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Abstract  
 
Humans produce two primary forms of vocal communication: speaking and singing. 

What is the basis for these two categories? Is the distinction between them based 

primarily on culturally specific, learned features, or do consistent acoustical cues exist 

that reliably distinguish speech and song worldwide? Some studies have suggested that 

important aspects of music can be distinguished from speech based on spectro-temporal 

modulation patterns, but this conclusion is based on Western music, leaving open the 

question of whether such a principle may apply more globally. Here, we studied the 

spectro-temporal modulation patterns of vocalizations produced by 369 people living in 

21 urban, rural, and small-scale societies distributed across six continents.  We show that 

specific ranges of spectral and temporal modulations differentiate speech from song in a 

consistent fashion, and that those ranges overlap within categories and across societies. 

Machine-learning analyses confirmed that this effect was cross-culturally robust, with 

vocalizations reliably classified solely from their spectro-temporal modulation patterns 

across all 21 societies. Listeners unfamiliar with most of the cultures could also classify 

the vocalizations, with similar accuracy patterns as the machine learning algorithm, 

indicating that the spectro-temporal cues used by the classifier are similar to those used 

by human listeners. Thus, the two most basic forms of human vocalization appear to 

exploit opposite extremes of the spectro-temporal continuum in a consistent fashion 

across societies. The findings support the idea that the human nervous system is 

specialized to produce and perceive two distinct ranges of spectro-temporal modulation 

in the service of the two distinct modes of human vocal communication. 
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Introduction 

Human vocal communication differs from that of other species in that humans vocalize in 

two distinct modes: speech and song 1-4. A great deal of work has documented the 

remarkable variability in both the structural features of speech and song, as well as their 

acoustical manifestations 5-9, but debate continues about whether the two categories may 

be distinguished across societies on the basis of acoustical features alone. Speech and 

song are produced by the same vocal tract, yet each makes distinct demands on 

musculature, breathing, and motor control mechanisms 10, raising the possibility that 

certain acoustical cues could serve as markers of each category 11. However, cross-

cultural variability in the forms of music is large, and distinctions between speech and 

song within cultures are far from clear 12-14, so that such a claim is difficult to address. 

Indeed, even if speech and singing reliably exist as separate, recognizable entities, their 

cognitive representation could depend mostly on learned regularities that are particular to 

each cultural group. 

One source of difficulty in comparing speech and song is that they each form part 

of broader communication systems of language and music, respectively. These systems 

share certain cognitive operations (e.g., recursive syntactical operations), but also differ 

in important ways (e.g., the hierarchical organization of metrical patterns) 15,16. Pitch 

variation in music tends to be more discrete than in speech 17, leading to the formation of 

hierarchical tonal organization 18, which may be a fundamental property of music 

worldwide 7. But it remains unclear whether such descriptive differences represent 

acoustic phenomena invariant enough to form a sufficient basis for categorization across 

different musical and linguistic systems, or, instead, are merely associated with the two 
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domains, perhaps mainly in those cultures that happen to be well-studied in the cognitive 

sciences 19. 

Recent developments in neurophysiology and cognitive neuroscience offer a 

rigorous framework for testing how speech and song could differ. Complex sounds can 

be characterized according to the distribution of their spectro-temporal modulation power 

20. Neurons in auditory regions across various species can be described in terms of their 

spectro-temporal receptive fields, which have been shown to constitute an efficient 

coding scheme for complex acoustical patterns 21-23. Moreover, spectro-temporal tuning 

functions correspond well to the most relevant acoustical features that characterize 

different animals’ communicative signals, including birdsong 23, cat meows 24, and 

monkey calls 25, indicating a match between the acoustics of important sounds in the 

environment and the neural hardware needed to process them.  

Might spectro-temporal modulation content constitute a fundamental, and 

sufficient difference to account for how speech and song differ from one another? 

Acoustical analysis shows that speech tends to contain faster temporal modulations as 

compared to music from Western genres 11,26, and temporal modulation cues are well-

known to be sufficient for speech perception, even when spectral modulations are 

degraded 27. Conversely, degradation of spectral modulations abolishes the perception of 

melodic content in song, while leaving speech comprehension intact, whereas 

degradation of temporal modulations renders the speech content of songs 

incomprehensible but has little effect on the melody 28. These findings dovetail well with 

the idea that spectral and temporal features are processed in partially distinct neural 

populations within 29,30 and across the two hemispheres 28,31,32.  
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Taken together, these results suggest that speech and song exploit different ends 

of the spectro-temporal continuum. But such a conclusion suffers from a major limitation, 

because although the high temporal rate of speech has been confirmed for many distinct 

languages 33, the spectrotemporal features of music have only been characterized in a 

limited Western musical repertoire, which is not necessarily representative of all human 

musical systems. Whether the role of spectro-temporal modulations in distinguishing 

speech from song is an idiosyncracy of some cultures, or whether it represents a more 

fundamental aspect of the biology of human communication — as one would expect, 

given the fundamentally different functional roles of speech 34,35 and music 2 in human 

evolution, and their partly distinct neural representations — is the question we address in 

this paper.  

