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Abstract 22 

In biofluid, long RNAs are more informative than microRNAs in terms of gene number 23 

and variation type. Therefore, cell-free long RNAs have shown promising potential as 24 

biomarkers in liquid biopsy, while they are mostly fragmented. In order to investigate 25 

these fragmented cell-free RNAs (cfRNAs), we developed a cost-effective cfRNA 26 

sequencing method, DETECTOR-seq (depletion-assisted multiplexing cell-free total RNA 27 

sequencing). It utilized a set of customized guide RNAs to remove large amounts of 28 

unwanted RNAs (i.e., fragmented ribosomal and mitochondrial RNAs) in human plasma. 29 

Early barcoding was also incorporated to save cost and plasma volume. After 30 

demonstrating its superior performance to other methods, we used DETECTOR-seq to 31 

investigate cell-free transcriptomes in whole human plasma and extracellular vesicles 32 

(EVs) it contains. We first observed different type distributions: structured circular RNAs, 33 

tRNAs, Y RNAs, and virus RNAs were enriched in plasma, while mRNAs and srpRNAs 34 

were enriched in EVs. We also uncovered distinct functional pathways: RNA splicing-35 

related ribonucleoproteins (RNPs) and antimicrobial humoral response genes were 36 

enriched in plasma, while transcriptional activity, cell migration, and antigen receptor-37 

mediated immune signals were enriched in EVs. Subsequently, we compared the 38 

performances of these distinct cfRNAs in whole plasma versus EVs on classifying 39 

cancer patients. The accuracies were comparable when discriminating cancer patients 40 

from healthy donors (AUCs: 0.936 versus 0.953). Meanwhile, cancer types (i.e., 41 

colorectal versus lung cancer) were better classified with microbial cfRNAs in plasma 42 
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than in EV (AUCs: 0.898 versus 0.772). Overall, by investigating total and EV cfRNAs in 43 

the pairwise plasma samples, our work provides practical guidance for the proper 44 

decision of EV purification when launching a cfRNA-based study. Furthermore, as a 45 

cost-effective method, DETECTOR-seq would facilitate transcriptome-wide studies in the 46 

fields of extracellular RNA biology and clinical liquid biopsy. 47 

 48 

Key Points 49 

1. DETECTOR-seq enables efficient and specific depletion of sequences derived 50 

from fragmented ribosomal and mitochondrial RNAs in plasma. 51 

2. Distinct cfRNA signatures in whole plasma versus EVs were revealed. 52 

3. Both Plasma and EV cfRNAs were capable of distinguishing cancer patients from 53 

normal individuals. 54 

4. Microbial RNAs in Plasma cfRNAs enabled better classification of cancer types 55 

than EV cfRNAs.  56 

 57 

Key Words 58 

Cell-free RNA; Extracellular vesicle; Exosome; Cancer classification; Liquid biopsy 59 

 60 
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Introduction 62 

In recent years, liquid biopsy has emerged as a non-invasive approach for assessing 63 

circulating biomarkers in various body fluids to monitor physiologic and disease states [1]. 64 

Cell-free RNAs (cfRNAs), given their virtue of being highly dynamic, hold great potential 65 

to reflect the pathophysiological processes, thus offering unique opportunities for 66 

disease monitoring. Previous reports have suggested that cfRNAs are packaged into 67 

various extracellular complexes, such as extracellular vesicles (EVs, including micro-68 

vesicles and exosomes) and non-vesicular ribonucleoproteins (RNPs) [2]. Due to the 69 

protection of EV, RNA binding proteins, and/or their self-structures, cfRNAs are capable 70 

of being stably present in human bloodstream [3]. Most cfRNA studies investigated either 71 

total [4-6] or EV [7-9] RNAs in plasma, while gain and loss of EV purification in liquid 72 

biopsy are still under debate. For instance, it is not clear whether the EV purification step 73 

is needed in cfRNA-based cancer screening tests. 74 

Efforts in characterizing cfRNAs were initially focused on small RNAs like 75 

microRNAs (miRNAs) because of the nature of RNA degradation and fragmentation in 76 

biofluids. However, miRNAs represent only a small proportion of the human 77 

transcriptome [10]. Therefore, a broader space of cfRNAs, such as messenger RNAs 78 

(mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have started 79 

to be investigated later [4-7, 11]. Due to RNases in human blood, these cell-free long 80 

RNA species (>50 nt) have relatively low concentrations. They are usually fragmented 81 

(~50–200 nucleotides), lacking intact RNA ends [12]. The conventional small RNA-seq 82 
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approach, which ligates sequencing adapters based on RNA ends of 5' phosphate (5' P) 83 

and 3' hydroxyl (3' OH), does not work well for these fragmented cfRNAs [13]. 84 

 Recently, several sequencing approaches have been developed to profile cell-free 85 

long RNA fragments. Phospho-RNA-seq incorporates T4 polynucleotide kinase into 86 

ligation-based TruSeq small RNA-seq [12]. Thus, it can recover mRNA and lncRNA 87 

fragments lacking 5' P and/or 3' OH ends. However, as the authors mentioned, the 88 

libraries of Phospho-RNA-seq contained high fractions of ribosomal RNAs (rRNAs) and 89 

