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Abstract:  27 

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to collapse under 28 

future climate trajectories and may even lie within the mitigated warming scenarios of 1.5–2 oC 29 

of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past 30 

climates, including the Last Interglacial period, when global sea levels were 5–10 m higher than 31 

today, and global average temperatures of 0.5–1.5 oC warmer, could resolve this uncertainty. 32 

Here we show, using a panel of genome-wide, single nucleotide polymorphisms of a circum-33 

Antarctic octopus, persistent, historic signals of gene flow only possible with complete WAIS 34 

collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss 35 

could be reached even under stringent climate mitigation scenarios. 36 

 37 

One-Sentence Summary:  38 

Historical gene flow in marine animals indicate the West Antarctic ice sheet collapsed during the 39 

Last Interglacial period.  40 
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Climate change continues to cause unprecedented warming to the Earth system (1). The 41 

consequences of warming are leading to rapid changes in Antarctica, including Antarctic Ice 42 

Sheet mass loss, with global impacts (1). A major uncertainty in global mean sea level (GMSL) 43 

rise projections lies in the stability of the West Antarctic Ice Sheet (WAIS) (2). The marine-44 

based WAIS has lost 159 ± 8 gigatons of ice mass per year between 1979–2017 (3), and will 45 

continue to be a major contributor to GMSL rise under all CO2 emission scenarios (4). It is 46 

unclear whether the WAIS is vulnerable to rapid ice loss or even full collapse, because of a poor 47 

understanding of future changes and processes that influence ice sheet dynamics (2). A complete 48 

WAIS collapse could raise global sea level by ~3.3–5 m (5, 6), with direct consequences that 49 

include human displacement and global loss of ecosystems in coastal areas (1).  50 

 51 

It is well understood from geological reconstructions that there were interglacial peaks (i.e. 52 

super-interglacials) in periods of the Pleistocene that experienced warmer temperatures (+~0.5–53 

5.0 oC) and higher GMSL (+~5–20 m) than present (4). These super-interglacials include Marine 54 

Isotope Stages (MIS) 31, 11 and 5e, which occurred at approximately ~1.08–1.05 Ma, ~424–395 55 

ka and ~129–116 ka, respectively (4). During MIS 31, the average surface sea temperature (SST) 56 

was +5 ± 1.2 oC with GMSL ~20 m higher than present (7). During MIS 11, global mean surface 57 

temperature (GMST) was 0.5 ± 1.6oC with GMSL 6–13 m higher than present, and similarly, 58 

during MIS 5e (the Last Interglacial period), GMST was +0.5–1.5oC with GMSL 5–10 m higher 59 

than present (4). To date, there is no empirical evidence to indicate if the WAIS has completely 60 

collapsed at any time in the three million years since the Pliocene (8). Inferring WAIS 61 

configurations during late Pleistocene super-interglacial periods could therefore inform the 62 

sensitivity of Antarctic ice-sheet response to climate change. So far, analyses of ice proximal 63 

marine drill core records show evidence of WAIS retreat during the late Pleistocene interglacials, 64 
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but the exact timing (9) and extent (10, 11) of any WAIS collapse remain ambiguous. Existing 65 

ice sheet models have yielded conflicting WAIS reconstructions during these periods, ranging 66 

from no collapse (12), to partial (13) or full collapse (14, 15). Knowledge about how the WAIS 67 

was configured during super-interglacials in the geological past is urgently needed to constrain 68 

future sea level rise projections (2). Novel approaches, such as population genomics, can serve as 69 

empirical proxies of past changes to the Antarctic ice sheets, detected via signals of historic gene 70 

flow among currently separated populations of marine organisms (16).  71 

 72 

A complete past collapse of the WAIS would have opened the trans-West Antarctic seaways 73 

linking the present-day Weddell Sea (WS), Amundsen Sea (AS) and Ross Sea (RS) (16). Such 74 

seaways would have allowed marine benthic organisms to occupy and disperse across the opened 75 

straits, thus leaving genetic signatures of this past connectivity in the genomes of their 76 

descendent, extant populations (16) (hereafter seaway populations). As the WAIS reformed, 77 

these organisms would be isolated again within the WS, AS and RS basins, with any subsequent 78 

connectivity only possible around the continental margin. Although there is some support for 79 

existence of trans-Antarctic seaways based on species assemblage data at macro-evolutionary 80 

scales (17–20) or low-resolution genetic data (21–24), all these studies lack power and/or spatial 81 

coverage to distinguish between past dispersal via trans-West Antarctic seaways or from 82 

contemporary circumpolar ocean currents. Importantly, these previous studies cannot be used for 83 

accurate demographic modelling to identify the likely timing of any collapse in the WAIS.  84 

