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Abstract 

scCRISPR-seq is an emerging high-throughput CRISPR screening technology that combines 
CIRPSR screening with single-cell sequencing technologies. It provides rich information on 
gene regulation. When performing scCRISPR-seq in a population of heterogeneous cells, the 
observed cellular response in perturbed cells may be caused not only by the perturbation, but 
also by the infection bias of guide RNAs (gRNAs) mainly contributed by intrinsic differences 
of cell clusters. The mixing of these effects poisons gene regulation studies. We developed 
scDecouple to decouple the true cellular response of the perturbation from the influence of 
infection bias. It models the distribution of perturbed cells and iteratively finds the maximum 
likelihood of cell cluster proportions as well as the real cellular response for each gRNA. We 
demonstrated its performance on a series of simulation experiments. By applying scDecouple 
to real CROP-seq data, we found that scDecouple could enhance biological discovery by 
detecting perturbation-related genes more critically. It helps to better study gene function and 
identify disease targets via scCRISPR-seq, especially with heterogeneous samples or complex 
gRNA libraries.  

 

Introduction 

With the development of single-cell technology, there emerge a group of CRISPR screening 
methods named scCRISPR-seq1 that adopt CRISPR to perturb a set of genes and then assess 
the resulting profiles of each perturbation by single-cell sequencings, such as Perturb-seq2–4, 
CROP-seq5, CRISP-seq6, Mosaic-seq7, Spear-ATAC8, and CRISPR-sciATAC9. Usually, a 
group of guide RNAs (gRNAs) targeting different genes are packed into a pool of lentivirus 
and then delivered into each cell. These gRNAs each introduces perturbation to pools of cells. 
Then, single-cell sequencing10-14 is used to measure one or more types of profiles for each 
cell, like single-cell RNA sequencing (scRNA-seq)11,12, single-cell ATAC sequencing 
(scATAC-seq)10,13, and Cellular Indexing of Transcriptomes and Epitopes by Sequencing 
(CITE-seq)14. These scCRISPR-seq methods can perform high-throughput perturbations as 
well as data-rich read-outs for each perturbation, providing informative data for gene 
regulation study2,15, disease target identification4, and drug development16.  

One of the basic tasks for analyzing scCRISPR-seq is to obtain the exact effects for each 
perturbation. Noise and uncertainties exist in several steps of scCRISPR-seq protocols2,17,18 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.31.526445doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526445


 2 

like editing efficiency, off-target effects, and single-cell sequencing noise, bringing huge 
challenges to data analysis. One key issue among them is that the exact original expression 
profile of each perturbed cell cannot be measured directly but must be estimated. In typical 
experimental settings, a control group is introduced to estimate the profiles of cells before 
perturbations2,15,19. It can be either a group of unperturbed cells or groups of cells infected by 
non-targeting (NT) gRNAs. However, such methods are not valid enough to deal with 
scCRISPR-seq experiments on samples composed of different cell clusters. We observed that 
the cell cluster proportion may vary a lot between different gRNAs in actual experiments2,4. 
This could be due to the different infection efficiencies of gRNAs or growth rates across 
different cell clusters. Besides, the random effects in gRNA infection and sampling during 
sequencing introduce additional noise to the estimation of the expression profiles before 
perturbation, especially when the gRNA library size is large. These will all result in a different 
proportion of the real infected cell clusters compared to the control group. Here, we refer to 
this type of noise as infection bias. With the development of scCRISPR-seq, the heterogeneity 
of samples4 and the complexity of gRNA libraries15 rapidly increases, making the above 
problems even more nonnegligible. A bioinformatics tool is urgently needed to decouple the 
true cellular response and infection bias in scCRISPR-seq.  

Here, we developed scDecouple to decouple the cellular response and bias by solving the 
maximum likelihood estimation of the original ratios of cell clusters for each gRNA. We 
modeled the distribution of cells in the principal component (PC) space as a Gaussian mixture 
model and used the expectation-maximization algorithm to iteratively estimate each cell's 
original cluster and real cellular response to perturbation. We conducted a series of 
simulations on generated data and real datasets to investigate the performance with different 
settings on parameters, including the number of cell clusters, the strength of the perturbation 
effect, and the strength of bias. scDecouple performed well on all simulation data. Then we 
applied our method to CROP-seq5. Results show that scDecouple can receive more precise 
cellular responses, more significant pathways, and more reasonable gene ranks. scDecouple 
helps to better understand perturbation effects and provides support for more complicated 
scCRISPR-seq protocols in the future.  