Y RNAs, reducing the capacity to detect other informative RNA species [12]. Another 90 

method, SILVER-seq, captures both small and long cfRNAs from extremely low-input 91 

serum samples [14]. However, substantial DNA contamination seemed to be an issue of 92 

SILVER-seq [15]. Recently, SMARTer stranded total RNA-seq (hereafter called 93 

SMARTer-seq) was used in several cfRNA studies [4-7], where unwanted ribosomal 94 

sequences were depleted using a proprietary R-probe-based system called ZapR [16, 95 

17]. However, as a commercial kit, SMARTer-seq was not specifically optimized for 96 

cfRNA library in plasma. It is not cost-efficient either. Overall, the current cfRNA 97 

sequencing approaches were limited by unwanted RNAs, DNA contamination, and high 98 

cost. 99 

In this study, we present an optimized cfRNA sequencing method, DETECTOR-seq 100 

(depletion-assisted multiplexing cell-free total RNA sequencing), which utilizes early 101 

barcoding and CRISPR-Cas9 to reduce the cost and high-abundant, fragmented rRNAs 102 

and mitochondrial RNAs (mtRNAs) in human plasma. Then, we used DETECTOR-seq to 103 
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investigate 113 plasma cfRNA samples (including 61 plasma total RNA and 52 EV RNA 104 

libraries) derived from healthy donors, lung and colorectal cancer patients. To the best of 105 

our knowledge, this study is the first to compare pairwise total and EV-selected 106 

transcriptomes in the same plasma samples, suggesting their distinct signatures and 107 

different utilities in the liquid biopsy of cancer. 108 

 109 

 110 

Methods 111 

Issues of sequencing cell-free RNAs 112 

The sequencing of cfRNAs in plasma and other biofluids usually meets the following 113 

obstacles. First, consistent with previous reports [10], we observed that plasma cfRNAs 114 

were degraded with a fragment length of <200 nucleotides (Figure 1A). These 115 

fragmented cfRNAs are hard to be detected by many RNA-seq protocols based on 116 

ligation techniques requiring intact RNA ends. Second, ribosomal RNAs (rRNAs) and 117 

mitochondrial RNAs (mtRNAs) accounted for ~92% of all clean reads (reads after 118 

removing adapters and filtering low-quality reads), while messenger RNAs (mRNAs) and 119 

long non-coding RNAs (lncRNAs) collectively made up only a small fraction (~4%) of 120 

cell-free transcriptome (Figure 1B). It is worth noting that microbe-derived RNAs can 121 

also be detected in human plasma with a relatively small fraction (~0.4%) (Figure 1B). 122 

The high fractions of rRNAs and mtRNAs hamper the detection of other informative RNA 123 

species. And they are fragmented into pieces in plasma, making them hard to be 124 
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removed (Figures 1C, D). Third, cfRNAs are usually in the range of hundred picograms 125 

to several nanograms per ml of human plasma [14], which can be easily lost and 126 

contaminated during purification and amplification. For instance, low cfRNA input usually 127 

requires 20-24 PCR amplification cycles for library preparation, which produces a high 128 

duplication ratio of raw reads. Meanwhile, DNA contamination ignorable in conventional 129 

RNA-seq is often over-amplified, causing a big issue in cfRNA-seq [15].  130 

 131 

DETECTOR-seq  132 

To improve the efficiency and reliability of cfRNA detection, we developed DETECTOR-133 

seq (depletion-assisted multiplexing cell-free total RNA sequencing) to profile cell-free 134 

transcriptome in human plasma (Figures 1E, F). DETECTOR-seq captures fragmented 135 

cfRNAs with unbiased random priming and template-switching. Then, it uses CRISPR-136 

Cas9 to remove the abundant sequences derived from ribosomal and mitochondrial 137 

RNAs in the complementary DNA (cDNA) library. In this step, guide RNAs (sgRNAs) in 138 

the CRISPR-Cas9 are specifically optimized for human plasma cfRNAs (Supplementary 139 

Figures 1,2), covering the fragmented rRNA and mtRNA sequences (Figures 1D, E). 140 

The sgRNAs are in vitro transcribed using T7 RNA polymerase, then bind with Cas9 141 

nuclease to form ribonucleoprotein (RNP) complex and induce site-specific cleavage 142 

with the endonuclease activity of Cas9 (Figure 1E), thus preventing further amplification 143 

of cDNAs derived from rRNAs and mtRNAs in the final sequencing library. Meanwhile, 144 

DETECTOR-seq utilizes early barcoding during reverse transcription. The multiplexed 145 
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library will cope with low content of plasma cfRNAs, and reduce experimental time and 146 

cost as well. It is also worth mentioning that unique molecular identifiers (UMIs) are 147 

added to every sequence in the reverse transcription step, hence DETECTOR-seq is 148 

capable of removing PCR duplicates to avoid RNA quantification bias (Figure 1F). In 149 

addition, we also optimized cfRNA extraction (Supplementary Figure 3) and residual 150 

