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Exploration is vital for animals and artificial agents who face uncertainty about their environ-8

ments due to initial ignorance or subsequent changes. Their choices need to balance exploitation of9

the knowledge already acquired, with exploration to resolve uncertainty [1, 2]. However, the exact10

algorithmic structure of exploratory choices in the brain still remains largely elusive. A venera-11

ble idea in reinforcement learning is that agents can plan appropriate exploratory choices offline,12

during the equivalent of quiet wakefulness or sleep. Although offline processing in humans and13

other animals, in the form of hippocampal replay and preplay, has recently been the subject of14

highly successful modelling [3–5], existing methods only apply to known environments. Thus,15

they cannot predict exploratory replay choices during learning and/or behaviour in dynamic envi-16

ronments. Here, we extend the theory of Mattar & Daw [3] to examine the potential role of replay17

in approximately optimal exploration, deriving testable predictions for the patterns of exploratory18

replay choices in a paradigmatic spatial navigation task. Our modelling provides a normative in-19

terpretation of the available experimental data suggestive of exploratory replay. Furthermore, we20

highlight the importance of sequence replay, and license a range of new experimental paradigms21

that should further our understanding of offline processing.22

Subjects use direct experience to learn two structurally different quantities relevant to their choices:23

model-free values that quantify the long-run summed reward expected from performing an action;24

and a model or cognitive map of the environment or task they face [6, 7]. Model-free values offer25

a simple way of specifying a behavioural policy. Following Sutton [8], Mattar & Daw [3] suggested26

that replay during offline behavioural states could be interpreted as subjects employing the model to27

simulate potential experiences and using them to make the model-free values more accurate.28

Each replay update can potentially improve a subject’s policy. Mattar & Daw [3] showed that the29

maximal expected improvement is achieved when the choice of state and action to replay is deter-30

mined by two factors: Gain and Need (see Supplementary information). Gain quantifies the extra31

reward the subject expects to receive from the newly updated policy at the update state. Need is a32

global measure of the relevance of the update state (the strength of the successor representation there33

[9]) under the old policy. The combination of these factors allows replay to propagate information34

about reward efficiently through the environment.35

However, the forms of Gain and Need in Mattar & Daw [3] assume that the model of the environ-36

ment is known. Subjects are instead typically at least partially ignorant, because of incomplete initial37

information, forgetting or change. Exploration is thus required – and was indeed the original rationale38

of Sutton [8]’s DYNA architecture. Absent exploration, replay choices would be purely exploitative,39

and thus incomplete (Fig 1). Here, we study how replay can help generate behavioural policies which40

trade exploration off against exploitation in an approximately optimal way.41

There are two coarse flavours of exploration: undirected and directed [10], along with many42

heuristic and approximate versions of the latter. Undirected exploration comes from introducing43

stochasticity into choice. Although sometimes effective [11], it is typically suboptimal. Rather, ex-44

ploration should be directed to reducing the uncertainty about which actions in the environment are45
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Figure 1: Exploitative replay can result in suboptimal behaviour. A) Normalised state occupancy of the subject during
first 2000 moves of exploration and learning in the environment. The start state is located at the bottom (shown with the
white letter ’S’) and the goal state is shown with the yellow clover. The barriers are shown as opaque blue lines. Importantly,
all barriers were not bidirectional, and hence could only be learnt about when attempted from an adjacent state from below.
All states were visited by the subject, including those besides the barriers (darker blue corresponds to higher occupancy). B)
Normalised maximal Gain that the subject estimated for the replay of each action (depicted with triangles), averaged across
all 2000 moves. Only those actions for which the Gain was estimated to be positive are shown (darker red corresponds
to higher Gain). The actions which the subject would replay yielded a more exploitative policy which helped the subject
acquire reward at a higher rate. C) Normalised maximal Need for each state that the subject estimated, also averaged
over those same 2000 moves. All values were additionally averaged over 10 simulations. Darker orange corresponds to
higher Need. D-F) Same as (A-C) but for additional 2000 moves during which the top barrier was removed. Note that the
estimated Gain did not change. Moreover, the state occupancy profile in D), as well as the estimated Need in F) highlight
how the subject’s behaviour reduced to pure exploitation. Because of the environmental change, however, this behaviour
was rendered suboptimal due to the existence of a shorter path that the subject did not discover.

ultimately best [12]. One standard heuristic [8] (see also [13]) is to add a form of notional exploration46

bonus to the outcome of actions whose consequences are uncertain.47

Optimal exploration amounts to performing optimal control in a belief-state decision problem in48

which the physical state of the subject in the environment is augmented by the subject’s probabilis-49

tic beliefs about the environment (in our later spatial case, how likely it thinks barriers are to have50

been removed). This generates policies which account carefully for the longer term consequences of51

the resolution of the uncertainty from exploration [14, 15], trading the potential costs and benefits of52

doing this off against exploitation of current knowledge. Such principled accounting is radically com-53

putationally intractable, for instance because the space of possible beliefs is continuous, implying that54

the optimal policy can be very complex. We show how exploratory forms of Gain and Need (which55

extend the original notions to the belief-state decision problem) can generalise the use of replay to56

realise a limited version of this accounting offline.57

We demonstrate the implications of our theory in a rich spatial environment specifically designed58

to illuminate all facets of the hard exploration problem faced by animals (and, to highlight the gener-59

ality of our results, we report in the supplement the simpler case of multi-arm bandit problems). Our60

maze, inspired by Tolman [16], comprises three corridors which merge onto the common stem leading61

to the goal location (Fig 1). Those corridors differ in length, and thus an optimal reward-maximising62

agent (and rats [16]) would prefer the shortest corridor. However, either just the shortest, or all but63
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the longest, path might possibly be blocked by barriers. The accompanying uncertainty provides the64

motivation for exploration.65

Figure 2: Exploratory replay leads to online discoveries, but potentially inadequate promulgation. A) Prior state of
knowledge of the subject. The intensity of the (red-scale) colour of each action arrow shows the respective model-free Q-
values. Collectively, the action values represent the subject’s model-free behavioural policy (i.e., the subject is more likely
to choose actions with higher estimated Q-values – which at each state are highlighted with white outlines). Similarly, the
states are coloured according to the maximal model-free Q-value at each state (which corresponds to state values, shown
in purple). The inset next to the top barrier indicates the subject’s prior belief about its presence (for the other barrier, the
subject was certain that the path was blocked). The red dotted line in the inset shows the expected probability that the
barrier is absent. The subject itself (green dot) is located at the start state. The goal state with reward is denoted with the
yellow clover. B) Changes in the subject’s model-free policy occasioned by exploratory replay updates. The numbers next to
each action arrow indicate the order in which the replay updates were executed. C) New model-free policy which resulted
from exploratory replay updates in B). Note how the action values now indicate that the subject should go towards the
upper barrier (highlighted with white outlines). D) After pursuing the exploratory policy, the subject attempted to cross the
top barrier; unfortunately, the barrier was found to be present – this is indicated by both the subject’s model-free Q-value
associated with that action which was learnt online, as well as its new belief. E-F) Same as in B-C) but after the online
discovery of the present barrier in D). The first replay choice of the subject correctly propagated the negative value of the
present barrier to the immediately preceding state. However, as opposed to propagating this information deeper towards
the start state, and hence correcting the exploratory policy in the light of the new information, the next replay choice of the
subject made it more likely to visit an adjacent state which still contained the previously propagated exploration bonus, and
hence had a high value that was erroneous given the subject’s new knowledge.