Specifically, we tested whether distributions of spectro-temporal modulation 

power in speech and song are sufficient to distinguish the two vocalization types within 

and across 21 societies sampled from all inhabited continents and comprising small-scale, 

rural, and urban societies. The recordings, produced in 18 languages from 12 language 

families, were gathered from native speakers of each language who each lived in the 

society where the recording was gathered (see 5 for full details and supplementary Table 

1 and Supplementary Figure 1). Three hundred sixty-nine people from these societies 

were asked (i) to speak in a casual, ordinary fashion, on a mundane topic directed to the 

experimenter (e.g., describing their daily routine); and (ii) to sing a song of their choice, 

with the only requirement being that the song was not intended to be infant-directed.1 

Whether the vocalization was considered to be an example of speech or song was 

                                                       
1
 Additional recordings in the corpus were infant-directed, as the corpus has previously 

been used to study the acoustic features of infant-directed vocalizations, as in 5 
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therefore determined by the person producing the vocalization, and not imposed by the 

researcher.  

We predicted (i) that if speech and song are characterized by distinct spectro-

temrporal modulation signatures, we should be able to observe distinct distributions of 

these patterns with appropriate acoustical analysis; (ii) that if such differences are truly 

common across societies, we should observe substantial overlap in the distribution of 

spectro-temporal modulation power for each category across all societies studied; (iii) 

that if these acoustical markers are sufficient to categorize the two classes of 

vocalizations, then a machine-learning classifier should be able to determine which 

sample corresponds to speech or song with adequate accuracy, based solely on their 

spectro-temporal modulation profile; (iv) that the information most used by the classifier 

should correspond to the spectro-temporal signatures derived from the initial acoustical 

analysis; and (v) that listeners unfamiliar with the language or music of the different 

societies should nevertheless be able to correctly classify speech and song, with a similar 

ordering of accuracy across samples as the machine learning classifier, if human 

judgments are based on spectro-temporal cues.  
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Results 

We decomposed the acoustical signal of the vocalization samples using the 

Spectro-Temporal Modulation framework (Figure 1). Spectro-temporal modulations 

patterns for singing and speaking samples were extracted (ModFilter algorithm 36) for 

each vocalization (see Methods and 28 for similar procedure), and then used for univariate 

and multivariate analyses. The identical pipeline was used for both speech and song 

samples, thus avoiding any kind of bias in the procedure. 

 

 
Figure 1. Extraction of spectro-temporal modulations patterns for singing and 

speaking vocalization samples.  Sound waves, spectrograms, and modulograms of 

representative vocalizations (here, in recordings from the Nyangatom of Ethiopia; left 

panel: song, right panel: speech) revealing the acoustic complexity of the song and 
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speech samples.  For each sample we extracted the spectro-temporal modulation 

patterns. We then contrasted the song and speech modulation patterns using non-

parametric permutation statistics (FDR-corrected) and used the modulation patterns 

data as features to perform a 2-class SVM decoding of music and speech samples (see 

Figure 2). 

 

We contrasted the spectro-temporal modulation patterns of song and speech 

vocalizations using non-parametric permutation statistics with FDR correction in the 

spectral and temporal domains (as implemented in FieldTrip37 - see Methods). This 

analysis revealed two hotspots of increased spectral modulations in song as compared to 

speech samples (105 permutations, FDR corrected, p < .0001): hotspot 1: peak at 3.71 

cyc/kHz in the spectral domain and 0.66Hz in the temporal domain; hotspot 2: peak at 

6.86 cyc/kHz in the spectral domain and -0.66Hz in the temporal domain (note that 

human speech is symmetric between positive and negative temporal modulation 

frequencies,36 which correspond to increasing and decreasing frequency trajectories, 

respectively). We also detected three hotspots of increased temporal modulation in 

speech as compared to song: hotspot 1: peak at 7.99 Hz in the temporal domain and 0 

cyc/kHz in the spectral domain; hotspot 2: peak at -7.99 Hz in the temporal domain and 0 

cyc/kHz in the spectral domain; hotspot 3: peak at 4.49 Hz in the temporal domain and 

5.11 cyc/kHz in the spectral domain.  