DNA digestion (Supplementary Figure 4) protocols. 151 

 152 

Depletion of rRNA and mtRNA sequences in human plasma 153 

To examine whether DETECTOR-seq can deplete the unwanted rRNA and mtRNA 154 

sequences effectively and specifically, we split a single plasma sample into two equal 155 

aliquots for experimental conditions of untreated versus depleted, with six biological 156 

replicates. In the untreated samples, reads mapped to rRNAs and mtRNAs collectively 157 

represented ~94% of all mapped reads. After CRISPR-Cas9 treatment, these unwanted 158 

sequences were decreased to only ~15% of mapped reads, only about one-sixth of the 159 

untreated ones (Figure 2A). By comparing untreated and depleted aliquots, we 160 

observed evident decreases in the normalized coverage of rRNAs and mtRNAs (Figure 161 

2B). Meanwhile, the expression levels of detected genes other than rRNAs and mtRNAs 162 

between the untreated and depleted aliquots were well correlated, indicating minimal off-163 

target effect (Pearson correlation, R: 0.92, P-value < 2.2×-16; Figure 2C). By comparing 164 

the cfRNA expression profiles obtained from DETECTOR-seq and SMARTer-seq, we 165 

found that the expression levels of detected genes using these two methods were also 166 
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well correlated (Pearson correlation, R=0.90, P-value < 2.2×-16; Figure 2D). In summary, 167 

the above results demonstrate the efficient and specific depletion of unwanted 168 

sequences in DETECTOR-seq. 169 

 170 

 171 

Results 172 

Analytical validation analysis demonstrating high-quality reads of DETECTOR-seq 173 

To evaluate the performance of DETECTOR-seq, we prepared cfRNA libraries in a 3-174 

plex, 4-plex, or 5-plex manner determined by RNA concentrations. The total read 175 

numbers of different barcoded samples in one multiplexing pool were relatively uniform, 176 

varying less than 1.5-fold in the 3- and 4-plex samples and less than 3-fold in the 5-plex 177 

samples (Figure 3A). In addition, the UMI strategy in DETECTOR-seq retained 178 

significantly more reads than the non-UMI approach after duplicated reads were 179 

removed (Figure 3B). And a sharp edge of reads’ distribution across exon-intron splice 180 

junctions suggested that the majority of DNA contamination was effectively removed 181 

(Figure 3C). To evaluate the impact of plasma input volume on the number of detected 182 

genes, we sequenced cfRNAs with 200, 400, 600, 800, and 1000 μL of plasma aliquots 183 

from the same individual with five biological replicates. Around 4000 genes were 184 

detected with the minimum (i.e., 200 μL) volume. The detected gene number linearly 185 

increased until a plateau between 800 and 1000 μL, suggesting the detected genes 186 

would be saturated after 1 mL of plasma (Figure 3D). While highly correlated cfRNA 187 
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expression levels were observed within technical triplicates (R1-R3), the correlations 188 

were slightly decreased between biological triplicates (N1-N3) (Figure 3E). Furthermore, 189 

based on ERCC RNA Spike-In Mix, we found a high correlation between expected and 190 

observed levels of transcript abundance (Pearson correlation, R=0.91, P-value < 2.2×-16; 191 

Figure 2F). These results not only demonstrate DETECTOR-seq’s high quality and 192 

reproducibility but also suggest its capability of capturing subtle differences in cfRNA 193 

profiles between different individuals. 194 

 Then, we randomly subsampled a dataset (n=24) of DETECTOR-seq for saturation 195 

analyses of detected UMIs (transcripts) and genes. Although the detected UMIs kept 196 

increasing when more reads in 1ml plasma were sequenced (Figure 3G), the detected 197 

gene numbers were quickly saturated at approximately 5 million genome-aligned reads 198 

(Figure 3H). These results indicate that DETECTOR-seq achieves saturation of cfRNA 199 

detection at a low sequencing depth.  200 

 201 

Better contamination control and cost-effectiveness of DETECTOR-seq than other 202 

cfRNA-seq methods  203 

We benchmarked the performance of DETECTOR-seq compared to three other cfRNA-204 

seq methods, including Phospho-RNA-seq [12], SILVER-seq [14], and SMARTer-seq 205 

[18]. Within the total genome-aligned reads, DETECTOR-seq and SMARTer-seq had 206 

comparable ratios of exonic reads (~70%), while those of SILVER-seq and Phospho-207 

RNA-seq were under 40% (Figure 4A). The lower ratio of exonic reads for SILVER-seq 208 
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was presumably due to severe DNA contamination according to a previous report [15]. 209 

We also visualized the read coverage across exon boundary sites flanked upstream and 210 

downstream by 50 bp, where DETECTOR-seq and SMARTer-seq showed more evident 211 

decreases of read coverage from exon to intron/intergenic region than SILVER-seq and 212 