For exploratory Gain: suppose that the subject is at a physical location just next to a barrier that66

it is uncertain is there, and is contemplating the action that might cross over and get closer to the67

goal (Fig S8). If the barrier is actually present, the action will fail, leading to the certain belief that the68

barrier is there, and no Gain. If the barrier is actually absent, this action might succeed, leaving the69

subject in a new location, and with a new belief that the barrier is absent. This imagined outcome is70

associated with high Gain, because of the implied shortcut estimated, in our account, based on the71

high model-free values for the new location. The net exploratory Gain comes from averaging these72

quantities according to the subject’s initial uncertainty about the existence of the barrier.73

Exploratory Need quantifies the expected future occupancy at any given state but accounting for74

how the subject’s prior belief state might evolve and what it can learn in the future. However, just as75

the original Need, it suffers from a chicken-and-egg problem, in that if the subject adopts the purely76

exploitative policy of the known-to-be-open longest path, then the Need for the potential shortcut77
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transition is zero (as the state next to the barrier is not visited). This is particularly problematic for78

off-policy exploration which requires visitation of states currently estimated to be unworthy. For79

simplicity, we make the approximation of including stochasticity in the subject’s behavioural policy80

(for instance, in the form of undirected exploration) such that Need is strictly positive for all possible81

belief states. This is achieved through applying a softmax behavioural policy [11].82

The calculations of exploratory Gain and Need differ crucially from Mattar & Daw [3] in terms83

of generalisation. Individual physical locations (such as those next to barriers) can be visited with84

different beliefs about the environment. Importantly, discovering that a barrier is present/absent is85

information for all belief states associated with that barrier. This requires the subject to generalise the86

benefit of potential discoveries across multiple belief states (Fig S7).87

As mentioned earlier, optimally accounting for the evolution of the subject’s beliefs is woefully88

intractable. We therefore incorporated an approximation [17] for the estimation of exploratory Need89

(see Supplementary information). The subject optimally tracks how its belief will evolve up to a90

limited planning horizon beyond which the residual uncertainty remains fixed. This means that the91

subject still maintains its subjective uncertainty about the possible futures (unlike other potential ap-92

proximations [18]); however, it assumes that no new knowledge can be acquired or environmental93

changes take place beyond its planning horizon.94

Figure 3: Sequence replay helps deep value propagation. The layout of the figure is the same as in Fig 2. A-C) Show
the subject’s initial and uncertain state of knowledge, changes to the online behavioural policy occasioned by exploratory
replay, and the new updated exploratory policy due to such replay, respectively. The crucial difference being that the replay
in B) was a sequence event – i.e., the whole chain of actions was updated simultaneously (the actions which were updated
in the replayed sequence are linked by a green line; the green triangles along that line additionally indicate the reverse
direction of the replayed sequence). D-F) Again, the subject discovered the top barrier, learnt about its presence online and
engaged in replay to recompile its model-free behavioural policy in the light of the negative information. Note how, in this
case, sequence replay in E) resulted in deep propagation of the value of such information all the way towards the start state.
The sequence replay thus enabled the subject to correct its exploratory policy appropriately as shown in F).

We simulated behaviour in the Tolman maze and examined the replay patterns produced as a95

result of uncertainty about the presence of the upper barrier (Fig 2). Note that the subject has to96

choose which arm to pursue at a decision point remote from the potential barrier location. There is97

thus substantial cost for exploration: the subject has to have sufficient belief that the barrier is open –98

otherwise the potential benefit of exploration (i.e., discovering a shortcut) would not exceed the cost99
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of deviating from the current behavioural policy (i.e., its current reward rate) [19].100

Here, the subject’s uncertainty resulted in consecutive replay updates which originated at the po-101

tential barrier location and progressed towards the subject’s location in a reverse manner (Fig 2A-C).102

Those replays propagated the value of exploring the barrier towards the subject’s current location,103

and the resulting new model-free behavioural policy indicated exploration was worthwhile (Fig 2C).104

As just discussed, the extent to which the subject was uncertain determined how large was the ex-105

ploratory bonus that reached the subject’s current state – and thus produced policies with different106

incentives for exploration (Figs S5 and S6).107

Resolving uncertainty can often result in unfortunate outcomes, for instance if the barrier is found108

actually to be present (Fig 2D). If this happens, it is important for the subject to correct the full ex-109

ploratory policy that had led to the discovery in the light of the negative information it acquired. We110

find that in our simulated Tolman maze, single-action replay updates do not handle this appropri-111

ately: the discovered value of the present barrier does not propagate deeply enough towards those112

states which had been updated with the exploratory bonus of the obsolete belief (Fig 2E-F). This is113

because single-action updates are myopic: the estimated benefit of a single-action update does not114

account for how that update can affect the benefit of potential future updates. This problem does115

not arise if the shortcut is found to be available, or in stationary environments with monotonic value116

structures, since then the replay naturally spreads the (correct) good news in backwards sequence117

[20].118

One plausible solution is to consider the benefit of simultaneously updating a sequence of actions,119

as opposed to relying solely on updates at single states. This benefit combines Gain, that accumulates120

with the propagated policy changes (provided that all those changes result in policy improvements),121

as well as Need along that sequence of actions. We found that sequence replay results in deep prop-122

agation of the value of a discovered barrier, along the whole chain of actions which had previously123

been endowed with the exploration bonus (Fig 3).124

There is one further aspect of the data on exploratory replay: experimental evidence implicates the125

hippocampus in constructing replay sequences through previously unexplored spaces [21, 22]. In our126

account, this corresponds to replay in potential future belief states which the subject has not visited127

yet but imagines encountering. We manipulated the barrier configuration in our maze to produce a128

corridor segment in the central arm with both sides occluded by barriers (Fig 4A-C). Examining the129

replay patterns chosen by the subject due to uncertainty about the presence of both barriers revealed130

sequence replay in the corridor. Such replay propagated the exploratory value of learning about the131

possibility of entering the corridor (resolving uncertainty about the bottom barrier; Fig 4B bottom),132

exiting it (learning about the top barrier; Fig 4B top) and ending up in a state close to the goal. Sim-133

ilarly, we simulated the experiment from Ólafsdóttir et al. [22] which resulted in the ’preplay’ of the134

goal-cued (but not uncued) arm prior to experience (Fig 4D).135

Some of the most important facets of learning in the brain involve building inverse models: this136

characterises bottom-up, recognition, models of sensory processing in cortex [23]; the maintenance137

and expansion of the relationship between cortical and hippocampal representations in memory [24–138

26]; and the determination of policies that maximise reward and minimise punishment given infor-139

mation about the environment [8]. Offline processing, evident in replay, offers a way of building and140

refining inverse models of all these forms without disturbing ongoing behaviour. However, to de-141

termine good policies, it is not enough to build an inverse model based on just current information;142

active observers have the obligation to collect new information too, and balance this against exploita-143

tion. This obligation can be satisfied by inverting a more sophisticated model of the environment that144

includes uncertainty; here, we showed how to conceive of (reverse) replay as performing this inverse.145

This provided new insights into the nature and structure of offline activity – for instance surfacing the146

importance of sequence replay, as well as predictions for new experimental paradigms.147
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Figure 4: Replay in a blocked corridor. A) Initial state of knowledge of the subject. Note that the model-free Q-values
in the blocked corridor are all initialised to 0, thus mimicking the subject’s inexperience with the segment. The subject’s
belief state comprised its uncertainty about the presence of the top and bottom barriers that create the corridor. B) Replay
choices of the subject due to its initial and uncertain state of knowledge. Note that the sequence replay event was performed
across two different belief states: action updates inside the corridor (top) corresponded to a different belief state since they
followed the potential transition through the bottom barrier which the subject had to first learn about (bottom). C) New
exploratory policy occasioned by the replay updates in B). D) Same setup as above, but simulating offline rest replay in the
T-maze experiment from Ólafsdóttir et al. [22]. The top row shows the initial state of knowledge of the subject. In the actual
experiment, ’Rest 1’ replay events were measured before the animals’ experience of the environment, and during ’Run 1’
they explored the central stem which was blocked by a see-through barrier. In ’Run 1’, none of the arms contained a visible
reward (which are depicted with unfilled yellow clovers). No detectable replay was observed in the two arms during the
’Rest 1’ condition. ’Rest 2’ replay events were measured during a rest period after a visible reward was placed in the ’cued’
arm (filled yellow clover) but before the animals could experience it (i.e., before the barrier was removed). Note that we
rendered the see-through barrier as potentially permeable (as reflected in the subject’s uncertain belief) due to which the
subject could contemplate during rest the possibility of crossing it and obtaining the reward. The bottom row shows the
resulting exploratory policy after the subject was allowed to replay with the knowledge of the reward in the cued arm.
This new policy resulted from replay in the cued (and not uncued) arm. Note that, as in B), such replay was performed in
a different belief state (corresponding to learning that the barrier was open) than the subject’s prior belief state, and thus
could potentially only be detected after the actual experience. Data from Ólafsdóttir et al. [22]. Yellow dotted lines show
chance detection level. ns, not significant; ***, p < 0.001.
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1 Methods148

We treated the (navigational) decision-making problem in our variant of the Tolman maze as a par-149

tially observable Markov Decision Process (POMDP). The subject was designed in the spirit of the150

DYNA architecture, such that online decisions were made according to the behavioural model-free151

policy, and offline planning was used for additional training of the model-free controller. The sub-152

ject was endowed with a probabilistic belief about the existence of barriers in certain locations in the153

maze; every decision (real or imagined) therefore transitioned the subject to a new belief state which154

comprised the subject’s physical state, as well as its updated posterior belief, which became its new155

prior belief. For planning (replay), the subject considered how its belief state would evolve up to a156

fixed horizon. The value of each imagined belief state was approximated with the subject’s model-free157

