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ABSTRACT Knowledge of the fitness effects of mutations to SARS-CoV-2 can inform assessment of new variants, design
of therapeutics resistant to escape, and understanding of the functions of viral proteins. However, experimentally measuring
effects of mutations is challenging: we lack tractable lab assays for many SARS-CoV-2 proteins, and comprehensive deep
mutational scanning has been applied to only two SARS-CoV-2 proteins. Here we develop an approach that leverages millions
of publicly available SARS-CoV-2 sequences to estimate effects of mutations. We first calculate how many independent
occurrences of each mutation are expected to be observed along the SARS-CoV-2 phylogeny in the absence of selection. We
then compare these expected observations to the actual observations to estimate the effect of each mutation. These estimates
correlate well with deep mutational scanning measurements. For most genes, synonymous mutations are nearly neutral,
stop-codon mutations are deleterious, and amino-acid mutations have a range of effects. However, some viral accessory
proteins are under little to no selection. We provide interactive visualizations of effects of mutations to all SARS-CoV-2 proteins
(https://jbloomlab.github.io/SARS2-mut-fitness/). The framework we describe is applicable to any virus for which the number of
available sequences is sufficiently large that many independent occurrences of each neutral mutation are observed.

The rapid evolution of SARS-CoV-2 has led to the emergence
of viral variants with enhanced transmissibility, escape from

therapeutics, or reduced recognition by immunity [1, 2]. To
anticipate and mitigate this evolution, the scientific community
has launched efforts to assess the risk of new viral variants [3]
and create therapeutics that target constrained regions of the
virus where resistance is less likely to evolve [4, 5, 6]. Both efforts
require determining how specific mutations affect viral fitness.

Unfortunately, experimentally measuring the effects of mu-
tations is challenging for most SARS-CoV-2 proteins. For spike,
tractable lab assays have identified key functional and antigenic
mutations [1, 7], and enabled deep mutational scanning measure-
ments of how most mutations affect receptor binding, cellular in-
fection, and antibody recognition [8, 9, 10, 11]. These experimen-
tal data are valuable for assessing new spike variants [3, 12, 13]
and designing antibody therapeutics with greater resistance to
escape [14, 15, 16]. But most SARS-CoV-2 proteins lack tractable
lab assays, despite contributing to viral fitness [17, 18, 19] and
being targets of efforts to develop anti-viral drugs [20]. The only
non-spike SARS-CoV-2 protein with large-scale experimental
measurements of mutation effects is Mpro [21, 22].

An alternative to experiments is to estimate effects of mu-
tations by analyzing natural viral sequences. The amount of
data available for such analyses has increased dramatically over
the last few years with the sequencing of SARS-CoV-2 from mil-
lions of human infections. So far analyses of these sequences
have focused on analyzing expanding viral clades to identify
mutations that mediate immune escape or increase transmissibil-
ity [23, 24, 25]. The basic idea is that mutations that repeatedly
appear near the base of clades that increase in relative frequency
are likely beneficial to the virus. However, only a small mi-
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nority of all possible mutations are beneficial, with most being
nearly neutral or deleterious. For purposes such as identifying
constrained drug targets or understanding the function of viral
proteins, it is important to estimate the effects of neutral or dele-
terious mutations as well as beneficial ones. Other studies have
analyzed broader alignments of coronaviruses substantially di-
verged from SARS-CoV-2 [26, 27], but the resulting estimates are
limited by sparse sampling and possible changes in the impacts
of some mutations across divergent viruses.

Here we develop a new approach that uses natural sequences
to estimate the effects of mutations. Our basic insight is that
there are now so many SARS-CoV-2 sequences that all non-
deleterious single-nucleotide mutations are expected to inde-
pendently occur many times along the observed phylogenetic
tree. We therefore first calculate the number of expected ob-
servations of independent occurrences of each mutation based
on the neutral mutation rate of SARS-CoV-2. We then compare
these expected observations to the actual observations in the
SARS-CoV-2 tree to estimate the effect of each mutation. The
resulting estimates correlate well with existing deep mutational
scanning data. Most viral proteins have regions under strong se-
lective constraints. However the accessory proteins mostly show
only weak selection against amino-acid and even stop-codon
mutations. Overall, our work demonstrates a new approach to
determine the effects of mutations, and provides detailed maps
of functional constraint across the SARS-CoV-2 proteome.

Results

Mutation effects from actual versus expected counts
To determine how many times each mutation is expected to be
observed, we used the pre-built UShER tree [28, 29, 30] of ∼6.5-
million public SARS-CoV-2 sequences to count nucleotide muta-
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Expected mutation counts from four-fold 
degenerate sites.
The third nucleotide in codon acc is four-fold 
degenerate since aca, acc, acg, and act all 
encode threonine. 
We count the number of mutations on branches 
of the tree, not the final alignment: in tree at 
right there are three c→g mutations although 
more than three sequences have the mutation.

Actual counts of mutations at each site.
In tree at right, there is one count of the 
indicated c→g mutation, which induces an 
alanine to glycine mutation. The fact that the 
actual counts are less than the expected 
counts suggests this mutation is deleterious.
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Figure 1 Expected versus actual counts of mutations. (A) The number of expected counts of each type of nucleotide mutation
is computed from four-fold degenerate sites, and then compared the actual counts of each mutation. (B) Expected versus ac-
tual counts for each nucleotide mutation type aggregated across all viral clades and averaged across all sites where the muta-
tion is four-fold degenerate, synonymous (including four-fold degenerate), nonsynonymous, or introduces a stop codon. See
https://jbloomlab.github.io/SARS2-mut-fitness/avg_counts.html for an interactive version of panel B that enables mouseovers
to read off specific values.

tions at four-fold degenerate sites [Figure 1A; 31]. Because mu-
tations at such sites never alter the amino-acid sequence, these
counts reflect the mutation process in the absence of protein-
level selection (see Discussion for caveats about nucleotide-level
selection). The expected counts of a mutation from nucleotide x
to y is simply the average count of this type of mutation across
all four-fold degenerate sites with parental identity x. Impor-
tantly, we count independent occurrences of each mutation along
the branches of the tree, not the sequences with the mutation in
the final alignment (Figure 1A. We also compute expected counts
separately for each SARS-CoV-2 clade to account for shifts in
mutation spectrum [31, 32], and apply quality-control steps to
remove spurious mutations (see Methods).