Phospho-RNA-seq (Figure 4B). As far as we know, all of the four cell-free RNA-seq 213 

methods should preserve the strand specificity of RNAs. Thus, the enrichment of exons’ 214 

sense over antisense reads of DETECTOR-seq and SMARTer-seq further confirmed 215 

their reads’ quality (Figure 4C). The above results demonstrate that DETECTOR-seq 216 

and SMARTer-seq have better DNA contamination control than SILVER-seq. It was 217 

worth noting that Phospho-RNA-seq was developed from a small RNA-seq method, and 218 

the read coverage across exon boundary sites and the enrichment of exons’ sense over 219 

antisense reads may be affected by the read distribution of small RNAs. 220 

In addition, we showed that DETECTOR-seq displayed a higher ratio of reads 221 

mapped to human genome (~71%) than those of SMARTer-seq (~48%) because 222 

DETECTOR-seq removed mitochondrial RNAs more efficiently than SMARTer-seq 223 

(Figure 4D). Furthermore, because of its early barcoding and multiplexing strategy, 224 

DETECTOR-seq can produce more raw reads and genome-aligned reads than the other 225 

cfRNA-seq approaches (Figure 4E, Supplementary Figure 5). Overall, by summarizing 226 

and comparing key characteristics of these approaches (Figure 4F), we collectively 227 

demonstrate that DETECTOR-seq has better contamination control and more efficient 228 

cost than the other cfRNA-seq methods.  229 
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 230 

Distinct human and microbial RNA signatures in plasma versus extracellular 231 

vesicle 232 

Subsequently, we utilized DETECTOR-seq to comprehensively investigate total cfRNAs 233 

and EV cfRNAs pairwise in human plasma (Figure 5A). A proportion of cfRNAs are 234 

enclosed inside EVs such as MVs and exosomes [19]. Meanwhile, it is also reported that 235 

a significant proportion of cfRNAs are not within EVs but associated with proteins to form 236 

non-vesicular RNPs [20]. Although both total cfRNAs [4-6] and EV cfRNAs [7, 9] have 237 

been used in the liquid biopsy studies, their distinct signals and utilities have not been 238 

pairwise compared yet.  239 

In total, we sequenced 139 plasma cfRNA samples derived from healthy donors, 240 

lung cancer and colorectal cancer patients (Supplementary Figure 6). Then, 113 241 

datasets passed quality control (QC) procedures of RNA samples and sequencing data 242 

(Supplementary Figures 6-8). Among them, 61 were total cfRNA-seq and 52 were EV 243 

cfRNA-seq, where 44 were paired from the same plasma samples. In the following 244 

description, total cfRNA-seq of plasma and EV cfRNA-seq of plasma will be abbreviated 245 

to Plasma cfRNA and EV cfRNA, respectively. 246 

From a general view, there was a high degree of similarity between Plasma and EV 247 

cfRNAs, with ~90% of aligned reads mapping to human genome and ~10% mapping to 248 

microbe genomes (Figure 5B). For human cfRNAs, mRNA, lncRNA, and circRNA were 249 

the major RNA types. For microbial cfRNAs, the most abundant phylum was 250 
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Proteobacteria, followed by Firmicutes and Actinobacteria. The human and microbial 251 

RNA compositions resembled previous reports [18, 21].  252 

In addition, distinctive signatures were revealed for the first time by our pairwise 253 

comparison between Plasma and EV cfRNAs. We first observed that Plasma cfRNAs 254 

had more short fragments (50~100 nt), while EV cfRNAs had more long fragments (>100 255 

nt) (Supplementary Figure 12). We also observed that structured tRNAs, Y RNAs, and 256 

circRNAs were significantly enriched in Plasma cfRNAs, while mRNAs and signal 257 

recognition particle RNAs (srpRNAs) were significantly enriched in EV cfRNAs (Figure 258 

5C). This is consistent with a previous study reporting that tRNA and Y RNA fragments 259 

were significantly enriched in extracellular RNPs [2]. Moreover, we also found that the 260 

relative abundance of circRNAs was significantly higher in Plasma cfRNAs than EV 261 

cfRNAs (P-value < 0.0001, Wilcoxon rank sum test; Figure 5C, Supplementary Figure 262 

9), perhaps due to its circle-like structure resisting degradation outside of EVs. We totally 263 

identified 13 circRNAs differentially enriched in Plasma versus EV cfRNAs. Only one of 264 

them, hsa_circ_0048555, was enriched in EVs (Supplementary Figure 10). Reads 265 

mapped to the back-spliced junction were used to calculate the enrichment.  266 

A recent study provided a framework to infer cell types of origin of the cell-free 267 

transcriptome [22]. We utilized this method and found a high similarity of the cell types of 268 

origin between Plasma and EV transcriptomes (Figure 5D). Platelets and erythrocytes 269 

were inferred as the major origins for both Plasma and EV cfRNAs, which was in 270 

agreement with the previous study [22]. Intriguingly, we found non-blood cells 271 
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contributed more to EV cfRNAs than to Plasma cfRNAs (P-value < 0.01, Wilcoxon rank 272 

sum test; Figure 5D). Therefore, the diversities of cell types of origin (measured by 273 