To assess the consistency of this effect across societies we generated a heatmap 

illustrating the overlap in number of societies that display a significant effect in the 

hotspots identified in Figure 2A. This analysis (Figure 2 B.) revealed that 20/21 societies 
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showed a significant increase of spectral modulations in singing samples vs speech 

samples at 3.71 cyc/kHz (in the spectral domain) and 0.66Hz (in the temporal domain). 

Moreover, 21/21 societies showed a significant increase of temporal modulations in 

speech samples vs singing samples at 7.83 Hz (in the temporal domain) and 0.09 cyc/kHz 

(in the spectral domain). The robustness of this effect was also confirmed with a k-means 

clustering analysis performed on the coordinates in the spectro-temporal domain of the 

statistical peaks of each society for the contrast song vs. speech. Note that for this 

analysis the absolute values of temporal modulations were used, as human vocalization 

are symmetric between positive and negative temporal modulation36. This analysis 

revealed 2 clear clusters with centroids at: cluster 1: 3.38 cyc/kHz (in the spectral 

domain) and -0.16 Hz (in the temporal domain, Figure 2 C.) and cluster 2: 0.04 cyc/kHz 

(in the spectral domain) and 6.99Hz in the temporal domain. 

To confirm the cross-cultural robustness of these effects, we then used a Support 

Vector Machine (SVM) classifier with fieldsite-wise k-fold cross-validation to classify 

song and speech vocalization samples, using only the spectro-temporal modulation 

patterns as input features (see Methods). This approach provides a strong evaluation of 

cross-cultural regularity: the model is trained only on data from 20 of the 21 societies to 

predict whether each vocalization in the 21st society is song or speech.  The procedure is 

repeated 21 further times, with data from each society being successively held out, to 

estimate the classification performance across the full set of societies. The summary of 

the SVM’s performance (average of all models) reflects, corpus-wide, the degree to 

which song and speech spectro-temporal modulation patterns are stereotyped, because 

high classification performance can only result from high cross-cultural regularities. 
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The models significantly classified song and speech above chance (t(20) = 11.7, p 

<.001; Cohen’s d = 2.55; - Figure 2D; accuracy = 80.5% ± 11.9 (SD); sensitivity = 

77.28% ± 20.9, specificity = 83.72% ± 9.3; ROC curves for each society are presented in 

Figure 2E). Evaluating classification performance within the recordings in each fieldsite 

showed a high degree of cross-cultural regularity, with the performance in all 21 

fieldsites significantly above chance level (Figure 2.D.E), even though accuracy varied 

across different sites.  

We then investigated what STM features the model relied upon to discriminate 

song and speech spectro-temporal modulation patterns.  For each classifier, we extracted 

the feature weights to estimate their relative importance (z-scored, averaged across 

societies). We identified two spectro-temporal patterns ( i. 7.83 Hz in the temporal 

domain and 0.09 cyc/kHz in the spectral domain and; ii. 0.83 Hz in the temporal domain 

and 3.16 cyc/kHz in the spectral domain) showing substantial di�erences in the features 

the model relied upon to reliably classify speech and song across societies (Figure 2.F.). 

Furthermore, the two regions of the spectro-temporal modulation space most critical to 

the classifier’s performance correspond well to the acoustical differences identified in the 

initial analyses (Figure 2 A. and B) as shown by the a posteriori overlap observable in 

Figure 2 C. and F.). 
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Figure 2. Cross-Cultural spectro-temporal markers of song vs. speech identified with 

univariate analyses and machine learning. A. Song vs. Speech contrast in the 

modulation power spectrum domain across all societies (p< .001, FDR-corrected). B. 

Heatmap (smoothed) depicting the number of societies showing a significant effect in the 

clusters identified in (A.). Each value reports a numeric count, with larger counts 

associated with yellow/white coloring. C. K-means clustering of statistical peaks; dots 

represent each society. Dark lines illustrate the boundaries of the significant effects 

presented in (A.). D. Fieldsite-wise cross-validated (21 societies) support vector machine 

decoding accuracy (chance level: 50%). The colored dots represent the accuracy for 

each society (sorted as a function of accuracy with a jet colormap). E. Receiver 

operating characteristic curve (ROC) for each society (same color code as in A.). Black 

dashed line represents the chance level. F. Normalized feature weights in the modulation 

power spectrum domain showing features with the largest influence (z-score, average of 
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the 21 classifiers) for the classifier. Dark lines illustrate the boundaries of the significant 

effects presented in (A.). 