The expected counts per mutation (summed across all viral
clades) vary with mutation type, ranging from ∼500 for C→T to
only∼8 for T→G mutations (Figure 1B). This variation is because
the SARS-CoV-2 mutation spectrum is highly biased towards
specific mutation types [31, 32, 33, 34].

We compared the expected counts to the actual observed
counts of mutations averaged across sites (Figure 1). For synony-
mous mutations, the expected and actual counts are similar. But
for nonsynonymous and especially stop-codon mutations, the
actual counts are substantially lower than the expected counts,
reflecting purifying selection for protein function.

The ratio of actual to expected counts for each mutation is re-
lated to its effect on viral fitness. The intuition is straightforward:
mutations arise at all sites, but viruses with deleterious muta-
tions are less likely to transmit and be observed in sequencing of
human SARS-CoV-2. Therefore, the ratio of actual to expected
counts will be one for neutral mutations, and less than one for
deleterious mutations. In the Methods and Appendix, we show
that under plausible assumptions about SARS-CoV-2 evolution
and sampling intensity (fraction of viruses sequenced), the fit-
ness cost of a deleterious mutation scales roughly inversely with
the ratio of actual to expected counts for mutations with costs
greater than a few percent. A key result is the dependence on
sampling intensity: if all human SARS-CoV-2 were sequenced
even deleterious mutations would have a high chance of being
sampled and we would need to study the subsequent spread of
the mutations to assess their fitness. But since the actual sam-

pling intensity is ∼0.1–1% the number of times a mutation is
observed reflects more subtle reductions in transmission effi-
ciency. We quantify the effect of each mutation as the logarithm
of the ratio of actual to expected counts after summing counts
for all nucleotides that encode the relevant amino-acid. The
statistical noise is greater for mutations with fewer expected
counts: the figures in this paper show mutations with ≥ 10 ex-
pected counts unless otherwise noted, with legends linking to
interactive plots that enable adjustment of this threshold.

Mutation-effect estimates are robust to subsampling natural
sequences, with some evidence of epistasis in spike

We computed the correlations among mutation-effect estimates
made using subsets of SARS-CoV-2 sequences from different
viral clades or geographic locations. These estimates were well
correlated, with some modest variation in estimates across se-
quence subsets (Figure 2A,B).

The modest variation in estimates from different sequence
subsets could have two causes: statistical noise due to finite mu-
tation counts, or real shifts in mutation effects during SARS-CoV-
2 evolution [35, 36]. To test for statistical noise, we computed
correlations with different thresholds for how many expected
counts are required before making an estimate for a mutation
(Figure 2C). Correlations increased with this count threshold,
consistent with reduced statistical noise for larger mutation
counts. But the correlation for spike mutations was consistently
lower for cross-clade but not cross-geography comparisons (Fig-
ure 2C). The lower cross-clade correlation for spike appears
due to epistatic shifts in mutation effects [35, 36, 37, 38, 39] or
changes in the selective landscape [40] between SARS-CoV-2
clades, since the correlation is lower between clades with higher
spike divergence (Figure 2D).

Despite evidence for some shifts in mutation effects in spike,
for the rest of this paper we aggregate counts across viral clades
to make a single estimate for each amino-acid mutation. The
reason is that the accuracy of the estimates increases with the
number of counts (Figure 2C), and several mutation types only
have enough counts for reasonable estimates when aggregating
across clades (Figure 1B). For the purposes of this paper, we
deemed it preferable to have more accurate and comprehensive
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Figure 2 Correlations of mutation fitness effect estimates made using subsets of natural sequences. Correlations between estimates
made (A) just using sequences from the Delta or Omicron BA.5 clades or (B) just from the USA or England. Each point is an amino-
acid mutation, the orange line is a least-squares regression, and orange text at upper left shows the number of mutations and Pear-
son correlation coefficient. Only mutations with at least 10 expected counts are shown, which is why panels have different numbers
of mutations shown (sequence subsets vary in size). (C) Correlations between clade or geography subsets become higher with an
increasingly large threshold for minimum expected counts. Spike mutations have a worse correlation when subsetting by viral
clade (plot shows average correlation over all pairwise combinations of Delta, BA.1, BA.2, and BA.5), but not when subsetting by
geography (USA or England). (D) Correlations in estimated mutation effects decline for clades with higher protein divergence, with
the effect most noticeable for spike since spike is more diverged among SARS-CoV-2 clades than other viral proteins. See https:
//jbloomlab.github.io/SARS2-mut-fitness/clade_corr_chart.html and https://jbloomlab.github.io/SARS2-mut-fitness/subset_corr_chart.html
for versions of A and B that include all viral clades with at least 500,000 total expected counts (summed across all mutations) and
have other interactive options.

pan-SARS-CoV-2 estimates than noisier clade-specific estimates
for fewer mutations. However, the interactive version of Fig-
ure 2A linked in the legend enables exploration of mutations
with disparate estimates among clades.

Structural and non-structural proteins are under strong puri-
fying selection, but most accessory proteins are not
The distributions of mutation effects concur with biological in-
tuition about how different classes of mutations impact protein
function. Most synonymous mutations are nearly neutral, most
stop codons are highly deleterious, and amino-acid mutations
range from slightly beneficial to highly deleterious (Figure 3A).

To investigate differences among viral proteins, we computed
the distributions of effects separately for each gene (Figure 3B).
SARS-CoV-2 proteins are grouped into three categories: non-
structural (or nsp) proteins, structural proteins (spike, M, N, and
E), and accessory proteins (names prefixed with “ORF”) [41].
The nonstructural and structural proteins are essential, and these
proteins show strong selection against stop codons and clear
although variable purifying selection against amino-acid mu-
tations (Figure 3B; e.g., nsp13 is under stronger protein-level
constraint than nsp1).