Simpson’s index) of EV cfRNAs were significantly higher than those of Plasma cfRNAs 274 

(P-value < 0.01, Wilcoxon rank sum test; Figure 5D).  275 

We also identified distinct microbe genera in Plasma and EV cfRNAs 276 

(Supplementary Figure 11). Although there was no significant difference between the 277 

ratio of microbe reads in Plasma and EV cfRNAs, we found cfRNAs mapped to virus 278 

genomes were significantly elevated in Plasma cfRNAs (Figure 5E). Meanwhile, viruses 279 

such as Senecavirus, Cheravirus, Orthopoxvirus, Tenuivirus, and Rhadinovirus were 280 

significantly enriched in Plasma cfRNAs, while Intestinimonas, Mordavella, and 281 

Jonquetella were significantly enriched in EV cfRNAs (Figure 5F). In summary, the 282 

above comparison results have revealed distinct molecular characteristics between 283 

Plasma and EV cfRNAs in terms of fragment size, RNA species, cell types of origin, and 284 

microbe genera. 285 

 286 

Functional pathways and sequence motifs of selective Plasma and EV cfRNAs 287 

To find selective functions and motifs of cfRNAs in EVs, we identified 545 selectively 288 

distributed RNAs showing significantly differential abundance between Plasma and EV 289 

transcriptomes (|Fold-change| >1 and FDR < 0.1; Figure 6A, Supplementary Figure 290 

13). Among them, 271 cfRNAs were enriched in Plasma, while 274 cfRNAs were 291 

enriched in EVs. We investigated the functional roles and biological pathways of these 292 
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selective cfRNAs (Figure 6B, Supplementary Figure 14). Based on KEGG pathway 293 

enrichment analysis, we found that the selective RNAs elevated in Plasma were 294 

significantly enriched in terms associated with RNA splicing, RNP (e.g., mRNA 5' splice 295 

site recognition, U1 snRNP, spliceosomal snRNP complex and Sm-like protein family 296 

complex), antimicrobial and innate immune responses. Meanwhile, the selective RNAs 297 

that were enriched in EVs were primarily associated with DNA binding transcription 298 

factor activity, focal adhesion, cell-substrate junction, and T cell receptor signaling 299 

immune pathway. Notably, we found different immune pathways enriched in the selective 300 

cfRNAs of Plasma versus EVs (Figure 6B, Supplementary Figure 14). 301 

 We further investigated sequence motifs and their associated RNA binding proteins 302 

(RBPs) for the selective cfRNAs (Figure 6C, Supplementary Figure 15). And we found 303 

that the selective cfRNAs enriched in Plasma contained binding motifs/sites for ABCF1, 304 

a protein that plays a role in innate immune response [23]; SFPQ, a splicing factor; 305 

LARP4, a La RNP; TROVE2, a Y RNA binding protein; and DKC1, a snoRNP. Meanwhile, 306 

the selective cfRNAs enriched in EVs contained binding motifs/sites for PUM1, a protein 307 

that participates in human innate immune response [24]; BCLAF1, a transcription factor; 308 

HNRNPU, a transcription suppressor; PCBP1, a previously reported immune checkpoint 309 

[25]; APOBEC3C, an RNA editing enzyme. These enriched motifs and their associated 310 

RBPs were consistent with the biological functions of the selective cfRNAs revealed 311 

above. 312 

 313 
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Specific cancer signals revealed in Plasma and EV cfRNAs 314 

In order to demonstrate whether the EV purification step is needed for a cfRNA-based 315 

cancer test, we compared the cancer classification performance of Plasma cfRNAs and 316 

EV cfRNAs. We sequenced cfRNAs in the plasma samples of lung cancer (LC) and 317 

colorectal cancer (CRC) patients, as they are two major cancer types (Supplementary 318 

Figure 6). Based on differential expression analysis between cancer and normal control 319 

(NC) (|log2fold-change|>1 and FDR<0.05), we defined a set of cancer-relevant cfRNAs 320 

(Supplementary Figure 16). Interestingly, we found that they were remarkably enriched 321 

in Plasma compared to EVs (Figure 7A). We also found that enriched functions of these 322 

cancer-relevant Plasma cfRNAs were termed as RNA splicing, snRNP signals, etc 323 

(Figure 7B). This is consistent with the enriched pathways of Plasma cfRNAs revealed 324 

in Figure 6B.  325 

 Based on these selectively distributed cancer-relevant cfRNAs, we used a random 326 

forest classifier to discriminate cancer patients from NCs. Although the selective cfRNAs 327 

in Plasma performed slightly better than those in EVs (average AUROC: 0.909 versus 328 

0.877, Figure 7C, Supplementary Figure 17), comparable performances were observed 329 

between Plasma and EV cfRNAs when a large number of non-selective cfRNAs 330 

(Figures 6A, 7A) were included as well (average AUROC: 0.936 versus 0.953, Figure 331 