 85 

Collection of benthic species from the Southern Ocean is logistically challenging and regions 86 

such as AS and East Antarctica (EA) are difficult to access. Existing samples are typically 87 

characterised by DNA degradation due to long term storage in collections at room temperature. 88 
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Here, we used a target capture approach that sequenced genome-wide, single nucleotide 89 

polymorphism (SNP) data in the circum-Antarctic benthic octopus, Pareledone turqueti, 90 

incorporating rare samples from AS and EA, collected over 32 years. Our approach enabled a 91 

comprehensive sampling strategy to robustly date and test for the presence of past trans-West 92 

Antarctic seaways using biological data as proxies.  93 

 94 

We sequenced genome-wide SNPs derived from double-digest restriction site-associated DNA 95 

(ddRAD) (25) loci from 96 P. turqueti individuals collected from around the Southern Ocean 96 

(Fig. 1A). The dataset presents a circum-Antarctic overview of the species genetic patterns, 97 

which record the contemporary connectivity driven by oceanic currents, mainly the Antarctic 98 

circumpolar current (ACC; clockwise) and the Antarctic Slope Current (ASC; counter-99 

clockwise) (Fig. 1A, B), as well as any historical connectivity that would be associated with past 100 

trans-West Antarctic seaways. We used a reduced single-nucleotide polymorphisms (SNPs) 101 

dataset (one SNP per locus) to analyse population structure, which included 5,188 unlinked 102 

SNPs. The population genomic variation of P. turqueti is characterised by geographically-103 

structured populations across the Southern Ocean (Fig. 1C, fig. S1-S2), as expected for a marine 104 

species with benthic crawling hatchlings. This makes it an appropriate species to test for the 105 

presence of trans-West Antarctic seaways. Long-distance connectivity linking East and West 106 

Antarctica, across the Antarctic continental shelf and Antarctic islands, is detected, likely 107 

indicating dispersal that reflects contemporary circumpolar currents, as found in other Southern 108 

Ocean benthic taxa (26). However, admixture is also observed between individuals from RS and 109 

AS with some individuals from WS (Fig. 1C, fig. S1), indicating a potential signature of trans-110 

West Antarctic seaways. 111 

  112 
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 113 

114 
Fig. 1 Sample locations of Pareledone turqueti with Structure analyses. (A) Samples used for 115 
analyses of population structure. Abbreviations: Shag Rocks, SR; South Georgia, SG; South 116 
Orkney Is., SOI; Elephant Is., EI; Bransfield Strait, BS; South Shetland Is., SHE; West Antarctic 117 
Peninsula, WAP; South- and East- Weddell Sea, S-, E-WS; Amundsen Sea, AS; Ross Sea, RS; 118 
Adélie Land, AL; East Casey Station, ECS; Prydz Bay, PB; West Antarctic Ice Sheet, WAIS; 119 
East Antarctic Ice Sheet, EAIS. (B) Samples used for admixture analyses and demographic 120 
modelling (collectively demographic inferences) to test for the existence of trans-West Antarctic 121 
seaways. Map include the directionalities of the major contemporary circumpolar currents and 122 
regional currents in the Southern Ocean. Black arrows indicate connectivity pathways through 123 
trans-West Antarctic seaways that would result from WAIS collapse. Direct connectivity 124 
between WS-AS or AS-RS would indicate partial WAIS collapse, and direct connectivity 125 
between WS-AS-RS or WS-RS would indicate complete WAIS collapse. (C) Clustering analysis 126 
using Structure inferred K = 7 for P. turqueti. Each horizontal bar represents an individual 127 
sample, bars are grouped by geographical locations, colours within each bar correspond to the 128 
proportion of each genetic cluster in the individual.  129 
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Focusing on populations most informative of whether WAIS collapsed in the past, we first 130 

examined whether there was distinct admixture between WS-AS-RS with respect to South 131 

Shetland Islands (SHE) and East Antarctica (EA; including Prydz Bay and East Casey Station) 132 

samples using 120,857 linked sites (i.e. all SNPs retained across loci) (Fig. 1B). SHE and EA are 133 

known to be influenced by both the ACC and ASC (27), but are peripheral to the putative 134 

historical trans-West Antarctic connectivity; thus these are ideal locations that can separate 135 

patterns of present-day connectivity around the WAIS and East Antarctic Ice Sheet (EAIS) from 136 

persistent, historical signals of gene flow.  137 

 138 

We examined allele frequency correlations across WS, AS and RS with respect to SHE and EA. 139 