 

Description of problem 

We map all cells to the PC dimension. Assuming that experimental cells 𝑋 formed into two 
clusters with mean 𝝁! on PC space(Fig. 1A). Usually, the control group is set by NT 
gRNAs, which means the mean of control groups 𝑍 and original experimental cells 𝑋 are 
approximately equal. Because our observation is based on the control group, we assumed that 
𝝁" = 𝝁! and used 𝝁" to represent the original state. The gRNA1 successfully infected 
some cells with an uneven selection of clusters (Fig. 1B). We used 𝝁# to represent the mean 
of selected cells before perturbation. Assuming that a perturbation carried by gRNA1 can 
make cells tend to move in a certain direction in the PC space. After perturbation, the mean of 
cells turns to 𝝁$ (Fig. 1C). Here, (𝝁$ − 𝝁#) represents the cellular response, which 
represents the real perturbation effects. (𝝁# − 𝝁") represents the bias caused by gRNA1 
imbalanced selections. Then the observed change (𝝁$ − 𝝁") contains two parts: infection bias 
from 𝝁% to 𝝁& and true cellular response from 𝝁& to 𝝁$.  
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Figure 1 (A-C) The diagram of the research problem. Cells from the original group (A) are 
partially infected by gRNA1 and the mean of infected cells differs from the original group’s 
(B). So the observed change contains two parts: cellular response and infection bias (C). 

 

The general pipeline of computation 

scDecouple contains four steps: data preprocessing, PC selection, decoupling, and analysis 
(Fig. 2A). First, cells are normalized and log-transformed. Variable genes are selected and 
transformed to PC space. Second, PCs with high multimodality and explained variance are 
selected. The multimodality is defined by dip statistic (Methods). Third, the decoupling 
process is performed on selected PCs to decouple observed changes after the establishment of 
the gaussian mixture model of control and perturbation groups (Fig. 2B). Finally, we 
calculated the cellular response on other PCs by observed FC and performed inverse 
transformation on all PCs to estimate cellular responses per gene, followed by pathway 
enrichment and perturbation-related gene ranking. The description of the models and details 
of the essential steps are shown in Methods. 

                                    

 

Figure 2 (A) Four steps in scDecouple: data preprocessing, PC selection considering 
multimodality and explained variance, decoupling observed change to two parts, following 
analysis. (B) the plate notation of our models. We used two gaussian mixture models to 
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estimate control and perturbation groups. Here, smaller squares represent fixed parameters: 
the cluster proportion. [K] means there are K clusters. Larger circles represent random 
variables and filled-in means known values. The directed edges between variables indicate 
dependencies between the variables and the squiggly line with a crossbar indicates the value 
selects from upstream variables. 

 

Simulation using generated Gaussian mixture data 

We first randomly generated 1,000 2-dimensional NT cells following two-cluster GMM (Fig. 
3), whose bimodality concentrates on the first dimension (PC1). We inferred the bias of the 
FC method when there are two clusters (Methods Formula 9): 

) (𝝀' − 𝜹')𝝁'
'(),+

= (𝝀) − 𝜹))(𝝁) − 𝝁+) (1) 

The bias is linearly correlated with two sections: the distance 𝑑 between two clusters and 
cluster1’s ratio difference 𝑟 between the control and perturbation groups.  

