averaging contributions of multiple localizations, the
final position of the surface is quite reasonable.

CONCLUSION
Examining the interplay of membrane surfaces and proteins is critical to understanding cellular function (37). The shrink-
wrapping algorithm described in this paper provides a new way for researchers to quantify membrane surfaces from
single-molecule localisation microscopy data. We believe it will enable them to investigate the structure and biophysical
properties of organelle and cellular membranes and their associated proteins.

Our method enables higher fidelity to single-molecule localization microscopy data than previously-demonstrated methods,
and functions across a wide range of localization densities and backgrounds. For ease-of-use, shareability and adaptability,
it is packaged as open-source software and is accessible via an interactive GUI. It is su�ciently fast and memory-e�cient
to be used on standard lab computers (e.g. mid-range laptops). Our method is available for download as a PYME plugin at
https://github.com/python-microscopy/ch-shrinkwrap.
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Figure 3: A, 4Pi fluorogenic DNA-PAINT data of mCherry-Sec61V; Top: Point-cloud data displayed as 10 nm point sprites
with alpha set to 0.5 and colored by each point’s position in z according to the lookup table described in B/C; Middle: The
shrink-wrapped surface created based on the point-cloud data colored by each vertex’s position in z according to the lookup
table described in B/C; Bottom: The same shrink-wrapped surface, but colored by the mean curvature at each vertex according
to the lookup table described in D. B-D, ROI shown by the hashed cyan box in A displayed in the three di�erent ways described
in A. B-C lookup table (from bottom to top): 0 to 800 nm. D lookup table: -0.01 to 0.01 nm�1. E-G, Cross section in x-z shown
by the hashed magenta line in A. E, Point cloud displayed as 10 nm green spheres. F, Shrink-wrapped surface displayed in
magenta. G, Point cloud and shrink-wrapped surface displayed together. Scale bars are 1 µm (A-D) and 200 nm (E-G).
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Figure 4: Application of the algorithm on data from varying SMLM imaging modes. A-C, 4Pi fluorogenic DNA-PAINT
localizations from TOMM20. D-F, Two-color 4Pi dSTORM localizations of TOMM20 and Sec61V. G-I Astigmatic 3D
fluorogenic DNA-PAINT localizations from Sec61V. A/D/G, x-y view of localized point cloud. B/E/H, x-y view of resulting
surface. C/F/I, x-z view of surfaces and points overlaid. Scale bars are 1 µm (A,B,D,E,G,H) and 200 nm (C,F,I).
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