The D-statistic (28) explores the patterns of alleles sharing across four populations to test for 140 

evidence of admixture between populations of interest. The outgroup-ƒ3-statistic (29) explores 141 

the amount of derived allele frequency that is shared between pairs of populations relative to an 142 

outgroup population. The presence of admixture linked to trans-West Antarctic connectivity 143 

would result in high ƒ3 values, and evidence of excess allele sharing (D>0), between WS-AS-RS. 144 

In P. turqueti, the highest ƒ3 values are detected between AS–RS, followed by RS–EA and RS–145 

WS (Fig. 2A); indicating recent common ancestry across seaway populations, as well as between 146 

RS and EA populations that are adjacent to each other. When SHE is treated as the sister lineage 147 

to AS/RS and WS (D(AS/RS, SHE, WS, outgroup)), there is excess allele sharing between 148 

AS/RS and WS (Fig. 2B). When EA is treated as sister lineage to AS/RS and WS (D(AS/RA, 149 

EA, WS, outgroup)), excess allele sharing is also observed between AS/RS and WS (Fig. 2B). 150 

These results confirm that, in P. turqueti, there are unexpected, and significant, allele frequency 151 

correlations among AS-RS-WS, despite also considering the locations situated between them 152 

around the WAIS (SHE) and EAIS (EA). Such observed admixture patterns are congruent with 153 
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historical seaway connectivity in a species that is characterised by geographically-structured 154 

populations.  155 

 156 

 157 
Fig. 2 Evidence of distinct allele frequency correlations between Amundsen Sea, Weddell 158 
Sea and Ross Sea, as well as contemporary gene flow in Pareledone turqueti. Error bars 159 
(black horizonal lines) = standard errors, filled circles = significant (Z-score values > 3 or < -3), 160 
Out = outgroup population, which includes Shag Rocks and South Georgia (samples combined). 161 
Abbreviations: Weddell Sea (WS), South Shetland Islands (SHE), Amundsen Sea (AS), Ross 162 
Sea (RS), East Antarctica (EA). (A) Outgroup-ƒ3-statistics between pairs of populations. As ƒ3 163 
value increases, more derived allele frequency is shared between the pairs of population. (B) D-164 
statistic (in the form of BABA-ABBA) examines patterns of alleles sharing across four 165 
populations, and indicates whether there is excess allele sharing between distinct populations. 166 
Left panel: D-statistic is presented in the form of D(Pop, SHE, WS, Out), which examines 167 
whether there is excess allele sharing between SHE and WS (D<0; ABBA) or Pop and WS 168 
(D>0; BABA). Right panel: D-statistic is presented in the form of D(Pop, EA, WS, Out), which 169 
examines whether there is excess allele sharing between EA and WS (D<0; ABBA) or Pop and 170 
WS (D>0; BABA).  171 
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A site-frequency-spectrum (SFS)-based, coalescent demographic modelling framework 172 

(fastsimcoal (30)) was used to test the hypothesis of whether historical trans-Antarctic seaways 173 

existed, with populations subsequently influenced by contemporary circumpolar gene flow. For 174 

demographic modelling, we included samples from WS, AS, RS and EA with 189,248 linkage 175 

disequilibrium (LD)-pruned sites across loci in P. turqueti. We employed a hierarchical approach 176 

to test for WAIS collapse scenarios while incorporating modern circumpolar gene flow in the 177 

models (fig. S3-S4). Step 1 compared contrasting scenarios of past WAIS configurations with 178 

circumpolar gene flow following the directionality of the ACC (clockwise). The models 179 

incorporated WS, EA, RS and AS experiencing continuous circumpolar gene flow since 180 

population divergence. Under these scenarios, after population divergence, WS, AS, RS 181 

experienced no, partial, or complete connectivity, followed by modern ACC gene flow linking 182 

between WS, EA, RS and AS. In, step 2, model complexity was increased, with circumpolar 183 

gene flow following both directionalities of the ACC and ASC (counter-clockwise) for all 184 

scenarios. 185 

 186 

The observed SFSs were statistically best explained by the scenario of a complete historical 187 

WAIS collapse (Fig. 3A), followed by modern circumpolar gene flow linked to ACC and ASC. 188 

The ancestral lineage of WS, AS, RS and EA populations experienced an expansion at 1.8 Mya 189 

