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Abstract 24 

Power analyses are often used to determine the number of animals required for a 25 

genome wide association analysis (GWAS). These analyses are typically intended to estimate 26 

the sample size needed for at least one locus to exceed a genome-wide significance threshold. 27 

A related question that is less commonly considered is the number of significant loci that will be 28 

discovered with a given sample size. We used simulations based on a real dataset that 29 

consisted of 3,173 male and female adult N/NIH heterogeneous stock (HS) rats to explore the 30 

relationship between sample size and the number of significant loci discovered. Our simulations 31 

examined the number of loci identified in sub-samples of the full dataset. The sub-sampling 32 

analysis was conducted for four traits with low (0.15 ± 0.03), medium (0.31 ± 0.03 and 0.36 ± 33 

0.03) and high (0.46 ± 0.03) SNP-based heritabilities. For each trait, we sub-sampled the data 34 

100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an 35 

exponential increase in the number of significant loci with larger sample sizes. Our results are 36 

consistent with similar observations in human GWAS and imply that future rodent GWAS should 37 

use sample sizes that are significantly larger than those needed to obtain a single significant 38 

result.  39 
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Introduction 40 

Genome wide association studies (GWAS) in both humans and rodents have been 41 

extremely successful in understanding the genetics of quantitative traits. Outbred rodent 42 

populations such as Heterogeneous stock (HS) rats, Diversity Outbred (DO) mice, and 43 

Advanced Intercross Lines (AIL) have proven to be an invaluable resource for genetic mapping 44 

studies. The success of these outbred rodent strains can be attributed to the ability to provide 45 

high resolution QTL mapping (Solberg Woods and Palmer 2019). With each generation of 46 

recombination, the number of markers and independent tests increases, which in turn increases 47 

the threshold for statistical significance. In comparison to an F2 cross, outbred rodent 48 

populations offer better resolution for mapping QTLs (Solberg Woods 2014; Gonzales and 49 

Palmer 2014). Inbred rodent strains such as the Hybrid Rat Diversity panels (HRDP), Hybrid 50 

Mouse Diversity Panels (HMDP) and Recombinant Inbred (RI) strains (such as the BXD and CC 51 

panels) have also been successfully employed for mapping studies (Williams and Williams 52 

2017). However, the sample size involving these panels is usually limited by the number of 53 

strains available in the population. QTL mapping studies are not limited to rodent populations. 54 

These genetic studies are also conducted in zebrafish (Kwon et al. 2019), fruit flies (Wangler et 55 

al. 2017) and plants such as Arabidopsis thaliana (Togninalli et al. 2020).  56 

In GWAS studies power is defined as the likelihood of detecting a single significant QTL 57 

of a certain effect size. Power analyses are often performed for GWAS studies so that an 58 

appropriate sample size can be selected. In general, larger sample sizes increase the power to 59 

detect significant loci in humans (Spencer et al. 2009), rodents (Li et al. 2006; Keele et al. 60 

2019), livestock (Wittenburg et al. 2020) and crops (Wang and Xu 2019). Software to perform 61 

power analyses has also typically focused on power to detect a single locus given its effect size 62 

(Sen et al. 2007; Delongchamp et al. 2018).  63 

 In this study, we sought to examine a related question, namely the relationship between 64 

sample size and the number of significant loci discovered. We used simulations based on a real 65 

dataset that consisted of 3,173 male and female adult N/NIH heterogeneous stock (HS) rats. 66 

This dataset is part of our recent publication on the GWAS of obesity related traits in HS rats, 67 

which is among the largest rodent GWAS ever performed (Chitre et al. 2020). The dataset in 68 

Chitre et al. was collected as part of a large multi-site project focused on genetic analyses of 69 

behavioral phenotypes related to drug abuse in HS rats (www.ratgenes.org). We repeatedly 70 

subsampled this dataset to determine the number of significant loci that could be identified with 71 

various sample sizes.  72 
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 73 

Results  74 

The number of significant loci discovered increased exponentially as sample size 75 

increased. Figure 1 shows the average number of significant loci detected for each trait at each 76 

sample size. When we ran the analysis with the maximum number of individuals, we detected 77 

28 loci for body weight (h2 = 0.46 ± 0.03), 16 loci for body length_Tail  (h2 = 0.36 ± 0.03), 5 loci 78 

for BMI_Tail (h2 = 0.31 ± 0.03) and 3 for fasting glucose (h2 = 0.15 ± 0.03). As expected, fewer 79 

QTLs were discovered with smaller sample sizes. We note the largest increase in the number of 80 

QTL detected for body weight, the trait with the highest heritability, with more than a ten-fold 81 

increase in detected QTL when the sample size is increased from 500 to 2500. Similar trends 82 

are seen for both BMI and fasting glucose. 83 

To determine whether the increase in the number of significant loci was more consistent 84 

with a linear or an exponential (log-linear) function, we fitted both models on the data to identify 85 

least squares parameters. The two models we defined as  86 

 87 
Linear: y = b0 x + b1 + e, 88 
and 89 
Exponential: y = exp(b0 x + b1) + e 90 
  91 
where, b0 and b1 are the model parameters, x is the sample size, y is the average number of 92 
QTLs and e is the error term.  93 
 94 
Since both models have the same number of parameters we compared them in terms of 95 
residual sum of squares (RSS) and used bootstrapping to ascertain statistical boundaries of the 96 
estimates. We found that an exponential curve fits better; the estimated 95% confidence interval 97 
is (0.344, 7.67) for the exponential fit, and (9.57, 217.522) for the linear fit.  98 