To confirm the reliability of these findings, and to verify that the accuracy rates 

were not inflated by any incidental similarities between the samples used for cross-

validation, we repeated the same analysis with four alternative cross-validation strategies, 

using the same cross-validation procedure but doing so across countries, language 

families, world subregions, and world regions instead of fieldsites (societies). The results 

robustly replicated in all cases with large effect sizes:  

i) Countries (t(17) = 11.7, p <.001; Cohen’s d = 2.75; - Figure 3A; accuracy = 

79.7% ± 10.8 (SD); sensitivity = 76.4% ± 20.2 , specificity = 83.1% ± 10.9 

ii) Language Families (t(14) = 12.0, p <.001; Cohen’s d = 3.10; - Figure 3B; 

accuracy = 82.2% ± 10.4 (SD); sensitivity = 81.7% ± 17.9, specificity = 82.6% ± 11.5 

iii) World subregions (t(13) = 10.1, p <.001; Cohen’s d = 2.69; - Figure 3C; 

accuracy = 79.4% ± 10.9 (SD); sensitivity = 76.4% ± 22.4, specificity = 82.4% ± 11.4 

iv) World regions (t(5) = 12.4, p <.001; Cohen’s d = 5.05; - Figure 3D; accuracy = 

82.5% ± 6.4 (SD); sensitivity = 80.3% ± 14.1, specificity = 84.7% ± 5.2 
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Figure 3. Cross-cultural regularities across countries, language families, world 

subregions, and world regions identified with machine learning. A. Left Panel: 

Country-wise cross-validated decoding accuracy (chance level – 50%). The colored dots 

represent the performance accuracy for each country (sorted as a function of accuracy 

with a jet colormap). Middle Panel:  Receiver operating characteristic curve (ROC) for 
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each country (same color code as in the left panel). Black dashed line represents the 

chance level. Rigth Panel: Features weights in the MPS domain showing features with 

the largest influence (z-score, average of the 18 classifiers). B. C. D. same as (A.) for 

countries, world subregions, and world regions respectively  

 

 
Behavioral Analysis 
 

We then studied naïve listeners’ sensitivity to these spectro-temporal features. We 

played the song and speech recordings to 80 individuals who were asked to rank, as 

rapidly as possible on a 5-point scale, whether each speaker was singing (code 1) or 

speaking (code -1) (see Figure 4A). These primarily French-speaking listeners from 

Quebec (Canada) and France were presumably unfamiliar with the languages or music of 

most of the societies from which the sounds were recorded. Their judgments were highly 

accurate, with large effect sizes for both Song (t(79)= 93.8, p < .001, Cohen’s d = 10.98) 

and Speech (t(79)= -25.1, p < .001, Cohen’s d = -2.87 ;  Figure 4 B.)). 

To test whether these listeners were using the spectro-temporal cues that 

distinguished song from speech in the prior analyses, we tested if the features identified 

on the modulation power spectrum (MPS; see Figures 2 and 3) could predict their 

behavioral ratings. To do so we computed the normalized difference between Song MPS 

and Speech MPS and between Song and Speech behavioral ratings (with a positive score 

representing large difference between song and speech ratings) for each of the 369 

vocalizations/speakers (see Methods). We then computed the correlation (FDR corrected, 

p< .05, Figure 4C) between these difference scores and observed i) a positive relationship 

between increased spectral modulation for song relative to speech  (-0.33 Hz in the 

temporal domain and 3.62 cyc/kHz in the spectral domain- – see Figure 4CD) and 
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positive behavioral difference scores (corresponding to large difference ratings between 

song and speech) and ii) a negative relationship between decreased temporal modulation 

for song relative to speech (4.83 Hz in the temporal domain and 0.04 cyc/kHz in the 

spectral domain) and positive behavioral difference scores (corresponding to large 

difference rating between song and speech– see Figure 4 C. D.).  

To test the consistency of our listeners’ inferences across cultures, we computed the 

fieldsite-level behavioral ratings. Within each of the 21 societies, listeners’ judgments 

were accurate, again with large effect sizes, for both Song (t(20)= 28.7, p < .001, Cohen’s 

d = 6.27) and Speech t(20)= -45.6, p <.001, Cohen’s d = -9.94 ; - Figure 4 E., see 

supplementary Figure 2 for the same analysis for countries, language families, world sub 

regions and world regions).  