Q-values at the corresponding physical location. Moreover, we considered just three possible beliefs158

for the existence of each barrier: the initial uncertainty (which can be continuous), and either certain159

presence or absence. The priority of each replay update was determined by the expected long-run im-160

provement to the subject’s current belief state engendered by each potential replay update. The replay161

updates were executed until the expected improvement was estimated to be below a fixed threshold.162

For sequence replay updates, the maximal length of each potential sequence was limited to the dis-163

tance from the start state to the uncertain barrier. We report a more detailed theoretical account of our164

modelling in the Supplementary information.165
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2 Supplementary information166

Theory background167

Reinforcement learning168

In reinforcement learning (RL) [6], subjects learn to make appropriate decisions in order to maximise169

expected gains and minimise potential losses. Learning proceeds through interaction with an environ-170

ment which supplies a sparse learning signal. The environment is typically formalised as a Markov171

Decision Process (MDP), which is a tuple ⟨S,A,P,R, γ⟩ where S is the set of states, A is the set of172

actions available at each state, P : S × A × S → [0, 1] is the Markov transition kernel which specifies173

the transition probabilities between states given an action, R : S → R is a bounded reward func-174

tion which comprises the learning signal, and γ ∈ [0, 1) is the discount factor which determines the175

appetitiveness of delayed rewards.176

The subject’s behaviour in an environment is governed by its policy, π : S × A → [0, 1], which,177

for every state, outputs a probability distribution over the set of available actions. At each time step,178

the subject interacts with its environment and receives the reward signal. The (possibly infinite) dis-179

counted collection of rewards the subject accrues along a trajectory of decisions is called the return.180

One main goal for a reinforcement learning subject is to predict the expected rewarding consequences181

of following policy π starting at a state s. This can be written as182

V π(s) = Eπ

[ ∞∑
t=0

γtRt | S0 = s

]
(1)

A closely related task is instead to estimate the expected return for performing some action a in a183

given state s, in which case they are referred to as Q-functions:184

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt | S0 = s,A0 = a

]
(2)

The second main goal is to learn an optimal policy, π∗, which for any starting state s prescribes185

how to maximise the expected return:186

π∗ = max
π

Eπ

[ ∞∑
t=0

γtRt | S0 = s

]
(3)

An MDP need not have a unique optimal policy. However, the optimal value function V π∗
(s) and187

Qπ∗
(s, a) functions are unique. In particular, any action a = argmaxa′∈AQ

π∗
(s, a′) can be chosen.188

Model-free control189

Several algorithmic approaches exist to solving the problem of optimal control in RL tasks. One pop-190

ular example is Q-learning [27], which is an important and widely used algorithm for learning the191

optimal Qπ∗
-function. It belongs to a more general class of model-free temporal difference algorithms192

which, after every experienced interaction with the environment, successively update their value193

function estimates based on the encountered reward prediction errors. Specifically for Q-learning,194

the update rule at iteration n is:195

Qn+1(s, a)← Qn(s, a) + α

[
R(s′) + γmax

a′∈A
Qn(s′, a′)−Qn(s, a)

]
(4)

Here, the Q-value estimate is updated towards the difference (or prediction error) between the196

initial estimate, Qn(s, a), and the sum of the observed reward at the next state reached and the dis-197

counted maximal Qn-value at that state,R(s′)+γmaxa′∈AQn(s′, a′), weighted by the learning rate, α.198

Note that the action that optimises Qn+1(s, a′) at s might be different from the one used in equation 4199

that optimised Qn(s, a′)200
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The Qn+1-values themselves can be used to determine a policy, for instance:201

πn+1(s, a) =
eβQ

n+1(s,a)∑
a′∈A eβQn+1(s,a′)

(5)

where β > 0 is an inverse temperature parameter that controls how deterministic is πn+1. Since202

πn+1(s, a) favours actions with higher Qn+1-values, it tends to be better than πn(s, a) in terms of203

expected return. The remaining stochasticity is a crude method for arranging a mix of exploration204

and exploitation.205

Model-based control206

A different solution is to learn a model of the environment which can then be used to perform prospec-207

tive planning of the actions to execute. Value functions can also be acquired using the recurrent Bell-208

man equation [28], for instance:209

Qn+1(s, a) =
∑
s′

P(s′ | s, a)
[
R(s′) + γmax

a′∈A
Qn(s′, a′)

]
(6)

Here, the recurrent relationship between the successive states allows the subject to make use of its210

knowledge of the transition structure of the environment (the model P) to propagate the information211

about future rewards towards its current situation or state in the environment. If the subject does in-212

deed know the model (also including R), then various forms of planning can be used to compute the213

long-run consequences associated with the available actions at decision time and make a far-sighted214

and informed decision. Value iteration [28] is one example planning algorithm which iteratively per-215

forms synchronous updates (for all states and actions in each sweep) specified by Equation 6. Such216

updates are also called Bellman backups because of the application of the Bellman equation. Given217

a perfect model of the environment, P , such procedure is guaranteed eventually to converge to the218

optimal value function.219

DYNA and prioritized sweeping220

There is evidence for the use in animals, and the utility in artificial agents, of both model-free and221

model-based control [29]. This poses obvious questions about their arbitration and integration [5, 7,222

13]. One important suggestion for integration is that information could be transferred from the model223

that the model-based controller possesses into the model-free controller, so that the latter can provide224

better informed choices.225

In RL, the most common version of this process is known as experience replay [30], and lies at226

the heart of many successful algorithms [31]. Although, as we will discuss later, it was originally227

designed for the purpose of exploration, the so-called DYNA algorithm [8] has been used to underpin228

this process. In DYNA, an agent learns model-free value functions online by direct experience with229

the environment, as well as learning the model of that environment. During offline states, DYNA uses230

its learnt model to sample possible transitions and rewards, which are then used to perform further231

training of the model-free value functions to perform a more effective form of model inversion.232

Given this overall structure, it becomes natural to consider which transitions or rewards should be233

sampled from the model (or replayed). One important algorithmic notion is prioritized sweeping [20],234

in which replays are chosen in an order that effects a form of optimal improvement in the model-free235

value functions.236

Gain and Need237

Mattar & Daw [3] synthesised the ideas of DYNA and prioritised sweeping and proposed a princi-238

pled, normative scheme for the ordering of planning computations. They suggested that each replay239

experience corresponds to a Bellman backup (Equation 6) which uses information from a generative240

model of the environment to update a specific model-free state-action value.241
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Mattar & Daw [3] observed that what is important about an update at a state (which could be242

distal from the current state of the agent) is whether it changes the subject’s behavioural policy. For243

example, performing a planning computation at state sk corresponds to changing the model-free value244

for action ak at that state. Such a change is significant if the agent’s behavioural policy changes at sk;245

the agent can then estimate the consequence of that change for the expected return from its current246

state or a start state.247

Mattar & Daw [3] showed that the subject can calculate how a replay update to action ak at state248

sk changes the amount of reward it can obtain in the future starting from a potentially different state249

s. By decomposing the difference in the subject’s model-free value function estimate before and after250

the policy update occasioned by such replay update, Vπnew(s)−Vπold(s), Mattar & Daw [3] showed that251

this expression can be written as:252

Vπnew(s)− Vπold(s) =
∑
x∈S

∞∑
i=0

γiP (s→ x, i, πold)×
∑
a

[πnew(a | x)− πold(a | x)]Qπnew(x, a) (7)

Furthermore, by assuming that each individual replay update to the model-free value of action ak253

results in a policy change at a single update location, sk, equation 7 can be simplified into the product254

of Gain and Need, which Mattar & Daw [3] termed the expected value of a backup (EVBπold):255

EVBπold(sk, ak) =
∞∑
i=0

γiP (s→ sk, i, πold)︸ ︷︷ ︸
Need

×
∑
a

[πnew(a | sk)− πold(a | sk)]Qπnew(sk, a)︸ ︷︷ ︸
Gain

(8)

Gain quantifies the expected local improvement in the subject’s behavioural policy at state sk as256

a result of the replay update. Thus, Gain is higher for those replay updates which result in greater257

policy changes at the update state. Need, on the other hand, quantifies how likely is the subject to258

visit the update state in the long run, given its model of the environmental transition dynamics and259

behavioural policy before the update.260

In rodents, the hippocampus is a structure known to be involved in aspects of model-based control261