 99 

 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2023. ; https://doi.org/10.1101/2023.01.27.525982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 101 

Figure 1. Number of detected QTLs increases with the increase of sample size. Each dot is 102 
an average number of QTLs obtained in 100 GWAS, each performed on a randomly selected 103 
subset of the actual dataset. Error bars indicate standard deviation.  The final point (at ~3100 104 
animals for body weight, body length_Tail, BMI_Tail and at 2,246 for fasting glucose) used the 105 
full dataset and therefore does not include error bars. This simulation was performed on four 106 
traits with different heritability: body weight (h2 = 0.46 ± 0.03), body length_Tail  (h2 = 0.36 ± 107 
0.03), BMI_Tail (h2 = 0.31 ± 0.03) and fasting glucose (h2 = 0.15 ± 0.03).   108 
 109 

We also conducted linkage analysis using haplotypes to confirm that our findings were in 110 

agreement with those obtained from GWAS analysis that utilized SNPs. We found that, similar 111 

to the GWAS analysis, an exponential increase in the number of QTL identified with increasing 112 

sample size for linkage analysis using haplotypes (Supplementary Figure 1). We performed 113 

this analysis for BMI with tail (SNP h2 = 0.31 ± 0.03) using R/qtl2 (Broman et al. 2019) using a 114 

permutation derived threshold of 18.2 LOD at alpha = 0.05. We used the residual sum of 115 

squares to compare the linear and exponential models. The RSS values for exponential fit 116 

(0.069) are smaller than for linear fit (1.217), suggesting that an exponential curve fits better 117 

than a linear curve.  118 

 119 

Discussion 120 

In this study, we used a real dataset to explore the effect of sample size on the number 121 

of significant loci identified. This represents a conceptually different approach compared to 122 

conventional power analyses, which focus on estimating power to detect at least one genome-123 

wide significant locus. We found an exponential increase in the number of QTL identified with 124 
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increasing sample size, particularly for body weight, a trait with relatively high heritability. Our 125 

results suggest (but do not prove) that our findings would generalize to other similar laboratory 126 

populations (HS/Npt, HS-CC, DO, etc.). The results from the haplotype-based linkage mapping 127 

analysis also support an exponential increase in the number of QTL identified with increasing 128 

sample size for the trait BMI with tail (SNP h2 = 0.31 ± 0.03).  129 

Similar observations in human genetics (Visscher et al. 2012; Sullivan et al. 2018) 130 

suggest an initial exponential growth in the number of loci, which is what we have observed, 131 

followed by a linear phase when increasing sample size produces a linear increase in the 132 

number of significant loci. In the current study, we did not find strong evidence of this linear 133 

phase. This could reflect the fact that our sample size, which is still small by the standards of 134 

human genetics, was not large enough to get beyond the initial exponential phase. As is the 135 

case in human GWAS, the effect size of loci that require larger sample sizes will tend to be 136 

smaller than those identified with larger sample sizes, assuming a constant allele frequency. 137 

There are several reasons that this dataset was able to identify multiple significant loci despite 138 

having a sample size that is smaller than those typically used for human GWAS. First, the effect 139 

sizes of alleles discovered in model systems are often much larger than alleles found in 140 

humans. The reasons for this are unknown but might include relaxed selection in captive 141 

breeding populations, which allows alleles that would have been selected against in a natural 142 

population to rise to high frequency. A second reason that smaller sample sizes are sufficient in 143 

model systems is that the linkage disequilibrium among SNPs is greater, meaning that fewer 144 

tests are performed, thus reducing the multiple testing burden and correspondingly the 145 

threshold for significance. The greater LD might also mean that multiple smaller alleles are 146 

inherited in blocks that have greater effect sizes. A third advantage of model systems is that 147 

they are often created by crossing a small number of inbred strains, meaning that allele 148 

frequencies are higher; greater power is always available when alleles are more common. 149 

Despite these differences, our observation of exponential growth in the number of significant loci 150 

with increasing sample size is very similar to observations in human genetics.  151 

Our result indicates that many previous studies, which have performed power analyses 152 

designed to assure that they find a single significant locus, are likely underpowered to find 153 

multiple loci that have diminishing effect sizes. Our recommendation is that future studies of 154 

complex traits in outbred rodents should use significantly larger sample sizes since they are 155 

likely to provide a larger number of findings; this recommendation assumes that the cost of 156 

increasing sample size is linear, however in some cases there might be efficiencies of scale that 157 
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would make the addition of each additional subject less expensive. Fewer studies with larger 158 

sample sizes, rather than larger numbers of studies with modest sample sizes might be 159 

preferable. Alternatively, multiple traits from separate studies that are genetically correlated 160 

might be jointly analyzed, since this can provide some of the advantages of larger sample sizes 161 

assuming that certain loci are important for more than one of the traits under study.  162 