7D, Supplementary Figure 18). Collectively, these results imply that the EV purification 332 

step can reveal distinct cancer signals, but it has a very subtle effect on the accuracy of 333 

detection of cancer patients from healthy controls.  334 
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 335 

Microbial cfRNAs in Plasma classify cancer types better than EV cfRNAs 336 

Cancer screening test not only requires detecting cancer patients from normal controls 337 

but also needs to determine primary tumor locations. Therefore, we further compared the 338 

performances of human cfRNAs in Plasma and EV for classifying CRC from LC.  339 

First, we found none of them did a good job (average AUROC: 0.628 versus 0.659, 340 

Figure 7E, Supplementary Figure 19). Fortunately, a recent study of our group 341 

revealed that microbe-derived cfRNAs in human plasma reflect cancer-type-specific 342 

information [18]. Based on the RNA abundance levels of the contamination-filtered 343 

microbe genera, we found the microbial cfRNAs significantly improved the classification 344 

for both Plasma and EV cfRNA data (average AUC: 0.898 versus 0.772, Figure 7E, 345 

Supplementary Figure 19).  346 

Notably, the microbial reads in Plasma cfRNAs performed better than those in EV 347 

cfRNAs. Consistently, we also found more cancer-type-specific features in Plasma 348 

cfRNAs than in EV cfRNAs (Figure 7F). We identified the microbial features recurrently 349 

showing differential abundance between CRC and LC in all of the 20 bootstrap 350 

samplings. The abundance of top recurrent microbe genera, along with fold-change and 351 

false discovery rates were illustrated (Figure 7G). For instance, more Methanothrix 352 

reads were found in CRC than in LC using EV cfRNA-seq data. This is consistent with a 353 

previous study reporting that Methanothrix soehngenii was enriched in gut microbiome of 354 

CRC patients [26]. Meanwhile, many cancer-relevant virus RNAs in Plasma cfRNAs 355 
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classified cancer types, consistent with the observation of more virus RNAs detected in 356 

Plasma than in EVs (Figure 5E). For instance, more reads of Alpha-polyomavirus and 357 

Beta-polyomavirus were found in LC than in CRC using Plasma cfRNA-seq data. 358 

Supportively, some polyomaviruses were also reported to be detectable in 359 

gastrointestinal tract and respiratory aspirates [27]. These studies and results suggest 360 

that microbe-derived cfRNAs in Plasma and EV present promising but yet poorly 361 

investigated signatures for specific cancer types. 362 

 363 

 364 

Conclusion and Discussion 365 

Conclusions. In summary, this study introduced a depletion-assisted cost-effective 366 

cfRNA profiling approach, termed DETECTOR-seq, which utilized multiple technologies 367 

such as early barcoding, template-switching, UMI, and sgRNA/CRISPR-Cas9. Using 368 

DETECTOR-seq, we recapitulated molecular characteristics of Plasma and EV cfRNAs 369 

and identified their distinct human and microbial signatures, thus illustrating the gain and 370 

loss of certain cfRNA signals due to EV purification. Our work provides a practical guide 371 

for cfRNA-based liquid biopsy (Table 1). Moreover, we envision that DETECTOR-seq 372 

would be a useful tool to facilitate further studies in extracellular RNA biology.  373 

 374 

Technologies utilized and optimized in DETECTOR-seq. Plasma cell-free 375 

transcriptome remains challenging to study owing to the low quantity and quality of 376 
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fragmented RNAs [11]. Over-represented rRNA and mtRNA species [12], DNA 377 

contamination [15], and high cost are still the major issues of cfRNA sequencing. Multiple 378 

technologies were included in DETECTOR-seq to address these issues (Figure 4F). 379 

First, DETECTOR-seq captures fragmented cfRNAs with random priming and template-380 

switching strategies, which have been proven to be highly efficient in single-cell RNA-381 

seq [28]. Second, the early barcoding protocol of DETECTOR-seq enables us to prepare 382 

cfRNA libraries in a multiplexing manner, thus reducing the volume of required plasma 383 

and experimental costs. In fact, DETECTOR-seq is capable of detecting cfRNAs with a 384 

low input volume of 0.2 to 1 mL plasma with a 2- to 6-fold cost saving compared to 385 

existing approaches. Third, with UMIs tagging to cDNAs of RNA fragments, DETECTOR-386 

seq can accurately quantify the low-quantity cfRNAs. Fourth, by optimizing the 387 

procedures of RNA extraction and residual DNA digestion (Supplementary Figures 3-4), 388 

DETECTOR-seq avoids the potential contamination of genomic DNAs. Fifth, 389 

DETECTOR-seq uses CRISPR-Cas9 technology to deplete rRNA and mtRNA 390 

sequences. A CRISPR-based depletion strategy, DASH (Depletion of Abundant 391 

Sequences by Hybridization) [29] has been utilized in other fields, such as ATAC-seq 392 