𝑑 = 𝑎𝑏𝑠(𝝁) − 𝝁+) 

𝑟 = 𝑎𝑏𝑠(𝝀) − 𝜹)) 
(2) 

We first fixed the ratio changes 𝑟 = 0.1 and changed the cluster distance 𝑑 (Fig. 3A-E), 
and then fixed 𝑑 = 3 and changed 𝑟 (Fig. 3F-J). We sampled 100 times for each parameter 
and evaluated the estimation of cellular response for each sampling. We used Fold Change 
(FC) and scDecouple to get cellular responses separately. When 𝑑 or 𝑟 is small, the FC 
method and scDecouple both have low loss (Fig. 3B and Fig. 3G). With the increase of data 
multimodality or ratio change, the FC method gets more loss while scDecouple still performs 
well. In the dimension PC2 in which data is unimodal, two methods get similar results (Fig. 
3D and Fig. 3I). Also, results showed that scDecouple can detect the multimodality of data 
(Fig. 3E, Fig. 3H and Fig. 3J) and is very sensitive to multimodality changes (Fig. 3C).  
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Figure 3 (A-E) The diagram (A) and results (B-E) of simulations with cluster distance 
changes. (F-J) the diagram (F) and results (G-J) of simulations with cluster ratio changes. 

 

Simulation using genome-scale perturb-seq data  

We further simulated on a real Perturb-seq dataset. It targeted more than 2,000 common 
essential genes in K562 and RPE1 cells. Their gRNAs targeted the same genes in two cell 
lines, but the infection numbers of these gRNAs varied a lot (Fig. 4A). Here, we combined 
two cell lines as two clusters of one experiment to do simulations. We use the NT gRNAs as 
the control group and selected gRNAs with similar effects across two cell types as target 
gRNAs. The infections of each cell type varied among all selected gRNAs, which caused the 
infection bias (Fig. 4B). According to the explained variance and modality score that 
scDecouple calculated, we selected PC1 to perform decoupling (Fig. 4C). We drew the 
distribution of control cells on selected PC and validated that it had two clusters (Fig. 4D). We 
used the observed FC and scDecouple separately to estimate the cellular response of each 
gene to each gRNA, and calculated the mean absolute error of each gene per gRNA (Fig. 4E). 
We also considered the infection ration between K562 and RPE1 for each gRNA. As shown in 
Fig. 4E, directly using FC introduced more bias to the estimations, especially when the 
current gRNA had great cluster ratio changes during infections. We further randomly selected 
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several gRNAs with different ratio changes to see the variance of estimations among genes 
(Fig. 4F). The cellular response estimations obtained by FC had higher variance and mean 
value than scDecouple estimation, especially when ratio changes are large. In general, results 
showed that scDecouple can help to get a more accurate cellular response and reduces the bias 
caused by gRNA infections. 

 

 

Figure 4 (A) the distribution of infection numbers among gRNAs in two cell types. (B) the 
infection numbers of each gRNA in two cell types. Each dot represents one gRNA. (C) The 
selection of PCs. Only PC1 has high variance and multimodality. (D) the distribution of the 
control group on PC1. It has two clusters. (E) The error of cellular response estimation using 
FC (green) and scDecouple (blue) on PC1. Dots are gRNAs and are sorted by cluster ratio 
changes. (F) The box plot of cellular response estimation errors across randomly selected 
gRNAs. The X-axis is gRNA and Y-axis is the error of genes. The gRNAs are sorted by 
cluster ratio changes. 

 

Application to CROP-seq data 

To further evaluate the performance of scDecouple, we applied it to a CROP-seq dataset. The 
CROP-seq dataset targeted 23 genes on human Jurkat cells to study the T cell receptor (TCR) 
signaling pathway. We used NT gRNAs to generate the control group. We first normalized the 
library size and log-transformed data matrix. Then, 700 highly variable genes were selected 
and transformed into PC space. We selected 3 PCs by the threshold of explaining variance and 
modality score (Fig. 5A). We plotted the cell distribution of the control group and two 
perturbation groups on two of the selected PCs (Fig. 5B), and found that the cell proportions 
of two perturbation gRNAs differ from the control group. It proved that selection bias really 
exists in real scCRISPR-seq datasets. We then decoupled observed changes on selected PCs 
and got the cellular response of each gene to each gRNA as well as the selection bias. Fig. 5C 
shows the inferred original cluster proportions of each gRNA. It varied among gRNAs and 
reflected the strength of infection bias. The decoupled cellular responses were represented by 
a gene-gRNA matrix, whose columns were gRNAs and rows were 165 TCR pathway 
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signature genes defined by CROP-seq paper5 (Fig. 5D).  