 163 

Materials and Methods 164 

The data used in this study are thoroughly described in our recent publication (Chitre et 165 

al. 2020). Briefly, phenotypic data on body weight and length (which permit calculation of BMI), 166 

fat pad weight, and fasting glucose levels of adiposity traits were collected at three different 167 

research sites at multiple ages. We used data from all three sites. Prior to combining data from 168 

the three sites, we regressed out the effects of covariates and then performed quantile 169 

normalizations within each site and within each sex after which data from all sites and sexes 170 

were combined and jointly analyzed to explore the relationship between sample size and the 171 

number of significant loci identified.  172 

HS rats used in this study were obtained from the NMcwi:HS colony which was initiated 173 

by the NIH in 1984 by interbreeding eight inbred founder strains and were subsequently 174 

maintained as an outbred population, making them ideal for fine mapping of genetic loci 175 

(Hansen and Spuhler 1984; Solberg Woods and Palmer 2019). Rats were genotyped at 3.4 176 

million autosomal SNPs, however, because there was extensive LD among these SNPs and to 177 

reduce computational burden, we used LD pruning (r2<0.95) which yielded a set of 128,477 178 

SNPs that were used for all analyses described in this paper.  179 

To determine the number of QTLs detected by different samples sizes, we subsampled 180 

data from four phenotypes chosen to have low (0.15 ± 0.03; fasting glucose), medium (0.36 ± 181 

0.030; body length_Tail  and .31 ± 0.03; BMI) and high (0.46 ± 0.03; body weight) chip 182 

heritabilities (calculated using GCTA).  For each dataset, we performed 100 random 183 

subsamples in which we retained 500, 1,000, 1,500, 2,000, or 2,500 individuals (for fasting 184 

glucose we could not include 2,000 and 2,500 because the total sample size was smaller than 185 

2,000). Thus, we produced 1,300 total subsamples for the three phenotypes. We then 186 

performed a GWAS for each subsampled dataset using an automated pipeline based on the 187 

LMM software package GEMMA (Zhou and Stephens 2012); we implemented the leave one 188 

chromosome out (LOCO) method (Cheng et al. 2013). We have previously shown that an LMM 189 
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in conjunction with the LOCO methods effectively controls type I error rate (Gonzales et al. 190 

2018; Gileta et al. 2022), meaning that our observations in this study are unlikely to be due to 191 

type I errors that can be caused by population structure.  192 

Our pipeline used an algorithm to automatically record the number of significant QTLs in 193 

each subsampled dataset. First, we scanned each chromosome to determine if there was at 194 

least one SNP that exceeded the threshold of –log10(p) > 5.6, which is the threshold used in 195 

Chitre et al. 2020. To avoid situations where only a single, presumably anomalous, SNP 196 

showed a significant association, we required that at least one other SNP within 0.5 Mb have a 197 

p-value that was within 2 –log10(p) of the index SNP. If we found a second supporting SNP, we 198 

recorded the identification of a QTL for that dataset. Some chromosomes were expected to 199 

contain more than one independent QTL, but we were also concerned that we might count a 200 

single locus twice. To avoid counting the same locus twice, we excluded all SNPs with r2 > 0.4 201 

relative to the just identified index SNP. We then rescanned the chromosome to see if any 202 

additional SNPs on this chromosome exceeded the threshold of –log10(p) > 5.6. If they did and 203 

they were supported by a second SNP within 0.5 Mb that had a p-value that was within 2 –204 

log10(p) of the index SNP, we recorded an additional QTL for that dataset. We then repeated 205 

these steps as often as needed until no further significant QTLs could be identified on a given 206 

chromosome.  We then continued this process for all subsequent chromosomes. After scanning 207 

the last chromosome, we tabulated the number of QTLs detected for that dataset. We repeated 208 

this procedure for each of the 1,300 subsampled datasets. In this way, we determined the 209 

number of significant QTLs in 100 possible sub-samplings of each of four traits  when using 210 

500, 1,000, 1,500, 2,000, and 2,500 individuals, and in the maximal number of individuals 211 

(~3100 for all traits except fasting glucose). 212 

We performed linkage mapping with haplotypes using R/qtl2 (Broman et al. 2019). We 213 

estimated founder haplotypes using the calc_genoprob_fst function with the cohort and founder 214 

strain genotypes. We used the scan1perm function to perform 1,000 permutations for 215 

establishing the significance threshold. The kinship matrices were derived using the “leave one 216 

chromosome out” method with the calc_kinship function. For each sub-sampled dataset for the 217 

trait BMI with tail, we performed a genome scan using a linear mixed model with the scan1 218 

function. We used the function find_peaks to identify LOD peaks that exceeded the permutation 219 

derived threshold of 18.2. 220 

 221 
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Data availability 222 

The data presented in the study are deposited in the UC San Diego Library Digital Collections 223 

repository at https://library.ucsd.edu/dc/object/bb9156620z (DOI 224 

https://doi.org/10.6075/J0Q240F0). 225 
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