However, most accessory proteins are under little constraint
(Figure 3B). Stop-codon and amino-acid mutations to ORF7a
and ORF8 are not more deleterious than synonymous muta-
tions (although recall that our estimates are only sensitive to
fitness costs greater than a few percent). The lack of deleterious
mutations to ORF8 is consistent with the fact that viruses with
deletions in this gene have spread in humans [42] and that major
variants had stop codons early in ORF8. The only accessory
protein under strong purifying selection against stop codons
is ORF3a (Figure 3B), for which stop codons in the first 240
residues are clearly deleterious (Figure S1). These observations
concur with experiments showing SARS-CoV-2 is attenuated
by deletion of ORF3a but there is little effect of deleting ORF6,
ORF7a, or ORF8 [19, 43, 44]. However, ORF3a’s function must
be relatively insensitive to its protein sequence, since other than
selection against stop codons there is only amino-acid level con-

straint at a few sites like 135 and 138 (Figure S1). Observations
such as these could help guide experimental studies to better
understand protein function.

Mutation-effect estimates correlate with experiments
We examined how the mutation effects estimated using our ap-
proach compare with prior high-throughput deep mutational
scanning measurements. For spike, two distinct experimen-
tal methodologies have been used to characterize large num-
bers of mutations: yeast display of the receptor-binding domain
(RBD) [8, 45] and spike pseudotyped lentiviruses [9]. For Mpro
(also known as nsp5 or 3CLpro), two different labs have per-
formed deep mutational scanning using the same basic method-
ology of assaying protease cleavage in yeast [21, 22].

For spike, our estimates from natural sequences correlate
with each set of experiments almost as well as the two exper-
imental methodologies correlate with each other (Figure 4A).
If we increase the minimum expected counts from 10 to 20
and subset only on mutations shared among all three data sets,
then the correlations between the estimates and experiments
(r = 0.66) become even closer to the cross-experiment correla-
tions (r = 0.72; see interactive version of Figure 4A linked in
legend). Some of the mutations with the greatest divergence
between our sequence-based estimates and the deep mutational
scanning likely represent experimental artifacts. For instance,
P527L, which is favorable in the RBD deep mutational scan but
deleterious in the sequence-based estimates and full-spike scan,
is at the C-terminus of the yeast-displayed RBD [8] where it may
adopt a non-native conformation.

The sequence-based estimates for Mpro also correlate with
the deep mutational scans for that protein, although in this case
the two experiments correlate substantially better with each
other than with our estimates (Figure 4B). Because both Mpro
experiments use a similar yeast-based methodology [21, 22] it is
possible that the higher correlation of the experiments with each
other than the sequence-based estimates reflects shared artifacts
of the yeast experiments. In particular, some Mpro mutations es-
timated to have deleterious effects in natural sequences are well
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Figure 3 Distribution of effects of different classes of mutations. (A) Histograms of effects of synonymous, nonsynonymous, and
stop-codon mutations across all viral genes. Neutral mutations have effects of zero (dashed gray vertical lines), and deleterious
mutations have negative effects. (B) Effects of each class of mutation for each viral gene. Dark squares indicate the median effect,
and the lighter rectangles span the interquartile range. Mutation types are color-coded as in panel A. See https://jbloomlab.github.i
o/SARS2-mut-fitness/effects_histogram.html and https://jbloomlab.github.io/SARS2-mut-fitness/effects_dist.html for plots that allow
adjustment of the expected-count cutoff and other interactive options (such as separate histograms for each gene).

tolerated in the yeast experiments. This difference could arise
if the yeast experiments only capture some of the constraints
on Mpro in the context of actual virus. For instance, a stop
codon at Q306 is well tolerated in both deep mutational scans
but extremely disfavorable in our sequence-based estimates, and
would be highly deleterious to actual virus as it would truncate
the polyprotein. Similarly, K61N is well tolerated in the deep
mutational scans but extremely disfavorable in our estimates,
possibly because in the full viral polyprotein this residue medi-
ates important interactions between Mpro and nsp7-10 [46]

Fixed mutations tend to have beneficial or neutral effects

Amino-acid mutations that have fixed in at least one viral
clade are estimated to mostly have neutral or beneficial effects,
whereas most other mutations are deleterious (Figure S2). This
fact is unsurprising: viral lineages that expand into new clades
do so because they have acquired beneficial mutations while
avoiding deleterious ones [47, 48, 49]. But the fact that the ben-
eficial effects of fixed mutations are correctly estimated by our
approach, which simply counts mutation occurrences and does
not incorporate information on lineage size, demonstrates such
mutations occur independently in many viral lineages that are
more successful than average.

Most fixed mutations are estimated to be beneficial regard-
less of whether estimates are made using all viral clades, or just
clades that did not fix the mutation (Figure S3). However, a few

beneficial fixed mutations show epistatic entrenchment [38, 50]
in the sense that they are not particularly beneficial in clades in
which they did not fix (Figure S3). The most striking example is
S373P in spike, which has experimentally been shown to be neu-
tral or slightly deleterious in pre-Omicron clades, but strongly
beneficial in the Omicron clades in which it fixed [45, 36].

Interactive exploration of amino-acid fitnesses
To enable easy access to the mutation-effect estimates, we cre-
ated an interactive plots to enable exploration of the data for
each protein. A static view of one of these plots is in Figure 5;
see https://jbloomlab.github.io/SARS2-mut-fitness for interac-
tive versions for all proteins. These plots enable both high-level
inspection of functional constraint across each protein, and de-
tailed interrogation of the effects of specific mutations.