Finally, to confirm that human judgments were based on similar spectro-temporal 

cues as those identified in the MPS, we investigated whether these listeners unfamiliar 

with the different societies were identifying speech and song samples with a similar 

ordering of accuracy across samples as the machine learning classifier (see Figure 2). To 

do so, we computed the correlation between SVM decoding accuracy (Figure 2 D.) and 

the normalized difference between Song and Speech behavioral ratings computed within 

each society. As expected, this analysis revealed that decoding accuracy of the classifier 

was positively correlated with the normalized behavioral scores (r(20) = .73, p< .001, 

Figure 4 F.). 
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Figure 4: Naïve listeners distinguish song from speech vocalizations across cultures. A. 

Behavioral task: 80 individuals were asked to rank, as rapidly as possible on a 5-point 

scale, whether each speaker was singing (code 1) or speaking code (-1). B. Behavioral 

ratings (chance level – 0) for song (orange) and speech (blue) samples. Diamonds 

represent the ratings for each listener. C. Correlation between normalized difference 

scores (Song MPS vs. Speech MPS and Song vs. Speech behavioral ratings) represented 

in the MPS domain. (FDR-corrected in the spectral and temporal modulation domains, p 

< .05). D. Scatter plot of MPS normalized difference (Song minus Speech) against 

Behavioral normalized difference (Song minus Speech) for the statistical peaks reported 

in C. Circles represents each speakers/vocalization (n = 369). E. Fieldsites-level 

behavioral ratings (chance level – 0) for song (orange) and speech (blue) samples. 

Colored circles represent each of the 21 societies/cultures (sorted as a function of the 

SVM decoding accuracy of Figure 2 D. - with a jet colormap). F. Scatter plot of SVM 
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decoding accuracy (Figure 2 D.) against behavioral normalized difference (Song vs. 

Speech). Colored circles represent each of the 21 societies/cultures (sorted as a function 

of the SVM decoding accuracy of Figure 2 D. - with a jet colormap) 
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Discussion 
 

Using vocalizations drawn from a diverse set of languages and societies 5 we 

found that speech and song systematically differ in their typical acoustical signatures: 

songs contain greater energy than spoken utterances at higher spectral and lower temporal 

modulation rates, whereas speech shows the reverse effect (Figure 2 A.). This pattern was 

sufficiently consistent that, despite measurable variation in the distributions of spectro-

temporal modulations in the vocalizations of each society tested (supplementary Figures 

3, 4, 5, 6), we still observed overlap within each category (song and speech) in the two 

specific acoustical ranges across nearly all of the societies (Figure 2 B.); conversely, 

there was essentially no overlap between the two categories. 

That these spectro-temporal cues suffice to classify the two categories was shown 

by the outcome of a machine-learning classifier, which was trained exclusively on the 

spectro-temporal features, and correctly identified both classes of vocalization above 

chance for all of the 21 societies (Figure 2 D.), albeit with differing degrees of accuracy. 

To verify that this outcome was not merely driven by similarities in the speech or song 

samples across societies that may have been geographically or linguistically related, we 

trained the classifier using only data from one country/region or language family, and 

tested on the others; the outcomes were essentially the same (Figure 3.). Furthermore, the 

information used by the classifier (Figure 2 F.) corresponded well to the ranges of 

modulation power that characterize the two classes, as identified in the initial aggregate 

acoustical analysis.  
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Last, human listeners who were unfamiliar with most of the speech and song 

systems sampled here performed close to ceiling when asked to indicate which 

vocalization corresponded to which category (Fig 4B). Their ratings were directly related 

to the distribution of energy in the modulation power spectrum (Figure 4 C and D), and 

the ranking of behavioral accuracy across societies was similar to that of the 

classification algorithm (Figure 4 E., see also supplementary Figure 2), suggesting that 

both the classifier and the humans relied on the same cues. 

The findings support the existence of universals in the acoustical manifestations 

of the two principal modes of auditory-vocal communication found in our species. 