To further evaluate the results, we calculated the enrichment score of the TCR signaling 
pathway for each gRNA (Fig. 5E). The differential expression genes (DE genes) were 
selected by observed FC and scDecouple separately. The results showed that scDecouple gets 
similar or higher enrichment scores than the FC method. The improvement of estimation was 
not that large mainly because the heterogeneity of cells in this dataset was small. We also 
calculated the ranking of TCR-related essential genes. According to the results in the original 
paper5, we further filtered TCR pathway signature genes and selected the top 60 essential 
genes to calculate their response ranks among all genes. Because all gRNAs were targeted on 
the TCR signaling pathway, these essential genes should rank high. We combined their ranks 
calculated by FC and scDecouple. As shown in Fig. 5F, scDecouple improved the ranking of 
essential genes. We then focused on CD69, a well-known early activation marker of the TCR 
pathway5,20,21. Results showed that the rankings of CD69 were greatly improved (Fig. 5G).  

From the analysis of CROP-seq data, we can see that the observed changes can be well 
decoupled to infection bias and cellular response using scDecouple, resulting in more 
significant pathway enrichment results and more accurate gene ranking. This will benefit in 
deriving more precise gene regulatory networks and perturbation-related genes.  

 

 

Figure 5 (A) The selection of PCs. We select 3 PCs according to explained variance and 
modality score. (B) The distribution and cluster proportion of three groups on two selected 
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PCs. The left is control group and the others are perturbation groups. The value is the ratio of 
red cluster. (C) The ratio of cluster 1 among all gRNAs. The dashed line is the ratio of control 
group. (D) Heatmap of gRNA-gene matrix. The rows are gRNAs and columns are TCR 
pathway-related signature genes. (E) Enrichment score of TCR pathway. Each row represents 
one gRNA. (F) The ranks of essential genes calculated by FC and scDecouple. Each dot 
represents one gene. The red and blue colors indicate increased or decreased ranking in 
scDecouple compare with FC. The alpha represents the intensity of ranking changes. The 
dashed line is 1K ranking changes. We labeled the genes with more than 1K ranking changes. 
(G) The rank of CD69 among all gRNAs. The axes represent the rank percentage of observed 
and deconvoluted responses.  

 

Applications on drug screening 

scDecouple can be applied to other scenarios for decoupling proportion changes of cell 
clusters and cellular response. One typical scenario is drug screening. Batch effects usually 
exist in drug screening due to the technical variations or other non-biological differences 
between the measurement of control groups and drug-treated groups. It can be considered as 
linear shifting on PC space, which behaves like a cellular response to the batch. Also, the 
influence of drugs usually causes changes in cell proportions. Thus, the observed change 
contains both expected cellular proportion changes and unexpected batch effects. Here, 
scDecouple can be used to decouple observed change to get the drug response without batch 
effect (Fig. 6A).  

Here, we used the data of etoposide drug screening on human brain tumor tissue22 as an 
example. They performed drug perturbation on tumor slices and then used scRNA-seq to 
profile transcription-level drug responses. We selected the first two PCs based on their 
variance and multimodality. The control and perturbation groups show batch effects on 
selected PCs (Fig. 6B). We applied scDecouple and annotate each cluster by malignancy score 
and marker genes (Fig. 6C), which are both defined by the original paper22. and the results 
showed that the decoupled proportion changes focus on the decrease of tumor cells and 
increase of myeloid cells (Fig. 6D). The finding is consistent with previous studies22–24, which 
indicates the feasibility of scDecouple on drug screening datasets. 

 

 

Figure 6 (A) The observed change can be decoupled into proportion change and batch effects. 
The red line is the signal and the blue line is the noise. (B) The batch effects between control 
group (grey) and perturbation group (black) on selected PC space. (C) The assigned three 
clusters of each cell: myeloid cells (red), oligodendrocyte cells (blue) and tumor cells 
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(brown). (D) The inferred ratios of three clusters before and after drug perturbation.    