Discussion

Enough SARS-CoV-2 viruses have now been sequenced that
many independent occurrences of every tolerated single-
nucleotide mutation have been observed along the viral phy-
logeny. Here we have described a new approach that leverages
this fact to estimate the effects of these mutations. In essence,
we treat natural evolution as a deep mutational scan, with the
millions of publicly available SARS-CoV-2 sequences providing
a readout of this experiment. The key is simply to calculate how
many times each mutation has been “tested” along the history
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Figure 4 Correlation of mutation-effect estimates with experimental deep mutational scanning measurements for (A) the full
spike [9] or its RBD [45], and (B) Mpro [21, 22]. Each point is an amino-acid mutation, the orange line is a least-squares regres-
sion, and orange text in the upper left shows the number of mutations and Pearson correlation coefficient. Each sub-panel shows
a different set of mutations (depending on which mutations were measured in that experiment). See https://jbloomlab.github.i
o/SARS2-mut-fitness/dms_S_corr.html and https://jbloomlab.github.io/SARS2-mut-fitness/dms_nsp5_corr.html for plots
that enable subsetting on just mutations shared across all datasets and other interactive options such as mousing over points to
see mutation identities. The experiments in [45, 21] measure multiple phenotypes and these plots show the effect of each mu-
tation averaged across these phenotypes; see https://jbloomlab.github.io/SARS2-mut- fitness/dms_S_all_corr.html and
https://jbloomlab.github.io/SARS2-mut-fitness/dms_nsp5_all_corr.html for plots that show each phenotype separately.

of sampled viral sequences, and compare that expectation to the
actual observations of the mutation among viruses sufficiently
fit to have been sequenced in actual human infections.

The resulting estimates of mutational effects are robust to
subsetting on specific viral clades or geographies, and correlate
well with experimental measurements. In broad strokes, the mu-
tation effects illuminate patterns of constraint: for instance, there
is strong selection on structural and non-structural proteins, but
only limited purifying selection on the accessory proteins.

However, the real value of our approach is in the detailed
maps of effects of specific mutations to all viral proteins, includ-
ing proteins with poorly understood functions not easily char-
acterized in the lab. These maps will be of value for designing
drugs that target constrained sites, interpreting the consequences
of mutations observed during viral surveillance, and guiding
experiments to mechanistically characterize protein function.

There are several caveats to our approach. First, because the
number of observations of any given mutation is small com-
pared to the millions of SARS-CoV-2 sequences being analyzed,
our approach requires careful quality control of publicly avail-
able sequences to remove those affected by sequencing errors.
Second, we assume the rate of each type of nucleotide mutation
is uniform across the viral genome, and neglect higher-order
context that may influence mutation rate [51, 52]. Likewise, we
neglect constraint on nucleotide identity beyond the encoded
protein sequence [53, 54]. Third, the exact relationship between
the statistics we calculate and viral fitness depend on the fraction

of all infections that are sequenced (sampling intensity) and viral
population dynamics. Although we derive this relationship, we
do not adjust for sampling intensity and population dynamics
when estimating mutation effects. Fourth, we make a single
estimate for each mutation across all SARS-CoV-2, neglecting
the epistasis that can affect some mutations [35, 36]. Finally there
are a few technical caveats to how we count mutations that are
discussed in the Methods section.

Conceptually, our approach differs from prior methods that
aim to identify beneficial SARS-CoV-2 mutations associated
with viral clades that increase in frequency [23, 24, 25]. Those
methods draw information primarily from what happens down-
stream of a mutation. In contrast, we treat all mutations equiva-
lently regardless of whether they are on a tip node or at the base
of a large clade. Our approach is better for estimating effects
of deleterious or nearly neutral mutations, but clade-growth
methods may be better for beneficial mutations. In particular,
clade size carries information beyond that contained in mutation
counts alone (Figure S4). Hopefully future work can combine
mutation-counting and clade-growth methods for even better
estimates of SARS-CoV-2 mutation effects. Note our approach is
conceptually similar to estimating fitness costs of HIV or polio
mutations from mutation-selection balance in deep sequencing
of intra-population viral quasispecies [55, 56], except we analyze
mutation occurrences rather than frequencies to account for the
phylogenetic structure and genetic hitchhiking that characterize
global SARS-CoV-2 evolution.
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Figure 5 Effects of amino-acid mutations to E protein. The area plot at top shows the average effects of mutations at each site, and
the heatmap shows the effects of specific amino acids, with x denoting the amino-acid identity in the Wuhan-Hu-1 strain. See https:
//jbloomlab.github.io/SARS2-mut-fitness/E.html for an interactive version of this plot that enables zooming, mouseovers, adjustment of
the minimum expected count threshold, and layering of stop codon effects on the site plot. See https://jbloomlab.github.io/SARS2-mut-
fitness for comparable interactive plots for all SARS-CoV-2 proteins.

The power of the approach we have described will increase
with more viral sequencing. SARS-CoV-2 is the first virus with
enough sequences that every tolerated mutation is observed
multiple independent times. As costs drop, it is easy to imagine
a future with even more viral sequences. As this occurs, viral ge-
nomic sequencing—which has traditionally been used primarily
to track evolution and spread—will also become an increasingly
precise tool to determine the effects of specific mutations.

Methods

Code and data availability
See the GitHub repository at https://github.com/jbloomlab/SARS2-mut-f
itness for the computer code and processed data (eg, fitness estimates
and mutation counts). That repository contains a README with links to
specific data files as well as a description of the computational pipeline.
See https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/a
a_fitness/aa_fitness.csv final estimates of amino-acid fitnesses across
all clades; other intermediate data files are also provided in the GitHub
repository. The specific version of the repository used for this paper is
tagged as “bioRxiv-v1” on GitHub (https://github.com/jbloomlab/SARS2
-mut-fitness/tree/bioRxiv-v1) The pipeline is fully reproducible, and is run
using snakemake [57] with interactive plots rendered using altair [58].

The interactive plots are rendered at https://jbloomlab.github.io/SARS
2-mut-fitness via GitHub pages.

Counting mutations along the phylogenetic tree
We counted occurrences of each mutation in each viral clade using the
UShER pre-built mutation-annotated tree [28, 29, 30] from Dec-18-2022
(http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SAR
S-CoV-2/2022/12/18/public-2022-12-18.all.masked.nextclade.pangol
in.pb.gz), which contains all ∼6.5-million SARS-CoV-2 sequences that
are available in public databases. To make these counts at a per-clade
level, we first subsetted the mutation-annotated tree on all sequences
for each Nexstrain clade [59], retained only clades with at least 104

sequences, and then used the matUtils program distributed with UShER

to extract the nucleotide mutations on every branch of the each clade-
subsetted mutation-annotated tree. For the analyses by geographic
location (Figure 2), we subsetted on all sequences that began with “USA”
or “England” as these were the two locations with the most publicly
available sequences.