(95% confidence interval [CI] between 1.9–6.0 Mya) (Fig. 3A, table S1). Such CI range, 190 

measured within one parameter that captures signals of ancestral demographic changes, likely 191 

reflects noise from multiple scenarios that happened in the past. For example, based on 192 

mitochondrial data (23), lower CI (1.9 Mya) corresponds to the previous estimated timing of the 193 

diversification of the continental shelf clades, whereas the upper CI (6.0 Mya) corresponds to the 194 

timing of species divergence. The signal of ancestral population growth detected in the 195 
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demographic model, as well as the evolutionary scenarios proposed, support demographic 196 

change linked to range expansion across the Antarctic continental shelf. Then, at 70 ka (95% CI 197 

between 68 and 265 ka), the best model supports WS, AS, RS and EA locations splitting into 198 

four populations with direct asymmetric gene flow detected. Direct gene flow was detected from 199 

RS to WS (n=3.76e-3 migrants per generation; 95% CI between 3.37e-5–2) and WS to RS 200 

(=1.58e-3 migrants per generation; 95% CI between 3.67e-6–1); a direct historical connection was 201 

detected between WS and RS. This suggests that an ancient seaway was likely once opened 202 

across the WAIS, which directly linked the present day WS and RS. This could only be 203 

facilitated by a complete WAIS collapse during an interglacial period, which we infer to have 204 

occurred approximately between 68 and 265 ka (based on 95% CI; Fig. 3A), and which is in 205 

accordance with MIS 5e, the most recent or Last Interglacial.  206 

 207 

The time lag between the direct connectivity between RS and WS at 70 ka (value at maximum 208 

likelihood) and the time of MIS 5e (129–116 ka) likely reflects the time it takes for complete 209 

trans-West Antarctic migration to influence allele frequencies in a benthic direct developing 210 

octopus. Finally, contemporary circumpolar gene flow began at 22 ka (95% CI between 28–196 211 

ka), following the opposite directions as the ACC and ASC, which reflects how modern gene 212 

flow in benthic taxa is influenced by ongoing circumpolar currents, in particular the ACC (26); 213 

which has been stable since the LGM (20 ka) (31). 214 

  215 
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216 
Fig. 3 The best-supported demographic model for Pareledone turqueti indicated a complete 217 
historical West Antarctic Ice Sheet collapse scenario at Marine Isotope Stage (MIS) 5e, 218 
supplemented by a StairwayPlot which indicated past changes in population size. (A) 219 
Maximum likelihood model for P. turqueti including Amundsen Sea (AS), Ross Sea (RS), 220 
Weddell Sea (WS) and East Antarctica (EA) populations, shows direct historical gene flow (70–221 
22 ka) between WS and RS, and modern gene flow (22–0 ka) following the directionality of the 222 
Antarctic Circumpolar Current (ACC; clockwise) and Antarctic Slope Current (ASC; counter-223 
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clockwise). Maximised parameter estimates are visualised. The associated 95% confidence 224 
intervals (CI) are in brackets and reported in Table S1. Time of the events modelled are shown 225 
on the left. The width of the bars is proportional to the effective population size of the 226 
population. Arrows indicate immigration (forward in time), with the width of the arrows 227 
proportional to the number of immigrants received (2Nm). The migration pathways, based on 228 
modelled migration directions (forward in time), are also visualised on a map of Antarctica. Map 229 
shows sub-glacial bed elevation >0 m above present-day sea level and is extracted from 230 
Bedmap2 (32). (B) StairwayPlot reconstruction of past changes in effective population size over 231 
time in P. turqueti since species divergence. Dashed vertical lines represent timing of the Last 232 
Glacial Maximum (LGM; ~20 ka), Marine Isotope Stage 5e (MIS 5e; ~125 ka), Marine Isotope 233 
Stage 11 (MIS 11; ~424 ka) and Marine Isotope Stage 31 (MIS 31; ~1.08 mya). Abbreviation: 234 
Holocene, Hol. 235 
 236 

One of the biggest challenges of inferring demographic events in the late Pleistocene include 237 

whether the species experienced a severe bottleneck (i.e. sharp reduction in Ne) in the recent past 238 

that eroded genomic history. For example, if the WAIS had collapsed in the late Pleistocene, 239 

large areas of newly ice-free habitats (where the WAIS existed previously) would have become 240 

available for benthic fauna to disperse and colonise. During the subsequent glacial maximum, as 241 

the AIS expanded across the Antarctic continental shelf, the marine shelf habitats would likely 242 

be reduced to small, isolated pockets of in situ ice-free refugia (33). Such changes in habitat 243 

availability would likely lead to severe population bottlenecks and subsequent genetic drift (33). 244 