[30], small RNA-seq [31], bacterial RNA-seq [32] and single-cell total RNA-seq [33]. Here, 393 

we applied this CRISPR-based method to cfRNA sequencing and designed a specific 394 

set of sgRNAs for human plasma (Supplementary Figures 1,2).  395 

Plasma vs. EV in cancer detection and cancer type classification. Researchers 396 

have used both Plasma cfRNA-seq [4-6] and EV cfRNA-seq [7, 19, 34-36] to identify 397 
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disease biomarkers. But which one is better is still not clear. By pairwise comparison 398 

between Plasma and EV cfRNA-seq, we found that both of them can distinguish cancer 399 

patients from controls with comparable performance. However, cancer types can be 400 

better classified with microbe-derived features in Plasma cfRNAs than those in EV 401 

cfRNAs.  402 

Distinct signatures in Plasma vs. EV cfRNAs. Moreover, this study has brought 403 

new insights into distinct cfRNA signatures in Plasma versus EVs. Plasma contains 404 

miscellaneous cfRNAs released from alive or apoptotic cells, while RNAs in EV cargos 405 

are considered to be secreted actively by cells for functional roles in intercellular 406 

communications [37]. This study revealed distinct biological pathways, enriched motifs, 407 

and RBP-binding sites in Plasma vs. EV cfRNAs. We also found that short RNA 408 

fragments (50 to 100 nt) associated with RNPs were enriched in Plasma cfRNAs, 409 

indicating higher degradation extent of non-vesicular RNAs than those of EV RNAs.  410 

Limitations of this study. Though DETECTOR-seq provides several advantages 411 

when compared with other approaches, it needs to be further improved. For example, 412 

the efficiency of random priming of DETECTOR-seq is proportional to the fragment 413 

length of RNAs, which will bias the library. Meanwhile, DETECTOR-seq includes several 414 

purification steps to remove by-products, such as empty library constructs, adapter 415 

dimers, and superfluous primers. Because these purification procedures retain longer 416 

products, RNA fragments shorter than 50 nucleotides are largely discarded along with 417 

by-products. Thus, DETECTOR-seq can be modified based on other strategies like 418 
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poly(A) tailing to obtain a complete spectrum of cfRNAs, including both small and long 419 

fragments [38, 39].  420 

 421 
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Figure Legends 573 

 574 

Figure 1 | Depletion-assisted multiplexing cell-free total RNA sequencing.  575 

(A) Bioanalyzer trace of cfRNA fragment lengths in a human plasma sample. (B) The relative 576 

proportion of reads for various RNA biotypes detected by total RNA sequencing averaged by 577 

three human plasma samples. (C) Distribution of reads’ insert size for the fragmented rRNAs 578 

and mtRNAs, derived from the above sequencing data. (D) Distribution of reads’ coverage. 579 

Blue bars on top represent sgRNA target sites. (E) The designed sgRNAs tiling the 580 

fragmented rRNA and mtRNA sequences. (F) Schematic overview of DETECTOR-seq 581 

workflow. First, cfRNAs are reverse transcribed with random primers and TSO. Sample 582 

barcodes and UMIs are introduced during this step. Second, after calibrating input amounts, 583 

samples are pooled and pre-amplified. Third, cDNAs of rRNAs and mtRNAs are depleted by 584 

CRISPR-Cas9. Subsequently, DETECTOR-seq library is further amplified, then sequenced 585 

on an Illumina platform. rRNA: ribosomal RNA; mtRNA: mitochondrial RNA; TSO: template 586 

switching oligo; UMI: unique molecular identifier. 587 

 588 

Figure 2 | Efficient and specific depletion of rRNA and mtRNA sequences.  589 

(A) The read distributions and (B) coverages of untreated and rRNA/mtRNA-depleted 590 

DETECTOR-seq libraries. Read coverage was normalized to total mapped reads. Pearson 591 

correlation of cfRNA expression levels between (C) untreated and rRNA/mtRNA-depleted 592 

DETECTOR-seq libraries, and (D) DETECTOR-seq versus SMARTer-seq. TPM: transcripts 593 
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per million mapped reads (rRNA/mtRNA reads were removed). 594 

 595 

Figure 3 | Analytical validation analysis of DETECTOR-seq’s performance.  596 

(A) Number of sequenced reads of each barcoded sample in each multiplexing library. The 597 

dashed line represents an expected number. (B) The number of collapsed reads with PCR 598 

duplicates removed by UMI or non-UMI methods. ****: P-value<0.0001, Wilcoxon rank sum 599 

test, two-tailed. (C) Average coverage across all the 5’ and 3’ exon boundary sites 600 

flanking upstream and downstream by 50 bp. (D) The number of detected genes in 601 

DETECTOR-seq libraries (n=5) with different input volumes of plasma. (E) Pearson 602 

correlation matrix of plasma samples from biological triplicates (N1–N3) and technical 603 

triplicates (R1–R3). (F) Pearson correlation between spike-in molecules and their reads 604 

sequenced by DETECTOR-seq for ERCC spike-in controls. (G) Numbers of detected UMIs 605 

and (H) detected genes (defined by three different minimum counts) at various subsampled 606 

genome-aligned read depths. The error bar represents the standard deviation of multiple 607 

samples (n=24). M: million. 608 

 609 

Figure 4 | Comparing DETECTOR-seq with other cfRNA-seq methods.  610 

(A) Average percentages of genome-aligned reads mapping to exonic, intronic, and 611 

intergenic regions for four different cfRNA-seq methods. (B) Average coverage across all 612 

mRNAs’ 5’ and 3’ exon boundary sites flanking upstream and downstream by 50 bp. (C) 613 