We then performed quality control by ignoring any branch that met
any of the following criteria:

• it had more than four nucleotide mutations;
• it contained more than one nucleotide mutation that was a rever-

sion to the Wuhan-Hu-1 reference sequence;
• it contained more than one nucleotide mutation that was a re-

version to the founder sequence for that clade as provided at
https://raw.githubusercontent.com/neherlab/SC2_variant_rates/7e7
38194a8c6592082f1caa9a6ca70cb68289790/data/clade_gts.json by
[34];

• it contained more than one nucleotide mutation to the same codon.

The rationale for the first exclusion is that highly mutated branches are
often indicative of sequencing errors, and the rationale for the second
and third exclusions is that excess reversions can arise from base-calling
pipelines that erroneously call low-coverage sites as reference. We ignore
branches with multiple nucleotide mutations to the same codon (this
is very rare) because as detailed below our method is only designed to
make estimates for mutations that represent single-nucleotide changes
from the clade founder. Note also that the mutation-annotated tree does
not include insertion or deletion mutations, and so we only consider
(and make estimates for) point mutations.

We then specified for exclusion certain mutations and sites that are
prone to sequencing or base-calling errors. Specifically, we excluded

• the sites specified in Table S1 of [60] as being error prone;
• sites 5629, 6851, 7328, 28095, and 29362 since they had very high

error rates in some clades;
• the problematic sites listed at https://github.com/W-L/Problematic

Sites_SARS-CoV2, which are masked in the pre-built mutation-
annotated tree;

• for each clade, the clade-specific sites listed in https://github.com/j
bloomlab/SARS2-mut-fitness/blob/main/data/usher_masked_sites.y
aml, which are masked in the pre-built mutation-annotated tree;

• for each clade, any mutation that was a reversion from the clade
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founder to the Wuhan-Hu-1 reference, and the reverse comple-
ments of these mutations.

The last exclusion criteria is because some bioinformatics pipelines called
low-coverage sites as reference.

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/res
ults/mutation_counts/aggregated.csv for the final counts of each nu-
cleotide mutation in each clade; note that this file also contains excluded
mutations.

Calculation of expected counts
To calculate the expected counts for each nucleotide mutation, we an-
alyzed just the four-fold degenerate sites in each clade in an approach
paralleling that of [31]. Specifically, we identify all non-excluded four-
fold degenerate sites in each clade founder. We then count nucleotide
mutations just at those sites in each clade, and calculate the expected
per-site number of mutations from nucleotide x to y as the total number
of x to y mutations at four-fold degenerate sites divided by the number
of four-fold degenerate sites with x as the parental identity. This analysis
is done at the clade level for two reasons: referencing mutations to the
clade founder (rather than the Wuhan-Hu-1 reference) limits problem
with the approach that would arise at sites that substitute multiple times
in the history of a sequence (since each clade is a relatively high-identity
group multiple mutations at the same site within a clade are very rare),
and because it is know that SARS-CoV-2 mutation rates vary somewhat
among clades [31, 32]. We only retain clades with at least 5000 mutations
at four-fold degenerate sites in order to avoid inaccurate estimates of
expected counts due to low sampling of mutations.

Mutational effects from actual versus expected counts
To estimate the effects of mutations, we simply compare the expected
counts of each nucleotide mutation to the actual counts in the pre-built
mutation-annotated tree. See https://github.com/jbloomlab/SARS2-mut
-fitness/blob/main/results/expected_vs_actual_mut_counts/expected_v
s_actual_mut_counts.csv for these expected versus actual counts on a
per-clade basis; note that this file also includes counts at excluded sites.

To estimate the effects of mutations, we first sum the counts of all non-
excluded nucleotide mutations that encode each amino-acid mutation
to convert the nucleotide counts to amino-acid counts. In doing this,
we exclude any mutations that are not from the clade-founder codon
identity: in other words, we ignore sequences with histories that involve
multiple mutations at the same codon in the same clade (this is a caveat
of the approach, although because each clade is relatively high identity
it does not have a major effect). For the overall estimates reported in
this paper, we also sum these counts across all retained clades; for the
analyses in Figure 2 we also make estimates without summing across
clades and only for counts from sequences from specific geographic
locations. We then compute the estimated fitness ∆ f of each mutation
as simply the natural logarithm of the ratio of actual to expected counts
after adding a pseudocount of P − 0.5 to each count, namely ∆ f =

log
(

nactual+P
nexpected+P

)
.

Note that these mutation-effect estimates will have more statistical
noise the smaller the value of the expected counts for each mutation.
Therefore, we also track the expected counts alongside the estimates.
In this paper, we only show estimates for mutations with expected
counts of at least 10 unless otherwise noted. However, the figures link to
interactive legends that allow adjustment of this threshold: larger values
(eg, 20 or more) will lead to slightly more accurate estimates but drop
some mutations, lower values can be used if you need a noisier estimate
for a mutation that has less then 10 expected counts.

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/a
a_fitness/aamut_fitness_all.csv for the estimates of amino-acid mutation
effects across all clades, and see https://github.com/jbloomlab/SARS2-mut
-fitness/blob/main/results/aa_fitness/aamut_fitness_by_clade.csv for the
clade-specific estimates. The all-clade estimates of mutation effects are
what are shown in Figure 3.

For the clade correlations plotting in Figure 2, we only include clades
with at least 5× 105 expected counts across all sites, as only these clades
have enough counts for reasonable per-clade estimates.

Mutation effects to amino-acid fitnesses
For the final estimates of amino-acid fitnesses shown in the heatmaps
such as in Figure 5, we need a single estimate for each amino acid. This
is straightforward for sites that have the same amino-acid identity in
all clade founders: the “wildtype” residue shared across all clades has

a fitness of zero, and all other amino acids have fitnesses equal to the
effect of mutating from the “wildtype” to that amino acid. However, for
sites that change amino-acid identity between clade founders, things are
more complicated and we need to take the extra step below.