Because the differences in specific ranges of spectro-temporal modulation for speech and 

song are widely shared across unrelated groups of people, we may conclude that they 

represent a fundamental property of how sounds are generated by the human vocal tract, 

depending on the nature of the communication. To transmit denotative information using 

speech, a high level of temporal modulation is used, but spectral modulation is less 

prominent; whereas to communicate musical content and affective states using song, a 

high level of spectral modulation is used, but at lower temporal modulation rates. The 

fact that people unfamiliar with the most of the linguistic or musical systems in question 

were nevertheless easily able to identify which vocalization was which, and that they 

used essentially the same spectro-temporal cues as the machine-learning classifier had 

determined to be optimal, supports the conclusion that such cues are widely shared and 

readily available even in the absence of any culturally specific knowledge. 
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One explanation for the distinct spectro-temporal signatures of speech and song is 

that they result from differences in how human vocal musculature is used for speaking or 

singing. The high rate of temporal modulation in speech reflects the syllable rate 

(opening and closing of the mouth), which tends to be faster when speaking than when 

singing 26. The longer syllable duration in singing may allow for production of more 

stable pitch values, leading to better encoding of tonal relationships important for music 

38. Conversely, the high spectral modulation rate associated with song may be related to 

the complex physiology of phonation typical of singing that generates more energy in the 

upper harmonics 10,39. 

Most songs, including those used here, incorporate both spoken and melodic 

content simultaneously. Thus, both types of modulation are typically present together. 

But what distinguishes the two is their different acoustical signature, as determined by 

comparing them against one another (Figure 2 A. and supplementary Figures 3 to 6). This 

is not to say that all cultures necessarily carve out the spectro-temporal space in exactly 

the same way. Although there was almost complete overlap of at least part of the 

distribution of spectro-temporal modulation for both speech and song across societies 

(Figure 2 B.), and the centroids of each distribution were clustered in close proximity 

(Figure  2 C.), a glance at the individual modulation difference plots for each culture 

(supplementary Figures 3 to 6) shows that there are important differences across them, 

especially in the songs, which exploit wide ranges of spectral and temporal modulation, 

even if they are always fairly far from the range of modulations used for speech. Further 

study of how and why these cues are deployed in different musical traditions could help 

to identify and explain such cross-cultural differences. Indeed, the spectro-temporal 
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framework may prove particularly valuable for examining questions of cross-cultural 

variability in language and music, since it does not require the selection of any particular 

acoustic or musical features, which are notoriously vulnerable to culture-specific 

assumptions 14; see also Supplementary Information in 7. 

We note that song and speech being acoustically distinct does not imply that top-

down factors have no influence on the perception of a vocalization as song or as speech. 

Indeed, the well-known “speech-to-song” illusion 40 demonstrates that speech may 

sometimes be perceived as song with repeated presentation, even if the acoustics are held 

constant. This phenomenon has been attributed both to particular acoustical features of 

sounds susceptible to the illusion, as well as to individual differences across listeners 41-

43. The spectro-temporal framework may provide a useful approach to investigate 

vocalizations that are intermediate between canonical speech and song, and which may 

share features of both, not only in the context of the speech-to-song illusion, but also 

more broadly to study artistic forms in which speech and song features are blended (e.g. 

rap), or in speech with more prominent song-like features (e.g. infant-directed speech). 

The findings presented here fit well with previous empirical work examining the 

perceptual relevance of spectral vs temporal cues for speech and music. In a classic 

paper, Shannon and colleagues 27 distorted normal speech by removing spectral 

information and replacing it with amplitude-modulated noise passed through a limited 

number of filter banks centered at different frequencies, which preserves primarily the 

temporal cues. The results indicated very good speech perception with as few as 3-4 

spectral channels, thereby showing that temporal modulation cues suffice to extract 
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relevant information from a speech. Other studies of speech have also suggested that 

temporal modulation is closely related to phonetic identity 36.  

The temporal modulation rate of speech samples from many different languages 

shows a consistent peak in the temporal modulation distribution at about 4-6 Hz 11,33, but 

the equivalent rate for a variety of Western musical genres (classical, rock, jazz) is 

generally less than half the speed of speech 11. These observations are close to ours, in 

which speech temporal modulation occupied a range of 5-8 Hz, while song temporal 

modulations were close to 1Hz. But whereas prior studies only examined Western music, 

we show that this slower rate is characteristic of many global musical systems. 

Furthermore, we also show that spectral modulation rates are higher for songs than for 

speech across many cultures, which, to our knowledge, had not previously been shown, 

and which indicates that the distinction between the two kinds of vocalization is not only 

based on temporal, but also on spectral information. 

In a direct test of the importance of spectral and temporal cues for song and 

speech, we 28 found that perception of speech content remained largely intact with 

spectral degradation, but quickly deteriorated with temporal degradation, whereas melody 

perception was largely abolished with spectral degradation but was not much affected by 

temporal degradation. That study, however, used only English and French speech, and 

Western-style melodies. The current results replicate and extend those findings beyond 

Western linguistic and musical systems, to encompass a widely distributed set of cultures, 

including ones with little or no contact with Western societies. 