Average percentages of reads located in the sense and antisense strands of mRNAs’ exons, 614 
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introns, and promoters. (D) Average percentages of clean reads (after trimming low-quality 615 

and adapter sequences) assigned to different sources. (E) Numbers of raw sequencing 616 

reads and human genome-aligned reads with a fixed budget of $300 for each method. (F) 617 

Summary of key techniques used in the four cfRNA-seq approaches. Numbers of used 618 

samples: Phospho-seq: 15; SILVER-seq: 128; SMARTer-seq: 373; DETECTOR-seq: 113. 619 

 620 

Figure 5 | Distinct human and microbial RNA signatures in Plasma versus EV.  621 

(A) Illustration of sequencing Plasma cfRNAs and EV cfRNAs in pairwise plasma samples. 622 

(B) Distribution of reads mapped to human genome and microbiome in Plasma and EV 623 

cfRNA datasets. Left: RNA spectrum mapping to human genome; Right: relative abundance 624 

of reads aligned to different phyla. (C) Differential human RNA species between Plasma and 625 

EV cfRNAs. (D) Pie charts show the average fractional contributions of various cell types to 626 

the Plasma and EV transcriptomes. Box plots show the diversity of cell type contributions to 627 

the Plasma and EV transcriptomes measured by the ratio of non-blood cells and Simpson’s 628 

index. (E) The fractions of reads aligned to microbe and virus. (F) Differential microbe genera 629 

between Plasma and EV cfRNAs. Plasma: 44 samples; EV: 44 samples (all samples paired). 630 

****: P-value < 0.0001, **: P-value < 0.01, *: P-value < 0.05, Wilcoxon rank sum test, two-631 

tailed. 632 

 633 

Figure 6 | Distinct functional pathways, motifs, and binding proteins of the selective 634 

Plasma and EV cfRNAs.  635 
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(A) Definition of the selective cfRNAs enriched in Plasma or EV. Cutoff: |Fold-change|>1 and 636 

FDR<0.1. (B) Top enriched KEGG pathways of the selective cfRNAs. (C) Top enriched 637 

motifs and their corresponding RNA binding proteins (RBPs) of the selective cfRNAs. 638 

Plasma: 44 samples; EV: 44 samples (all samples paired). 639 

 640 

Figure 7 | Cancer classification using Plasma cfRNAs and EV cfRNAs.  641 

(A) Cancer-relevant ones (differentially expressed between cancer patients and normal 642 

controls, |log2fold-change|>1 and FDR<0.05) in the selective and non-selective human 643 

cfRNAs. Cancer: colorectal cancer (CRC) and lung cancer (LC); NC: normal control. (B) 644 

Enriched GO terms related to cancer-relevant human cfRNAs. Performances (average of 20 645 

bootstrap procedures) of cancer-relevant human cfRNAs distinguishing cancer patients from 646 

normal controls when excluding (C) and including (D) non-selective cfRNAs. (E) AUROCs of 647 

cancer type classification (CRC vs. LC) using human- or microbe-derived reads in Plasma 648 

and EV cfRNAs. (F) Numbers of microbial features (genus) with significantly differential 649 

abundance (|log2fold-change|>1 and FDR<0.1) between CRC and LC in 20 bootstrap 650 

procedures. (G) Distinct cancer type-specific microbial features (genus) identified in Plasma 651 

and EV cfRNAs. Heatmaps show z-scores of the abundance levels of these microbial RNA 652 

features; bar plots illustrate their average log2FCs and FDRs between CRC and LC. FC: fold-653 

change; FDR: false discovery rate. ****: P-value < 0.0001, ***: P-value < 0.001, *: P-value < 654 

0.05, Wilcoxon rank sum test, two-tailed. CRC samples: Plasma (n=23), EV (n=19), 19 of 655 

them paired; LC samples: Plasma (n=19), EV (n=19), 18 of them paired; NC samples: 656 
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Plasma (n=19), EV (n=14), 7 of them paired. 657 
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Total cfRNA-seq 
(Plasma cfRNA-seq) EV cfRNA-seq

EV Purification No Yes

Cost of plasma volume, experimental 
time and reagents1 relatively less relatively more

Enriched RNA species circRNA, tRNA, Y RNA mRNA, srpRNA

Enriched microbes viruses intestinimonas, etc.

Diversity of cell-types-of-origin relatively low relatively high

Cancer detection good (AUC: 0.94) good (AUC: 0.95)

Cancer type-specific microbes relatively more relatively less

Cancer type classification relatively good (AUC: 0.90) relatively poor (AUC: 0.77)

1 Different cost is due to the EV purification step.

Table 1. Practical guide for cfRNA-seq in human plasma