For each clade have estimated the change in fitness ∆ fxy caused by
mutating a site from amino-acid x to y, where x is the amino acid in the
clade founder sequence. For each such mutation, we also have nxy which
is the number of expected mutations from the clade founder amino acid
x to y. These nxy values are important because they give some estimate
of our "confidence" in the ∆ fxy values: if a mutation has high expected
counts (large nxy) then we can estimate the change in fitness caused by
the mutation more accurately, and if nxy is small then the estimate will
be much noisier.

However, we would like to aggregate the data across multiple clades
to estimate amino-acid fitness values at a site under the assumption that
these are constant across clades. Things get complicated if not all clade
founders have the same amino acid identity at a site. For instance, let’s
say at our site of interest, the clade founder amino acid is x in one clade
and z in another clade. For each clade we then have a set of ∆ fxy and
nxy values for the first clade (where y ranges over the 20 amino acids,
including stop codon, that aren’t x), and another set of up to 20 ∆ fzy and
nzy values for the second clade (where y ranges over the 20 amino acids
that aren’t z).

From these sets of mutation fitness changes, we’d like to estimate the
fitness fx of each amino acid x, where the fx values satisfy ∆ fxy = fy− fx
(in other words, a higher fx means higher fitness of that amino acid).
When there are multiple clades with different founder amino acids at
the site, there is no guarantee that we can find fx values that precisely
satisfy the above equation since there are more ∆ fxy values than fx
values and the ∆ fxy values may have noise (and is some cases even real
shifts among clades due to epistasis). Nonetheless, we can try to find
the fx values that come closest to satisfying the above equation.

First, we choose one amino acid to have a fitness value of zero,
since the scale of the fx values is arbitrary and there are really only 20
unique parameters among the 21 fx values (there are 21 amino acids
since we consider stops, but we only measure differences among them,
not absolute values). Typically if there was just one clade, we would set
the wildtype value of fx = 0 and then for mutations to all other amino
acids y we would simply have fy = ∆ fxy. However, when there are
multple clades with different founder amino acids, there is no longer
a well defined "wildtype". So we choose the most common non-stop
parental amino-acid for the observed mutations and set that to zero. In
other words, we find x that maximizes ∑y nxy and set that fx value to
zero.

Next, we choose the fx values that most closely match the measured
mutation effects, weighting more strongly mutation effects with higher
expected counts (since these should be more accurate). Specifically, we
define a loss function as

L = ∑
x

∑
y 6=x

nxy
(
∆ fxy −

[
fy − fx

])2

where we ignore effects of synonymous mutations (the x 6= y term in
second summand) because we are only examining protein-level effects.
We then use numerical optimization to find the fx values that minimize
that loss L.

Finally, we would still like to report an equivalent of the nxy values
for the ∆ fxy values that give us some sense of how accurately we have
estimated the fitness fx of each amino acid. To do that, we tabulate
Nx = ∑y

(
nxy + nyx

)
as the total number of mutations either from or to

amino-acid x as the "count" for the amino acid. Amino acids with larger
values of Nx should have more accurate estimates of fx .

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results
/aa_fitness/aa_fitness.csv for these overall amino-acid fitness estimates.

Site numbering and protein naming
All sites are numbered according to the sequential Wuhan-Hu-1 ref-
erence numbering scheme, using the reference sequence at http://hg
download.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/wuhCor1.fa.gz.
The protein annotations are taken from the associated GTF at http:
//hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/genes/ncb
iGenes.gtf.gz. Those protein annotations refer to the polyproteins en-
coding the non-structural proteins as ORF1a and ORF1ab. To convert to
from ORF1ab numbering/naming to the nsp-based naming (eg, nsp1,
nsp2, etc) we use the conversions specified under “orf1ab_to_nsps” in
https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/config.yaml,
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which are in turn taken from Theo Sanderson’s annotations at https:
//github.com/theosanderson/Codon2Nucleotide/blob/main/src/App.js.

Comparison to deep mutational scanning
Deep mutational scanning data were taken from published studies [9, 45,
21, 22], using the data at the links specified under the “dms_datasets” key
in https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/config.yaml.
For the spike deep mutational scanning [9] we only included mutations
with “times seen” values of at least three in the deep mutational scanning.
The RBD data [45] include measurements for two phenotypes (ACE2
affinity and RBD expression), and one of the Mpro studies [21] includes
measurements for three different phenotypes in yeast (growth, FRET,
and transcription factor activity). In both cases, Figure 4 shows the effect
averaged across all phenotypes measured by the study. For plots that
break the correlations out by phenotype, see https://jbloomlab.github.io/
SARS2-mut-fitness/dms_S_all_corr.html and https://jbloomlab.github.io/SA
RS2-mut-fitness/dms_nsp5_all_corr.html.

Derivation of relationship between actual to expected count ratio and
viral fitness
The ratio of actual to expected counts that we calculate in this paper is
related to the probability that we observe a viral lineage containing an
occurrence of a specific mutation among sequenced human SARS-CoV-2.
This probability depends on three factors: the fitness effect of the muta-
tion, the fraction of all SARS-CoV-2 viruses that are sequenced (sampling
intensity), and the growth dynamics of the viral population. In the sup-
plementary appendix, we derive the approximate relationship between
this probability as a function of the fitness cost s and sampling intensity ε
for deleterious mutations for both a constant and exponentially growing
viral population.

We show that for a constant viral population size, the probability
of observing a lineage containing a deleterious mutation with cost s is
roughly ε

s+ε when s2 > ε, and more weakly dependent on s for smaller
fitness costs (when s2 < ε). The intuitive explanation is that the average
size of a mutant lineage with fitness cost s is 1/s and we basically ask
whether we sample the lineage before it disappears. If we sample more
intensely (larger ε), whether a lineage gets sampled depends primarily
on the stochastic dynamics and little on the fitness effect. With a typical
sampling intensity for SARS-CoV-2 between 1/1000 and 1/100, this
means our approach is sensitive to fitness effects larger than a few
percent per serial interval; mutations with fitness costs smaller than that
will not show an appreciable difference from neutral mutations in their
ratio of actual to expected accounts.