 

Discussion 

scDecouple decoupled observed changes of scCRISPR-seq data on PC space to the cellular 
response and infection bias based on the maximum likelihood estimation. We verified its 
performance on a series of simulations and applied scDecouple to real datasets. It gets more 
obvious pathway enrichment and makes perturbation-related genes rank higher. scDecouple 
can also be extended to drug-screening datasets to reduce batch effects. The good 
performance of scDecouple is mainly contributed by its estimation of the real cluster 
proportions for cells in perturbation groups. 

scDecouple is the first method that focuses on infection bias on scCRISPR-seq data. With the 
development of technology, scCRISPR-seq with more complex gRNA libraries and more 
heterogeneous cells will be developed and popularized. As a result, reducing infection bias 
will be more important and necessary in the following analysis of scCRISPR-seq. Also, the 
process of double-strand breaking causes P53 pathway activation and cell state arrest, which 
impacts the downstream analysis especially projects related to cell states and aging. Our 
method helps to discard all these impacts and focus on the cellular responses we are 
concerned about. In the future, we may not need to set control groups. We can use the public 
single-cell atlas datasets such as hECA25 to get information of cell clusters instead of using 
control groups to estimate. 

scDecouple has two assumptions, one is that cells obey GMM on PC space, and the other is 
that the number of clusters is the same between the NT and perturbation groups. Later, 
scDecouple can be extended to other high-dimensional space or statistical models. Also, more 
information such as marker genes of cell clusters can be added to deal with perturbation 
groups that lose one or more clusters compared with the control group.  
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Supplemental information 

 

Methods 

Gaussian Mixture Model 

First, we estimated control group 𝑍 using the Gaussian Mixture Model (GMM), which is a 
linear superposition of Gaussian components, on its PC space. The density function is 

𝑝(𝒛) = )𝛿'𝒩;𝒛<𝝁' , 	𝜦',)@
-

'()

	

= )𝛿' A
𝜦'
2𝜋
A
)
+
exp G−

1
2
(𝒛 − 𝝁').𝜦'(𝒛 − 𝝁')H

/

'()

 

(1) 

Where K is the number of mixture components, refer to the number of cell clusters, 𝐷 is the 
number of selected PCs. 𝛿'(𝑘 = 1,2,⋯ , 𝐾) is the mixture coefficient or mixture weight of 
cluster 𝑘. It’s the prior probability of each subgroup and ∑ 𝛿'-

'() = 1. 𝝁' , 𝜦'represents the 
expectation and precision (inverse of the variance) of cluster k.  

Here, we use perturbation group 𝑌 to represent cells affected by some gRNA. The mean of 
each cluster in 𝑌 represents by the sum of the corresponding cluster mean in control cells 
𝝁' and cellular responses 𝜷. The density function of 𝑌 is: 

𝑝(𝒚) = )𝜆'𝒩;𝒚<𝝁𝒌 + 𝜷,𝑴'
,)@

-

'()

	

= )𝜆'

-

'()

A
𝑴'

2𝜋
A
)
+
exp G−

1
2
(𝒚 − (𝝁' + 𝜷)).𝑴';𝒚 − (𝝁' + 𝜷)@H 

(2) 

where 𝜆' is the mixture coefficient of 𝑌, it reflects the cell proportion of the perturbation 
group. 𝑴' represents the precision of cluster 𝑘. The plate notations of two gaussian mixture 
models are shown in Fig. 3B.  

 

Inference with Expectation maximization algorithm 

The likelihood function of all observed data is: 

𝐿(𝜽|𝒛, 𝒚) = 𝐿(𝜹, 𝝁, 𝜦, 𝝀, 𝜷,𝑴|𝒛, 𝒚)	

=X𝑝;𝒛1<𝜹, 𝝁, 𝜦@
2!

1()

X𝑝(𝒚3|𝝀, 𝜷,𝑴)

2"

3()

 
(3) 

It contains two parts: the likelihood of control groups 𝐿4 and the likelihood of treatment 
group 𝐿5. Namely: 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝐿4 =X𝑝;𝒛1<𝜹, 𝝁, 𝜦@

2!

1()

𝐿5 =X𝑝(𝒚3|𝝀, 𝜷,𝑴)

2"

3()

 (4) 

Where, 𝑁6, 𝑁6 represents the number of cells in the control group and treatment group.  