As a result, the presence of a severe recent bottleneck could lead to a loss of alleles and 245 

potentially confound parameter scaling in demographic models (30).  246 

 247 

We searched for signals of population size fluctuation prior to the LGM in P. turqueti using 248 

StairwayPlot (34), an SFS-based model-free method. We found that the demographic changes 249 

dated by StairwayPlot correspond with the dating of gene flow changes by fastsimcoal. 250 

Throughout P. turqueti’s evolutionary history, pronounced demographic changes (in the form of 251 

population size decline) were detected in the RS and WS populations at ~418–335 ka, ~125–55 252 
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ka, and ~20–0 ka. These timings coincide with MIS 11, MIS 5e and LGM, respectively. The 253 

sharp population decline detected in RS and WS around MIS 11 and MIS 5e corresponds to the 254 

hypothesised scenario that Ne would experience a dramatic bottleneck had the WAIS collapsed, 255 

then reformed and expanded across the Antarctic continental shelf following the end of a super-256 

interglacial. The population decline detected in RS and WS around LGM also corresponds to the 257 

widely-accepted hypothesis that there would be limited in situ ice-free refugia on the Antarctic 258 

continental shelf during this period, leading to population bottlenecks in benthic species that only 259 

survived on the shelf (33) (i.e. the case for P. turqueti (23)). Sharp bottlenecks also represent a 260 

signal of fluctuations in population size at that time interval (34). These patterns suggest that 261 

recent super-interglacials and the LGM likely strongly influenced species demography, 262 

particularly in populations associated with the signatures of WAIS collapse.  263 

 264 

Since the demographic modelling used in this study is based on the backward-facing coalescent 265 

process, the best-supported demographic model was able to characterise major demographic 266 

changes during the LGM and MIS 5e (the most recent timepoints). Estimation of past changes in 267 

population size indicated AS and EA populations experienced stable populations over time, 268 

while fastsimcoal indicated population size changes; such discordances are likely due to method-269 

specific sensitivity in populations with low sample size in regions that are challenging to collect 270 

biological samples (n£5 in AS and EA). Low sample size in AS also likely reduced the power of 271 

demographic models to detect historical trans-West Antarctic connectivity between AS and 272 

WS/RS, despite the apparent distinct allele frequency correlations detected between them. 273 

Overall, the timing of demographic events detected by independent inferences corroborates the 274 

timings of major glacial-interglacial fluctuations in the late Pleistocene, as well as events dated 275 

using independent markers (mitochondrial data) (23). Therefore, the dating of WAIS collapse 276 
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during MIS 5e as seen through the genomic data of P. turqueti appears to be robust and 277 

unconfounded by noise. 278 

 279 

Our demographic modelling approach was specifically designed to test whether trans-West 280 

Antarctic seaways existed in the past that could be detected with simple contrasting models. The 281 

evolutionary history of P. turqueti is highly complex and populations would have experienced 282 

unique demographic changes associated with each glacial-interglacial cycle throughout the 283 

Quaternary. We utilised a target capture approach that can sequence reduced representation 284 

genomic data in samples with DNA degradation. We did not sequentially reconstruct their past 285 

changes in population size and connectivity patterns to avoid over-parameterisation in limited 286 

SNP datasets. Regardless of the overall challenge of demographic modelling for Southern Ocean 287 

species, signatures of a complete WAIS collapse, likely during the MIS 5e, were clearly 288 

detectable in P. turqueti.  289 

 290 

Here we provide empirical evidence indicating the WAIS collapsed during the Last Interglacial 291 

period (MIS 5e), when global mean surface temperature was 0.5–1.5 oC warmer than the pre-292 

industrial. Currently, future WAIS collapse on centennial timescales is considered as a low 293 

likelihood process (4). In recent trajectories estimated for temperature rise, such as for the most 294 

optimistic emission scenario Shared Socio-economic Pathway (SSP) 1-1.9, the air temperature is 295 

projected to reach +1.2–1.7 oC by 2100 (very likely range) (4), which is potentially within the 296 

tipping point of future WAIS collapse. Future global sea level rise projections should consider 297 

the potential feedbacks caused by collapse of the WAIS, which could lead to catastrophic GMSL 298 

rise in the range of 3.3–5 m (5, 6) under relevant SSP scenarios (SSP1–5) (35). Accurate 299 
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predictions are necessary to ensure that better decisions are made regarding the socioeconomic, 300 

demographic, institutional, and political policies of global coastal communities. 301 

 302 
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