In an exponentially growing population, the probability of observing
a mutant lineage with fitness cost s again scales as ∼ ε

ε+s if sT > 1,
where T is the time over which the variant has expanded. If T is ∼
months, that is 20 generations, which again corresponds to s of at least
a few percent for sT > 1. For mutations with smaller fitness costs, the
dependence scales more as ∼ ε (1− sT).

Overall, these calculations indicate that for multiple different growth
dynamics of the viral population, the ratio of expected to actual counts
will scale inversely with the fitness cost of deleterious mutations for
mutations with costs that exceed a few percent. Note that the approach
we use in this paper does not account for variation in sampling intensity
across space or time, does not attempt to adjust for changes in viral
growth dynamics over time, uses the heuristic formula of calculating
the effect as the log ratio of counts, and applies this same formula to
all mutations regardless of whether they are deleterious, neutral, or
beneficial. A more complete derivation might try to calculate the fitness
effects from the full distribution of lineage sizes more rigorously and
incorporate information about the sampling intensity and viral growth
dynamics. However, such a derivation (if possible at all) is beyond
the scope of this study, and we also note that good empirical data is
generally lacking to precisely account for sampling intensity and viral
growth dynamics over the full span of time and space from which the
sequences we analyze are drawn. The key point of the derivations for
our current study is simply that our approach should be sensitive to
detecting the effects of mutations with fitness costs greater than a few
percent.
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Supplementary appendix deriving relationship between fitness cost and ratio of expected to actual
counts

With millions of SARS-CoV-2 sequences shared publicly, almost all mutations that are tolerated by the virus are observed
dozens to hundreds of times. Where on the tree and how often on the tree we observe specific mutations has information
about the effects of these mutations on viral spread. The mutation rate depends on the nucleotides involved and possibly
on the sequence context and other viral determinants, but for the purpose of this derivation, we will assume the neutral
rate µ is known. If the mutation is neutral, the total number of times the mutation is observed on the tree is µT, where
T is the total length of the tree (assuming that the mutation never reached high frequency which is true for almost all
mutations, particularly when mutations are counted on a per-clade basis relative too the clade founder as done above).

If a mutation reduces fitness, the lineages descending from branches on which this mutation happened will spread
more slowly than those without this mutation. As a result, the down-stream subclades are smaller and more short lived,
which in turn means that they will be less likely to be sampled and represented in the tree. To infer a mutation’s effect on
fitness, we need to calculate how the probability of observation depends on this fitness effect.

For a mutation to be represented in the tree, one of its descendants has to be sampled and sequenced. If the total
number of descendants is w and the sampling fraction is ε, the probability that the mutation is present in the tree is

P = 1− e−wε (1)

W is a random number that depends on the realization of the transmission process, which is commonly modeled by a
branching process with birth rate b and death rate d. The death rate here corresponds to clearing an infection, the birth
rate to onward transmission. The latter is affected by the fitness cost of the mutation.

To obtain insight how the probability of observing a lineage depends on parameters, we calculate the probability
p(w, T|t) that a lineage had an integrated size w =

∫ T
t k(t′) dt′, where t is the birth time of the lineage, T is the current

time, and k(t′) is the size of the lineage at time t′. To calculate p(w, T|k), we generalize it slightly to p(W, T|k, t), where k
is the number of individuals at the start time t. This quantity obeys the following “first-step” equation:

− (∂t − k∂w)p(w, T|k, t) = −k(b + d)p(w, T|k, t) + kbp(w, T|k + 1, t) + kdp(w, T|k− 1, t) (2)

We will solve for the Laplace transform p̂(z, T|k, t) =
∫ ∞

0 dw e−wz p(w, T|k, t) = p̂k(z, T|1, t). Using the following identity
for the derivative of the Laplace transform∫ ∞

0
e−wz∂w p dw = [e−wz p]∞0 −

∫ ∞

0
p∂we−wz dw = 0 + z

∫ ∞

0
pe−wz = zp̂ (3)

and setting k = 1, we have
− ∂t p̂(z, T|t) = −(b + d + z) p̂(z, T|t) + bp̂2(z, T|t) + d (4)

This simplifies further to if we substitute φ(z, T|t) = 1− p̂(z, T|t).

∂tφ(z, T|t) = −(b + d + z)(1− φ(z, T|t)) + b(1− φ(z, T|t))2 + d

= −z− (b− d− z)φ(z, T|t) + bφ(z, T|t)2
(5)

where it is important to note that the derivative is with respect to the first time point and the interval T − t is shrinking
with increasing t.

Constant birth and death rate
If the fitness effect of the mutation in question is detrimental and the overall population is constant (background b0 = d0),
all mutant lineages will eventually die out and we can consider large T − t and the long time asymptotic ∂tφ(z, T|t) = 0.
Further define b = b0 − s and d = d0 where s is the fitness cost of the mutation (so larger values indicate a greater fitness
cost). The steady state generating function is then

0 = −z− (b− d− z)φ(z) + bφ(z)2 (6)

with solution

φ(z) = − s + z
2(b0 − s)

±
√
(s + z)2 + 4z(b0 − s)

2(b0 − s)

≈ − s + z
2b0

±
√
(s + z)2 + 4zb0

2b0

≈


z

s+z (s + z)2 � 4zb0√
z
b0

(
1 + (s+z)2

8zb0

)
− s+z

2b0
(s + z)2 � 4zb0

(7)

Since φ(z) = 1−
∫

e−wz p(w) dw, φ(ε) is exactly the probability that a lineage is sampled when the entire population is
sampled at rate ε. We thus expect two regimes: if the square of the fitness cost exceeds the sampling intensity (typically
at 1% or less), the probability of sampling a lineage is essentially inversely proportional to the fitness cost. The sampling
probability of lineages with smaller costs effects depends less strongly on s. Their sampling mostly comes down to
stochasticity independent of the fitness cost.
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Growing populations
In many scenarios relevant for lineages that arise during a viral outbreak, the background population isn’t constant
but is undergoing a rapid exponential expansion. The background birth rate b0 is bigger than d0 in this case. Since the
population is growing, deleterious mutations can increase in frequency deterministically and we can not send the t to
infinity as before. Instead, we need to integrate