The differences we observed in the present study for speech and song can be 

interpreted within the context of neuroscience findings that suggest partially dissociable 
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neural representations of the two types of signals. Recent functional MRI data 44 using a 

voxel decomposition approach suggest that speech and music have distinct cortical 

representations as cognitive domains, rather than on the basis of acoustical cues. Indeed, 

intracranial recordings suggests the existence a cortical region, located bilaterally within 

the anterior temporal lobes, that is specifically sensitive to song over all other sound 

categories 45; interestingly, the same dataset also shows specific sensitivity to spectral and 

temporal modulation in different cortical regions.  

A competing idea is that speech content vs song melody are processed in distinct 

auditory cortical regions as a function of hemispheric differences in sensitivity to spectral 

and temporal modulations 28. Numerous studies have adduced evidence that the neuronal 

populations in left auditory cortex have higher temporal resolution but lower spectral 

resolution, whereas the right auditory cortex has the reverse specialization 31,46-48. 

According to this view, speech and song are represented in distinct neural substrates not 

because of domain-specific aspects, but rather because of their tendency to utilize 

opposite ends of the spectro-temporal continuum. The data from the present study would 

be in line with this conclusion, insofar as the spectro-temporal acoustical signatures of 

speech and song are shown to be sufficient to distinguish the two categories across many 

different linguistic and musical systems, suggesting that they reflect a fundamental 

organizational specialization of the human brain to process the two acoustical 

dimensions. 

Our findings point to a biological origin of speech and song, upon which cultural 

influences act to produce the rich, varied, and beautiful forms of language and music 

found throughout the world. This conclusion fits with two basic ideas about the design of 
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human auditory perception. First, it fits with the idea of efficient coding, according to 

which the nervous system optimizes its representation of the environment based on the 

most salient features necessary for success 49. Thus, neural responses are well-matched to 

the statistical properties of the most important aspects of both the visual 50 and auditory 

worlds 51 of a given species. Second, it supports the conclusion that music and speech 

tend to have distinct functional roles 2,34,35 in human evolution. Humans talk and sing, 

thanks to the organization of a nervous system that allows us to generate and perceive 

those signals that occupy different portions of the spectro-temporal acoustical continuum. 
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Methods 
 
Vocalization corpus 

We used a corpus of 738 recordings of adult-directed song, and adult-directed 

speech (all audio is available at https://doi.org/10.5281/zenodo.5525161) from 5. People 

(N= 369) living in 21 societies produced each of these vocalizations, respectively, with a 

median of 15 individuals per society (range 6-57). From those for whom information was 

available, 86% were female.  

Recordings were collected by the investigators of 5 and/or staff at their field sites, 

all using the same data collection protocol. They translated instructions to the native 

language of the participants, following the standard research practices at each site. 

Fieldsites were selected partly by convenience (i.e., via recruiting principal investigators 

at fieldsites) and partly to maximize cultural, linguistic, and geographic diversity (see 

supplementary Table 1). 

For speech recordings, participants spoke to the researcher about a topic of their 

choice (e.g., they described their daily routine). For song, participants sang a song that 

was not intended for infants (see 5, for details); they also stated what that song was 

intended for (e.g., “a celebration song”). Participants vocalized in the primary language 

of their fieldsite, with a few exceptions (e.g., when singing songs without words; or in 

locations that used multiple languages, such as Turku, which included both Finnish and 

Swedish speakers).  

Participants were free to determine the content of their vocalizations. This was 

intentional:  imposing a specific content category on their vocalizations would likely alter 
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the acoustic features of their vocalizations, which are known to be influenced by 

experimental contexts 5.  

All recordings were made with Zoom H2n digital audio recorders, using foam 

windscreens (where available). To ensure that participants were audible along with 

researchers, who stated information about the participant and environment before and 

after the vocalizations, recordings were made with a 360° dual x-y microphone pattern. 

This produced two uncompressed stereo audio files (WAV) per participant at 44.1 kHz; 

we only analyzed audio from the two-channel file on which the participant was loudest. 

The investigator at each fieldsite provided standardized background data on the 

behavior and cultural practices of the society (e.g., whether there was access to mobile-

phones/TV/radio, and how commonly people used ID speech or song in their daily lives). 