[32–34]. Mattar & Daw [3] suggested that the reactivation of sequences of behaviourally-relevant262

experiences during quiet wakefulness and sleep for which the hippocampus is well known [35] is an263

expression of this sort of prioritized replay. They thereby explained a wealth of experimental findings264

on the selection of replay experiences in rodents [32, 33] as well as humans [5, 36].265

Exploration266

As discussed in the main text, exploration in MDPs can be accomplished by the use of heuristics267

which estimate the amount of the subject’s (in)experience with its environment. One such celebrated268

heuristic is based on the ’optimism in the face of uncertainty’ (OFU) principle which posits that actions269

whose outcomes are uncertain should receive a sort of exploration bonus which would encourage the270

subject to pursue them. Sutton [8]’s exploration bonus indeed took that form:271

Qn+1(s, a)← Qn(s, a) + α

[
R(s′) + ϵ

√
#(s,a) + γmax

a′∈A
Qn(s′, a′)−Qn(s, a)

]
(9)

Improved exploration in DYNA (also known as DYNA-Q+) was achieved by updating its model-272

free Q-values according to Equation 9 during offline planning. Here, #(s,a) is a count-based heuristic273

which grows with the number of time steps since that state-action pair had last been attempted, and ϵ274

is a free parameter which controls the amount of influence this uncertainty bonus has on the Q-value275

update. By using this update rule, actions which have not been tried for an extended period of time276

come to look more appealing, which happens to be particularly useful in dynamic environments with277

unsignalled changes.278
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Note that by virtue of the Q-learning update rule (Equation 4), the exploration bonus awarded to279

a distal state-action pair (Equation 9) propagates towards state-actions which lead to it, hence encour-280

aging off-policy exploration. The bonus itself, however, is myopic, since it does not reflect the benefit281

of learning about the uncertain state-action in the first place.282

Optimal exploration, on the other hand, entails a more careful evaluation of how resolving one’s283

uncertainty may be useful in the long-run and whether the acquired knowledge would be of any use284

for subsequent exploitation. Such thorough evaluation requires the subject to maintain an explicit285

model of its uncertainty and what possibilities abound.286

Partial observability287

The classical MDP formalism assumes that the subject knows the model of the environment with288

which it interacts. It does not, however, capture the ignorance that subjects (at least partially) face289

when learning about their environments. Such ignorance can be treated as a form of incomplete290

information which the subject can (at least to some extent) complete with experience.291

Partially observable Markov Decision Processes (POMDPs) are a generalisation of MDPs in which292

the subject can lack direct access to some knowledge that is required to learn a good policy. For in-293

stance, the subject can be ignorant about the state it occupies because instead of perfect information294

from the environment it receives noisy and ambiguous observations; equally, the subject can be un-295

certain about the transition dynamics that govern its movement through the environment.296

Each observation in a POMDP therefore grants the subject a piece of information which it can use297

to update its knowledge about the environment in an optimal manner. A sequence of observations the298

subject collects is formally referred to as history. Critically, the subject’s policy in a POMDP depends299

on its full history of observations, since this history determines its state of knowledge about the envi-300

ronment, and thereby determines the decisions it ought to make. The dependence on history violates301

the Markovian assumption (which requires that future transitions and rewards are statistically inde-302

pendent of the history, given the present state), and POMDPs are therefore not amenable to classical303

MDP solutions.304

Instead of keeping track of all encountered observations the subject can maintain a sufficient statis-305

tic of the entire history. This sufficient statistic is called the subject’s belief, and it concisely summarises306

the knowledge that the subject has acquired. With each new observation the subject can optimally307

update its beliefs in the light of new information. Beliefs can be viewed as a new, subjective, state for308

a decision problem; they do satisfy the Markov property, and so it is possible to formulate POMDPs309

as MDPs where each state of the process is the subject’s belief.310

A belief MDP is therefore formally defined as a tuple ⟨B,A, T ,R, γ⟩ where B is the (continuous)311

set of belief states,A is the set of actions, T : B×A×B → [0, 1] is the (Markov) belief transition kernel,312

R : B → R is a bounded reward function, and γ ∈ [0, 1) is the discount factor. Thus, as opposed to the313

original MDP formulation, in belief MDPs the subject transitions through augmented belief states. For314

our matters, each belief state, b = {s ∈ S, P (P)}, encompasses the subject’s physical location in the315

environment, s, as well as its probabilistic model of uncertainty, P (P), about the presence/absence of316

barriers at several locations.317

The formalism of belief MDPs permits the construction of policies which optimally trade-off ex-318

ploration and exploitation [37]. To see this, consider the case that the subject is uncertain about the319

state transition model P , and therefore maintains a prior belief P (P). Firstly, the probabilistic belief320

allows the subject to learn optimally upon receiving observations from the environment – in the case321

of transition uncertainty, by noting which state each transition leads to. This is accomplished by cal-322

culating a posterior belief using Bayes’ rule. For instance, after observing a transition from state s to323

s′, an optimal belief update corresponds to:324

P (P | s′) = P (s′ | P)P (P)∑
x∈S P (x | P)P (P)

(10)

Note that a general POMDP formalism typically involves an observation function whereby the325

subject has no direct access to the state of the world, and it therefore receives noisy observations326
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which lead to uncertain state estimates. In our setting, the subject has direct access to its physical327

state in world; however, the transition structure is non-trivial in the sense that it can change without328

the subject being aware of such changes taking place. The subject’s uncertainty can result from either329

the subject having an explicit probabilistic belief of how the transition dynamics might change in the330

course of a task, or, alternatively, because of forgetting, which can be thought of as a heuristic version331

of the former.332

Secondly, the subject can plan the future possibilities by making use of its uncertainty and allo-333

cating the prior probabilities to each of the considered outcomes. Those outcomes, in turn, result334

in more potential learning which the subject also accounts for by performing the same updates as335

in Equation 10 but for simulated futures (those transitions are governed by the belief MDP transi-336

tion function, T ). This allows the subject to foresee the long-run consequences associated with each337

exploratory decision and whether it can potentially result in better future return.338

Model description339

Replay updates340

The subject makes use of its transition model as well as the associated uncertainty to envision the341

possible evolution of its belief. This can be visualised as a planning tree which is rooted at the sub-342

ject’s current belief state, bρ. The subject considers all possible actions from this root node, and adds343

additional nodes for each new belief state that results from applying those actions (according to the344

belief transition model, T ) – this corresponds to adding a single step horizon to the planning tree.345

Applying the same procedure to all nodes at the new horizon further deepens the tree and expands346

the planning horizon.347

Similarly to physical states in MDP problems, each belief state can have an associated value which348

reflects how much reward the subject expects to obtain by being in that belief state and acting accord-349

ing to some policy. Those values, however, are initially unknown to the subject, and the reason for350

performing replay updates in the belief tree is to propagate the value information from future belief351

states to the subject’s current belief state. Since belief states are continuous, we restrict the subject’s352

planning horizon to a fixed depth. This means that belief states containing reward may be beyond353

the subject’s reach. However, the subject’s model-free system is likely to have an estimate of how354

valuable each physical location is. Therefore, the model-based value of each action a at every belief355

state b = {s, P (P)} in the planning tree, which we refer to as Qn
MB(b, a), is initialised to the subject’s356

model-free estimate of the value of performing this action at the physical location in that belief state,357

Q0
MF (s, a).358

When performing replay updates, the subject considers the effect of each action at every belief359

state in the tree rooted at its current belief state. For example, when considering the effect of action360

a at belief state b = {s, P (P)} which attempts to cross a potential barrier, the subject accounts for the361

possibility of transitioning into one of two new belief states: b′open = {s′, P ′
open(P)}, which corresponds362

to the fortunate outcome of discovering that the barrier is absent, and b′closed = {s, P ′
closed(P)}, which363

corresponds to the unlucky outcome of the barrier being present. The value associated with executing364

action a at belief state b is updated towards the estimated values of the next belief states:365

Qn+1
MB(b, a) = Qn

MB(b, a) +
∑

b′∈{b′open,b
′
closed}

T (b′ | b, a)
[
R(b′) + γmax

a′∈A
Qn

MB(b
′, a′)−Qn

MB(b, a)

]
(11)

Here, the belief transition model, T , describes how the subject jointly transitions through physical366

states and its beliefs about the barrier configuration. Moreover, for brevity, we will refer to the set of367

belief states that the subject can reach by applying a single action at a belief state as the children set of368

that belief state, denoted as C(b, a) ∈ B. For the example above:369

C(b, a) = {b′open, b
′
closed} (12)
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Gain and Need in belief space370

We consider optimising the prioritisation of replay updates (Equation 11) in the subject’s belief space.371