∂tφ(z, T|t) = −z− (b− d− z)φ(z, T|t) + bφ(z, T|t)2 (8)

backwards in time starting from φ(z, T|T) = 0 at t = T. While φ(z, T|t) is small and the quadratic term can be neglected,
this is approximately solved by

φ(z, T|t) = ze
∫ T

t (b−d−z)dt′
∫ T

t
e−
∫ T

τ
(b−d−z)dt′dτ

= ze(b−d−z)(T−t)
∫ T

t
e−(b−d−z)(T−τ)dτ

= ze(b−d−z)(T−t)
[
1− e−(b−d−z)(T−t)

]
/(b− d− z)

=
z

b− d− z

[
e(b−d−z)(T−t) − 1

]
=

z
γ0 − s− z

[
eγ0(T−t)−(s+z)(T−t) − 1

]
(9)

where γ0 is the growth rate of the background population.
At longer times when zeγ0(T−t) ∼ 1 and φ is no longer small, φ tends towards a constant value determined by the

same quadratic equation as above. This limit is neither interesting or relevant for the present purpose, since there are very
few lineages that emerged early enough to have saturated φ. Instead, we need to average φ (the linear approximation)
over all the time points when the lineage could have arisen.

〈φ〉 ∼
∫ T

t
dt′ e−γ0(T−t′) z(eγ0(T−t′)−(s+z)(T−t′) − 1)

(γ0 − s− z)

=
∫ T

t
dt′

z(e−(s+z)(T−t′) − e−γ0(T−t′))

(γ0 − s− z)

≈
{ z

γ0−s−z [
1

z+s −
1

γ0
] s(T − t)� 1

z
γ0−s−z [(T − t)− (s+z)(T−t)2

2 − 1
γ0
] s(T − t) < 1

(10)

This derivation assumed that γ0(T − t)� 1, i.e. that the overall population size has expanded substantially. The most
relevant fitness effects will be those with s(T − t) > 1, that is the fitness effect has strong effect on variant frequency, but
s < γ0 such that the variant is still spreading and can give rise to large lineages in an expanding variant. In this case, the
above simplifies to

〈φ〉 ≈ z
γ0(z + s)

(11)

In a variant that has been growing with rate γ0 for a time τ = T− t and sampled with z = ε, we thus expect that the
number of times we observe separate mutant lineages depends on s as

〈φ〉 ≈ ε

γ0(ε + s)
(12)

This has a very similar behavior as the solution for constant population size, which suggests that the overall dependence
on s is robust and we can assume that the number of times a mutation is observed is inversely proportional to its effect
on fitness. The same basic dependency is observed at steady state in a quasi-species [55]. In a constant population, this
relationship breaks down for dense sampling ε >

√
s. In growing population, the approximation fails if the product of

fitness effect and the time over which the variant has grown, sτ, is small, i.e., if the fitness cost does not affect variant
frequency strongly. In these cases, there is still a dependence on s, but it is weaker.
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Supplementary figures
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Figure S1 Effects of stop-codon and amino-acid mutations across ORF3a. The black area plot shows the mean effect
of all amino-acid mutations at each site, and the purple points show the effects of stop codon mutations. There is
strong selection against stop codons (negative effects) for all but the C-terminus of ORF3a, but only a few positions
show strong selection against amino-acid substitutions. This plot shows only mutations with 20 expected counts. See
https://jbloomlab.github.io/SARS2-mut-fitness/ORF3a.html for an interactive version of this plot along with zoomable
heatmap of the effects of specific amino-acid substitutions.

Figure S2 Distribution of fitness effects of all amino-acid mutations relative to Wuhan-Hu-1, and just those mutations
that fixed in at least one clade of SARS-CoV-2 (using the Nextstrain clade definitions). The vertical dashed line at zero
indicates the effect of a neutral mutation. See https://jbloomlab.github.io/SARS2-mut-fitness/clade_fixed_muts_hist.html
for an interactive version of this plot that allows adjustment of the minimum expected count threshold.
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Figure S3 Effects of individual mutations that fixed in at least one clade of SARS-CoV-2, faceted by whether they are
in spike or another protein. “Mutation polarity” indicates if the point shows the effect of the mutation estimated using
all viral clades (including those that have fixed the mutation), or just from direct forward occurrences of the mutation
in clades in which it has not yet fixed. Some mutations are estimated to be more favorable when including clades in
which they have fixed (blue circles) in addition to just clades in which it has not yet fixed (orange squares)—when this
occurs, it suggests epistatic entrenchment of the mutations [38, 50]. Note that clades in which a mutation has already
fixed contribute to estimates of its fitness via estimates of the effect of its reversion and via estimates of the effects of
mutations to other amino acids at the same site. See https://jbloomlab.github.io/SARS2-mut-fitness/clade_fixed_muts.html
for an interactive version of this plot.
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Figure S4 Relationship between fitness effects of mutations and two measures of the number of descendants. At top
is shown the log ratio of counts of the mutation on non-terminal (internal) to terminal (tip) branches; larger values in-
dicate mutations more likely to be found in viruses that leave descendants. At bottom is shown the mean log number
of tip descendants that share all the mutations on each branch containing the mutation of interest; larger values again
indicate mutations more likely to be found in viruses that leave more descendants. Each point is an amino-acid muta-
tion, the orange line is a least-squares regression, and the orange text in the upper left give the number of mutations
and the Pearson correlation coefficient. This plot shows only mutations with at least 10 expected counts and 5 actual
counts. See https://jbloomlab.github.io/SARS2-mut-fitness/fitness_vs_terminal.html for an interactive version of this plot
that allows filtering by the number of actual or expected counts, or by gene. The number of descendants is calculated
using the “leaves_sharing_mutations” variable of the UShER mutation-annotated tree.
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