Most items were based on variables included in the D-PLACE  cross-cultural corpus5. 

The 21 societies varied widely in their characteristics, from cities with millions of 

residents (Beijing) to small-scale hunter-gatherer groups of as few as 35 people (Hadza). 

All of the small-scale societies studied had limited access to TV, radio, and the internet, 

mitigating against the influence of exposure to the music of other societies. Four of the 

small-scale societies (Nyangatom, Toposa, Sápara/Achuar, and Mbendjele) were 

completely without access to these communication technologies. 

Our strategy was to analyze the 5 first seconds of the raw recording of speech and 

song vocalization produced by the same individual; this ensured that the findings were 

not unbalanced, e.g., because some recordings were much longer than others. 

Extraction of spectro-temporal modulations 
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For the 738 selected samples (369 speech and 369 song) we decomposed the first 

five seconds of the acoustical signal using the framework of spectrotemporal modulation 

power 36. The modulation domain results from the 2D fast Fourier transform of the 

autocorrelation matrix of the sound stimulus in its spectrographic representation and 

represents the energy modulation across the temporal and spectral axes (Figure 1). This 

results in 738 MPS data that were then used for univariate and multivariate analyses. 

 

Univariate analyses  

Fieldtrip 37 functions were used to perform non-parametric permutation statistics 

with FDR correction (p <.001) for the contrast between song and speech MPS. 

 

Multivariate analyses 

Multivariate analyses were performed using MATLAB and LibSVM's linear 

support vector machine (SVM) implementation (www.csie.ntu.edu.tw/~cjlin/libsvm/). A 

linear classifier was chosen as MPS data contains many more features than examples, and 

classification of such data is generally susceptible to over-fitting. One way of alleviating 

the danger of over-fitting is to choose a simple function (such as a linear function) for 

classification, where each feature affects the prediction solely via its weight and without 

interaction with other features (rather than more complex classifiers, such as nonlinear 

SVMs or artificial neural networks, which can let interactions between features and 

nonlinear functions thereof drive the prediction).  

Our strategy was to use the Support Vector Machine (SVM) classifier with 

fieldsite-wise k-fold cross-validation to classify song and speech vocalization samples, 
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using the MPS as features. The model is trained only on data from 20 of the 21 societies 

to predict whether each vocalization in the 21st society is song or speech.  The procedure 

is repeated 21 further times, with each society being held out, to estimate the 

classification performance across the full set of societies. Results were expressed as 

accuracy of category identification that was calculated using an average of the cross-

validation folds. For each classifier, we extracted the features weights (zscore) to evaluate 

the relative contribution of each feature in the classification. This procedure was 

performed across societies (21), across countries (18), language families (16), world 

subregions (15) and regions (6). 

 

Behavioral experiment 

Participants: 80 adults participated in the behavioral experiment. The group was 

composed of 80 native French speakers from France and Canada (33 female, 4 non-

binary, mean age = 32.4 years ± 10.86). Some of them (10 out of 80) were musically 

trained (more than 5 years of formal musical training). Participants reported no history of 

neurological or psychiatric disease. Ethical approval was obtained from the Ethics 

Review Board of the CIUSSS de la Capitale Nationale (2022-2476). 

 

Procedure: The experiments took place in a sound-attenuated booth. Auditory stimuli 

were presented binaurally via Sennheiser HD 280 pro headphones at a comfortable sound 

level (~75 dB SPL). PsychoPy 52 was used to control the stimulus presentation and record 

responses.  
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We played the song and speech recordings to these individuals who were asked to 

rate, as rapidly as possible on a 5-point scale on their keyboard, whether each speaker 

was singing (code 1) or speaking (code - 1). Participants had 9 seconds to respond and 

received no feedback (i.e., we did not tell them whether or not their rating was accurate).  

 The experiment lasted approximately 15 minutes. We used 3 different blocks that 

were pseudo-randomly presented to the participant. Each bloc contained the same number 

of examples of speech and song for each society, with a total of 246 trials per block. This 

way a given listener was also rating the vocalization of the same speaker. Example of this 

task can be found online: :  https://run.pavlovia.org/palbouy/spectrotemp_bloc1 

 

Behavioral data analysis: Data were processed with MATLAB (The Mathworks), and 

statistical analyses were performed with Jamovi (https://www.jamovi.org). For each 

participant, the ratings were extracted and sorted as a function of society, language 

family, countries, world subregions and world regions. Ratings were analyzed with one 

sample t-tests and we performed Pearson’s correlation corrected with FDR when 

necessary. 
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