We follow the suggestion of Mattar & Daw [3], whereby the priority of each update is determined by372

the expected improvement to the subject’s behaviour at its current belief state. By applying the same373

value decomposition as in Mattar & Daw [3], we define EVBπold(bk, ak) := Vπnew(bρ)− Vπold(bρ), where374

Vπold(bρ) is the value the subject estimates for its current belief state, bρ, under the old behavioural375

policy before the potential update, and Vπnew(bρ) is the estimated value of the subject’s current belief376

state under the new policy implied by the potential update. The effect of policy change engendered377

by a replay update to action ak at some (potentially distal) belief state bk can be expressed as:378

EVBπold(bk, ak) =
∑
b∈B

∞∑
i=0

γiT (bρ → b, i, πold)︸ ︷︷ ︸
Need

×
∑
a

[πnew(a | b)− πold(a | b)]Qπnew(b, a)︸ ︷︷ ︸
Gain

(13)

Importantly, we do not assume that the effects of replay updates are localised to individual states379

(as in Equation 8), which allows the subject to account for broad generalisation across multiple belief380

states (see below) when calculating the expected benefit of each replay update. The Gain term as-381

sociated with a replay update quantifies the expected local improvement in the subject’s behavioural382

policy at the update belief state engendered by that replay (Equation 11). Gain therefore favours those383

replay updates which result in large improvements to the subject’s model-free decision policy.384

Need, similarly to Mattar & Daw [3], quantifies the frequency with which the subject expects to385

visit the update belief state according to its old behavioural policy, πold. As discussed before, in belief386

MDPs, subjects engage in continual learning which means that with every visit to the same physical387

location the subject, in general, will have a different belief about the transition model. This allows the388

belief space version of Need to account for all possible future learning that can take place (however,389

for computational purposes, we limit the subject’s horizon – see below).390

One critical consideration is that of the dependence of Need on the old behavioural policy of the391

subject, πold, which tends to prioritise portions of the state space the subject already expects to visit.392

Thus, even if the subject was informed about a distal change in the transition structure which its393

current policy does not prescribe to visit, Need at those locations would still be zero. It is therefore394

important to include stochasticity (for instance, in the form of undirected exploration) into the sub-395

ject’s behavioural policy which generates Need to allow for off-policy replay choices. This motivates396

our choice of the softmax behavioural policy which ensures that Need is positive for all potential397

belief states. Note that such design is common to most planning algorithms as it ensures adequate398

exploration of the state (and belief) space when performing planning computations [38, 39]. Below399

we additionally explore how the subject’s behavioural policy affects it replay choices.400

As for Mattar & Daw [3], we set a threshold on the minimal EVBπold value required for an update401

to be executed. This threshold can be thought of as accounting for a form of opportunity cost by402

balancing the trade-off between planning to improve the policy and immediately acting to collect403

reward [19], hence helping to subject to avoid being permanently buried in thought.404

Generalisation405

The notable difference between our belief space decomposition and that of Mattar & Daw [3] is the406

inclusion in equation 13 of the outer sum over the space of beliefs, B. This critical difference enables407

the subject to account for a broad generalisation across multiple belief states when considering the408

effect of a single action update at an individual belief state (Fig S7).409

In the original formulation of Mattar & Daw [3], the accumulated benefit of policy change at a410

physical state arises due to the repetitive visitation of that state that the subject envisions according411

to its behavioural policy and its model of the environmental transition dynamics. This form of Need412

corresponds to an approximation based on the past experience of the subject which assumes that no413

further knowledge can be acquired. Our formulation allows accounting for future occupancy based414

on the potential future learning that can take place in the environment. Such accounting requires the415
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subject to generalise information learnt at individual physical states across multiple potential beliefs416

at which the subject can re-visit that physical state in the future (Fig S7).417

In general, each belief state in continual learning tasks (unless there is forgetting) can be visited at418

most once since after every transition the subject potentially acquires information, and therefore up-419

dates its prior belief which constitutes a different belief state (this is true especially for Bayes-adaptive420

MDPs; [2]). The POMDP framework can be adapted such that this need not always be the case, since421

for instance in the Tolman maze which we consider here, the subject maintains uncertainty about the422

presence of barriers at certain locations, and this uncertainty can only be reduced so long as the subject423

actually attempts to cross those barriers. Therefore, when the subject transitions through those states424

which it is perfectly certain about there is no information gained as regards its belief about the bar-425

rier configuration, and thus the physical state is the only constituent of the belief state which changes426

(hence the subject can in fact visit a physical location with the same belief multiple times). Although427

this is exactly how we modelled our subject’s uncertainty about its environment, the replay formal-428

ism we developed here is more general and applies also to settings in which beliefs change after every429

transition or observation.430

In the presence of forgetting, the replay structure might be different since the subject would need431

to optimally account for those belief states which it expects to visit again. This, however, will depend432

of the specific form of forgetting, and the resulting belief states which the subject would have to433

represent in the planning tree. Our general formalism of replay prioritisation can account for this, but434

in the present work we do not consider it.435

Sequence replay436

Sequence replay corresponds to updating a whole sequence of consecutive actions, as opposed to437

performing individual greedy action updates one at a time. For example, consider two consecutive438

actions a1 and a2 at belief states b1 and b2, respectively. The order in which those two replay updates439

are executed depends on the expected value associated with the two possibilities. In the spatial do-440

main (or other domains with clear ordering) one order would typically be interpreted as a reverse441

reactivation, and the other as forward. Moreover, the expected value of performing forward and re-442

verse sequence updates will, in general, differ (see below). A sequence update to the two example443

actions corresponds to updating one action according to:444

Q
n+ 1

2
MB (b1, a1) = Qn

MB(b1, a1)+
∑

b′∈C(b1,a1)

T (b′ | b1, a1)
[
R(b′) + γmax

a′∈A
Qn

MB(b
′, a′)−Qn

MB(b1, a1)

]
(14)

where the sum is over the set of next possible beliefs (as in equation 12). The fractional notation n+ 1
2445

emphasises the fact that within a single iteration of replay multiple actions can simultaneously be446

replayed in a sequence, since in the current example with two actions there are two executed updates447

between iterations n and n+ 1.448

The second action is then updated in the same way to generate QMB ; however, in the case of449

reverse replay, b1 ∈ C(b2, a2), and therefore the Q
n+ 1

2
MB -value of one of its children beliefs b′ ∈ C(b2, a2)450

will have already been updated. The size of the value update to action a2 at belief state b2 therefore451

depends on the update to action a1 at belief state b1. This is also reflected in how the expected value of452

sequence replay is calculated – which is the reason for why the benefit of sequence replay can be larger453

than that of single action updates. If we defineMN = {(b, a)i}1,...,N as the candidate set containing N454

belief state-action pairs to be potentially updated in a sequence replay event, then the expected benefit455

of that sequence replay is calculated as:456

EVBπold(MN ) =
∑

(b,a)∈MN

EVB
n+ 1

N
πold (b, a) (15)

Note that, in the case of reverse replay, each individual EVBπold(b, a) in Equation 15 quantifies457

the benefit of updating action a at belief state b with a value that is propagated towards it along the458
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sequence of actions that had also been updated. This is not the case for forward replay where each459

action is updated only towards the expected value of its children belief states (with the exception of460

cyclic domains; however, as we report below, we restrict all sequences to be acyclic); however, even in461

the case of forward replay the benefit of replaying the whole sequence will still, in general, be higher462

because of the summed benefit of all updates along the entire sequence (see below).463

Replayed sequences can be of arbitrary lengths. Moreover, the longer the sequence, the more464

the estimated expected benefit will be, in general. The natural question therefore arises concerning465

the termination of sequences. We do not address this issue in the current work and assume that466

sequences link together critical decision points – in the Tolman maze, for instance, this corresponds467

to the sequential replay which originates at a potential barrier location and progresses towards the468

intersection in front of the subject’s start state.469

Another consideration is computational: the theory that Mattar & Daw [3] proposed is norma-470

tive and does not prescribe how both Gain and Need can possibly be estimated in a psychologically471

credible way. Sequence replay is even more computationally prohibitive because of the number of472

potential sequences that can be replayed. In the present work, we similarly report a normative result473

describing which sequences (out of all possibilities up to a fixed length) should be replayed. How474

the brain manages to reduce the sample complexity of sequence replay thus remains an open and475

challenging question which we leave to future work.476

Simplified example: Bayesian bandits477

Stationary, multi-arm bandit (MAB) problems offer the simplest test bed for examining exploration in478

belief spaces, and we therefore provide simulation results of replay prioritisation in a class of MABs.479