We first use the EM algorithm to maximum 𝐿4 and estimate parameters 𝜹̂, 	𝝁_, 𝚲̂,): 

max𝐿4 	= maxX 𝑝(𝒛3|𝜹, 𝝁, 𝜦)
2#

3()
	

= maxX X c𝑝(𝑢3 = 𝑘|𝜹)𝑝;𝒛3<𝑢3 = 𝑘, 𝝁' , 𝜦',)@e
7(9$(')

-

'()

2#

3()
	

For 𝐿5: 

(5) 

max𝐿5 	= maxX 𝑝;𝒚1<𝝀, 𝝁, 𝜷,𝜧, @
2%

1()
 

(6) 

We already estimate the parameters 𝜹̂, 𝝁_, 𝜦̂,). So, we only estimate𝝀g, 𝜷̂, 𝜧̂ and during EM 
iteration: 

Expectation step (E-step): 

Ec𝑣1 = 𝑘<𝝀g, 𝜷̂e =	

								
λ'|𝜧'|

)
+ exp k−12 l𝒚1 − ;𝝁_' + 𝜷̂'@m

.
𝜧' l𝒚1 − ;𝝁_' + 𝜷̂'@mn

∑ λ;|𝜧;|
)
+ exp k−12 l𝒚1 − ;𝝁_; + 𝜷̂;@m

.
𝜧; l𝒚1 − ;𝝁_; + 𝜷̂;@mn-

;()

 
(7) 

Maximum step (M-step): 

λg' =
1
𝑁5
)Ec𝑣1 = 𝑘e
2%

1()

	

𝜷̂ =
1
𝐾
)

∑ Ec𝑣1 = 𝑘e;𝒚1 − 𝝁_'@
2%
1()

∑ Ec𝑣1 = 𝑘e2%
&()

-

'()
	

𝜧̂' =
∑ Ec𝑣1 = 𝑘e l𝒚1 − ;𝝁_' + 𝜷̂'@m l𝒚1 − ;𝝁_' + 𝜷̂'@m

.2%
1() 	

∑ Ec𝑣1 = 𝑘e3∈2&
 

(8) 

By iteratively applying E-step and M-step, we can maximize the likelihood function and get 
𝝀g, 𝜷̂, 𝜧̂. In some case, we can choose to fix the estimation of 𝑴' to make the shape of 
clusters in perturbation groups be similar with control groups:  

𝜧̂' = 𝜦̂' , 𝑘 = 1,2,⋯ , 𝐾 

 

Algorithm acceleration  

To accelerate the calculation and to reduce noise, we divide candidate PCs into four 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.31.526445doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526445


 14 

categories: multimodal and high-variance, unimodal and high-variance, multimodal and low-
variance, unimodal and low-variance.  

In unimodal PCs, Fold-Change estimation (FC estimation) is unbiased because there are no 
clusters. In multimodal PCs, bias using FC estimation is: 

𝜷̂ =
1
𝑁5
) 𝒚1

2%

1()
−
1
𝑁4
) 𝒛3

2#

3()
	

=) 𝝀'(𝝁' + 𝜷')
-

'()
−) 𝜹'𝝁'

-

'()
	

= 𝜷 +) (𝝀' − 𝜹')𝝁'
-

'()
	

𝐁𝐢𝐚𝐬 = 𝜷̂ − 𝜷 =) (𝝀' − 𝜹')𝝁'
-

'()
 

(9) 

And when PCs are multimodal and low-variance, the bias using FC estimation is very small 
and there are few spaces for improvement when considering multimodality using the GMM 
model. The bias approaches zero: 

) (𝝀' − 𝜹')𝝁'
-

'()
≈ 𝝁t) (𝝀' − 𝜹')

-

'()
= 0 (10) 

Therefore, only multimodal PCs with high variance need to be decoupled. The degree of 
multimodality of PCs is measured by dip statistic, which calculates the maximum difference 
between the empirical distribution function and the best-fitting unimodal distribution.  

Define: 

𝜌(𝐹, 𝐺) = sup
=
|𝐹(𝑥) − 𝐺(𝑥)| 

𝜌(𝐹,𝒜) = inf
>∈𝒜

𝜌(𝐹, 𝐺) 
(11) 

Let 𝒰 be the class of unimodal distribution functions. 

The dip of a distribution function F is then defined by: 

𝐷(𝐹) = 𝜌(𝐹,𝒰) (12) 

We used dip statistic to assess multimodality and select PCs.  
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