A typical MAB problem consists of a finite set of K arms, A = {a1, ..., aK}, which are the equivalent480

of actions in sequential decision-making problems. In each of the infinitely many trials, the subject481

is faced with a choice to pull one of the available arms. Each of the K arms, say ak, if chosen, has482

a certain probability, µk, of paying the subject off with a binary reward (1 with probability µk and 0483

with probability 1− µk). One typical goal of subjects in MAB problems is to realise a sequence of arm484

choices so as to maximise the total discounted reward.485

MAB problems are well-studied and, under certain assumptions about the reward distribution,486

optimal policies can be derived (such as the Gittins index [14]). Importantly, the payoff probabili-487

ties associated with each arm are initially unknown to the subject. This makes exploration in MAB488

problems worthwhile even if the expected return for the arm concerned is low, since if the arm is489

found actually to be good, then it can be consistently exploited in the future. Furthermore, MABs lack490

physical states, since in each trial the subject is faced with the same selection of arms irrespective of491

its choices in the preceding trials. The lack of physical states and the necessity of exploration makes492

MABs a perfect case study for our replay prioritisation, which we detail below.493

We focus on a 2-arm bandit task with binary outcomes, in which on each trial, the subject has to494

choose between two arms, a1 and a2, which have unknown payoff probabilities, µ1 and µ2, respec-495

tively. The subject models its uncertainty about the payoff probability of each arm with a probabilistic496

prior belief which introduces subjective belief states, b = {p(µ1), p(µ2)}. Just as in the Tolman maze497

example considered above, a probabilistic model of uncertainty allows the subject to learn optimally498

about the payoff distribution of each arm after receiving feedback from the bandit in the form of a499

reward signal.500

We model the subject’s uncertainty about each arm’s payoff probability using the Beta distribution.501

This particular parametric form is very convenient since the Beta distribution is a conjugate prior for502

the Bernoulli distribution (which is the reward distribution of each arm). The Beta distribution has503

two parameters, α and β, where α is typically interpreted as the number of success trials (received a504

reward of 1) and β as the number of failed trials (received a reward of 0). After N choices of arm ak,505

the Bayesian update (Equation 10) to the prior distribution parameters (i.e., the subject’s belief state)506

due to a new observation corresponds to:507
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p(µk | RN+1 = r) =

{
Beta(αk + 1, βk), if r = 1

Beta(αk, βk + 1), if r = 0
(16)

where αk + βk = N .508

The subject can make use of its model of uncertainty to plan ahead how the choice of each arm509

will affect its belief. We visualise this as a planning tree in Fig S1A. The tree is rooted at the subject’s510

current belief state, bρ, and each action (choosing arm a1 or a2) can transition the subject into two new511

possible belief states: one which corresponds to an imagined success trial and another corresponds to512

an imagined failure trial. Applying actions to belief states deepens the tree and expands the subject’s513

planning horizon. Note that the subject’s planning horizon is limited to a fixed depth (Fig S1). This514

is because belief states are continuous, and building the entire tree of all possibilities is intractable. In515

our example, the subject therefore only considering how its belief will evolve up to several steps into516

the future.517

Analogously to the Tolman maze, each belief state has an associated value. Replay updates in the518

tree correspond to updating the value of each belief state towards the expected value of the beliefs519

of its children at one horizon deeper in the tree (Equation 11). We initialise the value of each action520

ak in every belief state b in the tree to 0, except for the belief states at the final horizon whose values521

are initialised to the immediate expected payoff the subject expects to receive in that belief state by522

choosing action ak, which corresponds to Ep(µk|b) [µk].523

Similarly to the belief MDP, we define the priority of each individual replay update in the subject’s524

belief space as the expected value of the associated backup (EVB). That is, for a potential replay up-525

date at belief state bk to the value of action ak, the expected value of that update, EVBπold(bk, ak) :=526

Vπnew(bρ) − Vπold(bρ), which quantifies the expected improvement to the value of the subject’s current527

belief state, decomposes into the product of Gain and Need:528

EVBπold(bk, ak) = γiT (bρ → bk, i, πold)︸ ︷︷ ︸
Need

×
∑
a

[πnew(a | bk)− πold(a | bk)]Qπnew(bk, a)︸ ︷︷ ︸
Gain

(17)

The MAB instance of Gain is very similar to that of a more general belief MDP Gain discussed529

earlier. The crucial difference, however, is that Need does not accumulate at any individual belief530

state (which is why we refer to it as non-cumulative Need). This is because there are no physical states531

which can be re-visited in each episode, and each belief state in an MAB can be visited at most once532

(provided there is no forgetting involved) due to the continual learning nature of the bandit problem:533

after each new observation, the subject learns something about the bandit and thus transitions to a534

new belief state (MAB problems are thus more similar to Bayes-adaptive MDPs [2]). This instance of535

Need, therefore, quantifies how likely is the subject to ever encounter the potential update belief state536

according to its prior belief about each arm’s paoyff probability, as well as its current decision policy,537

πold.538

We again assume a DYNA architecture whereby the subject may or may not decide to perform re-539

play based on the expected improvement it estimates to its current decision policy. We set a threshold,540

ξ, which specifies the minimal EVB required for each potential replay update to be executed.541

Fig S1B shows an example replay update which was executed first because the subject estimated542

it to provide the greatest improvement to the value of its root belief state. Moreover, this example543

also highlights the effect of generalisation due to each individual replay update: this is visible in how544

the Need term changes at all other belief states as a result of the single replay update. Fig S1C shows545

all replay updates executed by the subject for which the estimated benefit exceeded the fixed EVB546

threshold. Note that only 4 replay updates resulted in the accumulation of a near-optimal value at547

the subject’s root belief state, and that accumulated value reflected the benefit of future learning in548

an approximately optimal way (with respect to the subject’s prior belief). We additionally simulated549

our subject with varying parameters (such as the softmax inverse temperature, EVB threshold, and550

horizon), and those results are reported in Fig S2.551
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We further investigated the effect of behavioural policy on the statistics of the subject’s replay552

choices. This was done by randomly shuffling the true (fixed-horizon) initialised action values across553

all belief states before letting the subject engage in replay. This revealed that the initial state of knowl-554

edge of the subject (its behavioural policy) played a critical role in affecting the resulting benefit of555

replay (Fig S3) – which can furthermore be harmful [5]. This is visible from the wide distribution of556

the value of the resulting policy (Fig 3A), as well as the frequent lack of propagation of the value of557

distal beliefs towards the root of the tree (Fig 3B).558

Finally, we examined the patterns of sequence and single-action replay updates (Fig S4). Our559

simulations indicated that the relative proportion of forward and reverse sequence replay was bi-560

ased towards reverse replay (Fig S4); however, there was also a significant number of forward replay561

sequences (1-sample t test, t = 11.40, p≪ 0.0001). Moreover, the total number of updated actions ap-562

peared to be greater with sequence replay compared to single-action replay updates (2-sample t test,563

t = 2.05, p = 0.042) which is expected given the open-loop nature of sequence replay optimisation.564

The full characterisation of sequence replay thus still remains an open question which we leave to565

future work.566

Implementation567

Estimation of exploratory Need568

We used a Monte-Carlo estimator for the Need term when calculating EVBπold from equation 13 for569

determining the priority of replay updates. The subject’s belief space was discretised into its current570

belief state and two future possibilities for each of the uncertain barriers that they were either present571

or absent with certainty. Those possible belief states, moreover, could be envisioned by the subject572

only so long as they were within the reach of the subject’s limited horizon, h. We denote this limited573

horizon, discretised belief space as disch(B).574

For the estimation of Need, N trajectories were simulated, all starting from the subject’s current575

belief state bρ = {sρ, P (P)}, where the decisions at each encountered belief state in each simulated576

trajectory were governed by the subject’s behavioural policy at those belief states and the belief state577

transitions – by the expected transition model associated with the subject’s belief state in the trajectory.578

When attempting to cross one of the uncertain barriers in a given trajectory, the next belief state was579

sampled according to b′ ∼ T (b′ | b, a). The subject’s belief about the transition dynamics in the new580

belief state, b′, was then updated according according to what actually happened. For successful581

transitions (with an open barrier), the probability of that transition was set to 1 with no remaining582

uncertainty; similarly, for failed transitions (with a closed barrier), the probability of that transition583

was set to 0, also with no remaining uncertainty.584

All simulations were run so long as γd, where d was the trajectory length, exceeded a fixed thresh-585

old, ϵ (which was always set to 10−5). Each ith simulated trajectory returned the smallest number of586

steps, Ki(b), that it took to reach each encountered belief state b ∈ disch(B) along the trajectory, as587

well as the non-cumulative Need (time-discounted probability of reaching those belief states accord-588

ing to the belief transition model and the subject’s behavioural policy) upon the first encounter, γKi(b),589

associated with those belief states.590

Finally, for each encountered belief state b = {s, P (P)} ∈ disch(B), we estimated the Need using591

a second-form certainty equivalence. The subject accounted for the evolution of its prior belief up to592

the potential update belief state after which it assumed stationary transition model dynamics (and593

no forgetting). That is, the resulting Need was averaged over the non-cumulative Need encountered594

in each of N simulated trajectories, which accounted for the learning and transitions through belief595

states within the reach of the subject’s horizon, to which a certainty-equivalent Need was added with596

a stationary transition model of that belief state:597

N̂eed(b) =
1

N

N∑
i=1

γKi(b) +

 ∞∑
j=Ki(b)+1

(
γEπold,b [P]

)j
(sρ,s)

 (18)
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where [·](i,j) is a scalar value obtained by indexing the matrix by row i and column j.598

Note that the expression
∑∞

j=0(γA)
j , which corresponds to a geometric series for some matrix A,599

can also be written as (I − γA)−1. In Equation 18, however, the counter for the infinite matrix sum600

does not start at zero. This is because for the first Ki(b) steps the transition model is non-stationary601

due to potential learning during those first steps within the reach of the subject’s horizon. After those602

first Ki(b) steps, the subject computes the remaining of Need using the expected transition model of603

the final belief state in the simulated trajectory, Eπold,b [P].604

Sequence generation605

Sequence generation was implemented as an iterative procedure. All possible single-action updates606

were first generated, for belief states which were within the reach of the subject’s horizon – that is, all607

belief states in disch(B). Then, for forward sequences, all of the single-action updates were extended608

by applying all possible actions from the final belief state reached in those single-action updates (gov-609

erned by the belief transition model T ). This was repeated until sequences of the maximal specified610

length L were generated. Three important constraints we imposed on the sequence generation pro-611

cedure: i) physical states encountered in the sequences were not allowed to repeat, hence preventing612

loops; ii) each sequence was extended by an additional action only if the EVBπold of the resulting se-613

quence exceeded the EVBπold threshold; and iii) only those belief states contained in disch(B) were614

added to the sequences, such that the resulting sequences could not contain belief states outside of615

the subject’s horizon.616

To generate reverse sequences, the same procedure was applied with the same imposed con-617

straints. The only difference was the directionality of the value propagation along the action se-618

quences. Note that the construction of reverse sequences requires an inverse belief transition model.619

An inverse transition model, for any given belief state b′, outputs a probability distribution over belief620

state-action pairs which quantifies how likely each of those are to result in a transition to b′. With our621

notation from Equation 12, given b′, an inverse transition model would assign zero probability to all622

belief state-action pairs but those for which b′ ∈ C(b, a). When generating reverse sequences, we used623

a forward transition model (instead of learning a separate inverse transition model) which assigned624

the same uncertainty for reverse transitions as for forward ones.625

Simulation details626

Fig 1 was generated by simulating a vanilla Mattar & Daw [3] replay subject. The subject learned627

model-free Q-values according to equation 4, which it then used for online control through a softmax628

policy. We additionally imposed forgetting on the model-free Q-values learnt by the subject, after629

every move made by the subject, to imitate a continual learning problem such that replay remained630

throughout the whole simulated experiment [5]. The aforesaid forgetting was operationalised as the631

exponential decay towards the initialised values controlled by a forgetting parameter:632

Qn
MF (s, a)← (1− ϕMF )Q

n
MF (s, a) + ϕMFQ

init
MF (s, a)

The state-transition model of the subject, T , was initialised such that it indicated that no barriers633

were present and the transition probabilities indicated the true transition structure. After every tran-634

sition which attempted to cross the top-most barrier, the subject updated its state-transition model635

as:636

Tn+1(· | s, a)← Tn(· | s, a) +
[
1(s′)− Tn(· | s, a)

]
where 1(s′) is a vector of the same dimension as the state space where each entry was zero except637

for the experienced next state, s′, for which the entry is 1. After every such update, the subject’s638

state-transition model probabilities associated with the uncertain barrier transition were normalised639

to ensure that they add up to 1:640
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Tn(· | s, a)← Tn(· | s, a)∑
s′∈S Tn(s′ | s, a)

The subject additionally cached all observed experiences to use them in replay (we followed the641

same implementation protocol as in Mattar & Daw [3]). The memory buffer of the subject was updated642

after each corresponding online experience to account for the possible changes in the environment.643

The agent then engaged in replay after every move by prioritising the replay updates using equation 8644

so long as the estimated EVBπold exceeded the minimal improvement threshold, ξ.645

The subject was simulated for the first 2000 moves in the environment shown in Fig 1A-C. For the646

second 2000 moves, the environment was altered to that shown in Fig 1D-F without the subject being647

informed about such change. Note that the barrier was not bidirectional – the subject was not allowed648

to learn about the barrier from the state above it (i.e., it had to approach the barrier directly from the649

start state). The simulations were repeated 10 times and the average results are reported. The values650

of the free parameters used in those simulations are reported in Table 1.651

Parameter Value Description
Qinit

MF 0 Initialised model-free Q-values
α 1 Online learning rate
αr 1 Replay learning rate
β 10 Inverse temperature
γ 0.9 Discount factor

ϕMF 0.05 Model-free forgetting
ξ 0.001 EVBπold threshold

Table 1: Simulation parameters for Fig 1.

Fig 2A was generated by performing regular value iteration with a transition model which as-652

sumed that both barriers were present. The tolerance threshold for value iteration was set to 10−5.653

The subject’s belief about the presence of the top barrier was then set to Beta(7, 2), after which it was654

allowed to engage in replay whilst being situated at the start state. The subject prioritised replay up-655

dates (equation 11) by calculating the Gain associated with all potential replay updates at all belief656

states within its horizon reach according to equation 13. The subject estimated Need for all potential657

replay updates using equation 18. Fig 2B-C show the prioritised replay updates and their order, as658

well as the new updated exploratory policy respectively.659

For Fig 2D-E, the subject was situated at the state just below the top barrier. Its model-free Q-value660

for the action to cross the barrier was set to 0 to emulate the potential online discovery of the barrier661

being present; similarly, the subject’s belief was initialised to indicate the presence of the barrier with662

certainty. Accordingly, the subject’s belief was set to reflect the potential discovery of the barrier being663

present. The subject was then allowed to replay in the same way as described above. The values of664

the free parameters used in the shown simulations are reported in Table 2. In this and all subsequent665

tables reporting the parameter values, we highlighted the crucial parameters and their values which666

differed between the simulations.667

Parameter Value Description
α 1 Online learning rate
αr 1 Replay learning rate
β 2 Inverse temperature
γ 0.9 Discount factor

αT , βT 7, 2 Beta prior parameters for the top barrier
h 8 Planning (replay) horizon
N 2000 Number of simulated trajectories
ξ 0.001 EVBπold threshold

Table 2: Simulation parameters for Fig 2.

19

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.27.525847doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525847
http://creativecommons.org/licenses/by-nd/4.0/


Fig 3 was generated in the same way as Fig 2 but the replays that the agent was allowed to execute668

additionally included sequence events. The maximal sequence length, L, was constrained to be the669

distance between the start state and the uncertain barrier. The agent prioritised which replay updates670

to execute by choosing from all possible replay updates of lengths 1 through L. The online discovery671

was operationalised in the same way as in Fig 2, and the replay process was then repeated with the672

subject being situated in the new belief state. The values of the free parameters used in the shown673

simulations are reported in Table 3.674

Parameter Value Description
α 1 Online learning rate
αr 1 Replay learning rate
β 2 Inverse temperature
γ 0.9 Discount factor

αT , βT 7, 2 Beta prior parameters for the top barrier
h 8 Planning (replay) horizon
L 8 Maximal sequence length
N 2000 Number of simulated trajectories
ξ 0.001 EVBπold threshold

Table 3: Simulation parameters for Fig 3.

Fig 4A-C was generated in the same way as Fig 3 except that the subject was uncertain about675

two barriers at the same time. The parameter values used in the shown simulations are reported in676

Table 4. For Fig 4D, the Q-values were initialised to 0. First, the subject was allowed to replay with the677

knowledge that reward was absent in both arms. Next, it was allowed to replay with the knowledge678

that the right (’cued’) arm contained reward. All other simulation parameters were kept the same679

except the planning horizon which was set to 3.680

Parameter Value Description
α 1 Online learning rate
αr 1 Replay learning rate
β 2 Inverse temperature
γ 0.9 Discount factor

αT , βT 7, 2 Beta prior parameters for the top barrier
αB, βB 7, 2 Beta prior parameters for the bottom barrier

h 6 Planning (replay) horizon
L 4 Maximal sequence length
N 2000 Number of simulated trajectories
ξ 0.001 EVBπold threshold

Table 4: Simulation parameters for Fig 4.

Fig S1 was generated by constructing a belief tree of horizon 2 which was rooted at the subject’s681

prior belief about the payoff probabilities of the two arms. The Q-values for all actions in all belief682

states were initialised to 0, except for those at the final horizon which were initialised to the expected683

immediate payoff according to those beliefs. Gain associated with each replay update in the tree684

(equation 11) was calculated according to equation 17 and Need associated with every update belief685

state was calculated according to equation 17.686

Fig S2 was generated by varying the subject’s policy, the EVBπold threshold, as well as the subject’s687

planning horizon (all values are reported in the figure). The root value shown was taken as the ex-688

pected return the subject expected at the root belief after all executed replay updates. The value of689

the evaluated policy was computed by evaluating the new updated policy as a result of the replay690

updates in the whole tree.691

Fig S3 was generated in the same way as Fig S2 but the results were averaged over 200 random692

value initialisations in the tree. The randomisation was achieved by first performing full value itera-693
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Parameter Value Description
αr 1 Replay learning rate
β 4 Inverse temperature
γ 0.9 Discount factor

α1, β1 5, 3 Beta prior parameters for arm 1
α2, β2 1, 5 Beta prior parameters for arm 2
h 2 Planning (replay) horizon
ξ 0.01 EVBπold threshold

Table 5: Simulation parameters for Fig S1.

tion in the tree, and hence computing the true fixed-horizon values associated with each action in the694

tree. Next, those values were randomly shuffled across all belief states in the tree. Fig S3 shows the695

average, as well as individual replay processes in the randomised trees.696

The data shown in Fig S4 was generated in the same way as for Fig S3, as well as additionally697

allowing the subject to perform sequence replay where the maximal sequence length was constrained698

to the horizon of the tree.699

Fig S5 were generated in the same way as Fig 3 but the subject was initialised with a different prior700

belief about the presence of the barrier. In this case, the prior belief was set to Beta(2, 2).701

The data in Fig S6 were generated in the same way as for Fig 3 but the subject was initialised with702

a range of different prior beliefs about the presence of the barrier.703

Fig S7 was generated with the same parameter values as Fig 4 (shown in Table 4) but with the704

planning horizon set to 12.705
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3 Supplementary figures706

Figure S1: Replay updates in Bandit belief space. A) Planning tree of horizon 2. Each rectangle
corresponds to a distinct belief state. The leftmost belief state, at the root of the tree, corresponds to
the subject’s prior belief, bρ. The insets next to some belief states graphically demonstrate the subject’s
belief about the payoff of one of the arms in those belief states (the red dotted lines show the resulting
mean payoffs). For the paired belief states, the top ones always result from imagined successful out-
comes (received a reward of 1), whereas the bottoms ones – from imagined failed outcomes (received
a reward of 0). Belief states are coloured according to their exploratory Need; moreover, Need is addi-
tionally shown with numbers in each belief state. Since the subject’s behavioural policy is stochastic
(softmax), all belief states have positive estimated Need (for some belief states, it is shown as 0.00 for
demonstration purposes since those values were too small). The black arrows show actions available
at each belief state. The top arrows always denote the choice of arm 1 and the bottom arrows – arm
2. The blue numbers above each action arrow denote the Q-values associated with each action in
every belief state. All Q-values were initialised to 0 except for those belief states at the final horizon
for which the initialisation values were determined by the expected immediate reward according to
those belief states. B) Single replay update in the belief tree. The subject chose to update the Q-value
of arm 1 at the prior belief state (the updated action arrow is highlighted in red) towards the expected
value of the two belief states at the next horizon (the new updated value is highlighted in red). This
replay update was executed because i) it was estimated to have the greatest EVB; and ii) the estimated
EVB of this update exceeded the EVB threshold. Note the effect of generalisation of this individual
replay update which is visible in how the Need that the subject calculates for all other belief states
changes throughout the tree. C) All replay updates executed by the subject until the estimated benefit
was calculated to be below the EVB threshold. The bold numbers in squared brackets show the order
in which those updates were executed. The action values highlighted in red are the final action values
updated by all shown replay updates in the tree.
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Figure S2: Policy improvement occasioned by replay. Top: Evolution of the value of the root belief
state in the bandit task (same as in Fig S1) due to replay as a function of the EVB threhsold, ξ. Middle:
Evolution of the value of the policy (evaluated in the belief tree) which resulted from replay updates
at different EVB thresholds. Bottom: Total number of replay updates executed for the different EVB
thresholds.
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Figure S3: Effect of initialised behavioural policy. Top: The final value of the root belief state in
the bandit task (same as in Fig S1) due to replay with a fixed EVB threshold. The initialised values
of all belief states were randomised to imitate noisy initial experience (or potential changes in the
bandit payoff probabilities). The bars show average root belief state values over 200 different tree
initialisations. Each dot corresponds to an individual tree. Bottom: Same as above but for the value
of the updated policy evaluated in the tree.

Figure S4: Sequence replay statistics. Left: Proportion of forward to reverse sequences replayed in
the belief tree in the bandit task with the same prior belief as in Fig S1 with planning horizon set to
4. The initialised values of all belief states were randomised as in Fig S3. The bar shows average
proportion over 200 different tree initialisations. Right: Average number of replayed actions in the
same tree initialisations as above with and without sequence replay. *** p < 0.001, * p < 0.05.
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Figure S5: Uncertainty affects replay choices and their behavioural readout. The layout of the figure
is similar to that of Fig 2. A) Prior state of knowledge of the subject. In this example, the subject’s
belief was more pessimistic since it indicated a lower subjective probability of the top barrier being
potentially open (as evident from the expected probability the subject accorded to this possibility,
shown with the red dotted line in the inset). B) The value of exploration was estimated to be lower
(since the subject’s belief was more pessimistic), and therefore replay did not propagate the benefit
of exploration deep enough (towards the subject’s location). This is in part owing to the temporal
discounting which decays the benefit of exploration with travel distance. C) The updated policy still
prescribed the subject to exploit the longer path (maximal Q-values at each state are again shown
with white outlines), since the critical action at the junction between the different arms had not been
updated by exploratory replay.

Figure S6: Relationship between uncertainty, behavioural policy and exploration quality. The
graph shows the marginal probability of directed exploration (approaching and attempting the po-
tential barrier in Figs 2 and 3 from the start state) as a function of the subject’s uncertainty and the
greediness of its behavioural policy. As the subject’s belief (E[p(open)]) in the absence of the barrier
increased, it became progressively more likely to engage in the act of directed exploration. The same
softmax policy with inverse temperature β = 2 was used to calculate the priority of replay updates.
However, applying different inverse temperature parameters (which subjects might heuristically use
to arrange for offline exploration) to the resulting exploratory value function yielded policies with
different incentives for exploration.

25

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.27.525847doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525847
http://creativecommons.org/licenses/by-nd/4.0/


Figure S7: The benefit of generalisation in replay across belief states. A) Prior state of knowledge
of the subject. The layout of the panel is identical to that of Fig 2. B) Need that the subject estimated
for the potential update at the physical state below the top-most barrier. Each row shows a different
belief with which the subject can reach that physical state. The red arrows denote the potential routes
to that physical location that the agent can undertake all of which result in different belief states. For
brevity, we only show a restricted number of the possible (discretised) beliefs. C) Estimated gain for
the potential update of the action that attempts to cross the barrier. Note that Gain is positive in all
the shown belief states associated with the top-most barrier. This means that the subject can expect to
accrue more reward due to the update at that physical location whilst reaching it with different beliefs
about the other (bottom) barrier. This knowledge of the potential future beliefs allows the subject to
generalise across belief information states.
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Figure S8: Exploratory Gain. A) Prior state of knowledge of the subject. The layout of the panel is
identical to that of Fig 2A. B) Top: Gain that the subject estimates as a result of the imagined suc-
cessful shortcut transition through the potential barrier just above the subject. Bottom: similar to the
above but Gain estimated for the imagined failed transition through the potential barrier. The full ex-
ploratory Gain is then calculated as the expected Gain of the two possible outcomes above weighted
by their respective prior probabilities determined by the subject’s belief state in A).
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