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ABSTRACT14

Dendritic spines are the seat of most excitatory synapses in the brain, and a cellular structure considered
central to learning, memory, and activity-dependent plasticity. The quantification of dendritic spines from
light microscopy data is usually performed by humans in a painstaking and error-prone process. We
found that human-to-human variability is substantial (inter-rater reliability 82.2±6.4%), raising concerns
about the reproducibility of experiments and the validity of using human-annotated ’ground truth’ as an
evaluation method for computational approaches of spine identification. To address this, we present
DeepD3, an open deep learning-based framework to robustly quantify dendritic spines in microscopy
data in a fully automated fashion. DeepD3’s neural networks have been trained on data from different
sources and experimental conditions, annotated and segmented by multiple experts and they offer precise
quantification of dendrites and dendritic spines. Importantly, these networks were validated in a number of
datasets on varying acquisition modalities, species, anatomical locations and fluorescent indicators. The
entire DeepD3 open framework, including the fully segmented training data, a benchmark that multiple
experts have annotated, and the DeepD3 model zoo is fully available, addressing the lack of openly
available datasets of dendritic spines while offering a ready-to-use, flexible, transparent, and reproducible
spine quantification method.
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Dendritic spines are small protrusions on dendrites. They constitute the postsynaptic part of most excita-31

tory synapses in the brain. As such, dendritic spines have been postulated to act as the brain’s fundamental32

units of neuronal integration (Yuste and Denk, 1995) and the seat of information storage (e.g. Hofer33

and Bonhoeffer, 2010). Morphologically, dendritic spines are characterized by a bulbous head, which is34

connected to the dendrite via a thin spine neck (Yuste and Bonhoeffer, 2001).35

36

37

Ongoing advances in microscopy have enabled researchers to obtain live images of dendritic spines, cap-38

turing fundamental mechanisms of synaptic plasticity, such as changes in spine size or quantity. However,39

the identification and quantification of dendritic spines are typically still done manually. This subjective,40

time-intensive task is further complicated by the limited spatial resolution common light microscopy41

techniques offer (Pfeiffer et al., 2018; Attardo et al., 2015). As a consequence, deriving a meaningful42

consensus across multiple raters is challenging. While the precise amount of inter-human variability in a43

spine identification task so far remains unclear, in comparable tasks, such as the identification of synapses44

or the classification of dendritic spines into morphological subtypes, inter-rater variability can reach levels45
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of up to 30% (Graves et al., 2021; Rodriguez et al., 2008). This raises concerns about the reproducibility46

of the analysis for experiments involving the quantification of dendritic spines.47

48

To address these concerns, various computational approaches of dendritic spine quantification have49

been described in the past (Extended Data Table 1) utilizing methods ranging from basic image thresh-50

olding to modern deep learning approaches (Koh et al., 2002; Dickstein et al., 2016; Xiao et al., 2018;51

Vidaurre-Gallart et al., 2022). These efforts improve the throughput of spine quantification and address52

the issue of reproducibility. However, they are typically tailored to perform well on data of a specific53

contrast and spatial resolution and hence perform inconsistently across datasets of different image qual-54

ities and modalities, hampering widespread use by the community (Xiao et al., 2018). Moreover, the55

validation of these approaches typically disregards human-to-human differences observed in manual spine56

identification, and instead compares the computational approach to a single human annotation (Koh et al.,57

2002; Xiao et al., 2018). Taken together, there are two main uncertainties: (1) human-to-human spine58

annotation variability and (2) data-related heterogeneity between experimental settings.59

60

Manual quantification of dendritic spines shows large inter- and intra-human variance61

We reasoned that first a thorough investigation of human variability in spine quantification tasks is required62

to further improve automated approaches. To this end, a benchmark dataset was generated by two-photon63

imaging with a volume of 135.7 by 34.4 by 35.5 µm from the rat hippocampal CA1 region (94 x 94 x64

500 nm voxel size). Next, multiple (n=7) experts manually annotated the center of mass of all dendritic65

spine heads in that dataset (Extended Data Fig. 1). The benchmark dataset, along with all annotations, is66

publicly available (see Data Availability) and constitutes, to the best of our knowledge, the first publicly67

available dataset of this kind.68

69

We then determined the level of variability between human annotators by matching the manual an-70

notations of dendritic spines using an unsupervised spatial clustering approach (see Online Methods).71

As expected from a subjective task such as spine annotations, rater-to-rater variability was considerable,72

resulting in an inter-rater-reliability (IRR) of 82.2±6.4% (Extended Data Fig. 1b). This is well in line73

with a previous report on a comparably subjective task (Graves et al., 2021, synapse identification; IRR:74

72.3%) and underscored by the fact that less than 42.6% of all spines were found by all seven expert75

annotators in the benchmark dataset. Surprisingly, when annotators were tasked to identify dendritic76

spines in the same dataset several weeks later, variability was equally high for the same individual rating77

weeks apart (intra-rater-reliability: 87.5%, Extended Data Figure 1b).78

79

Next, we asked multiple (n=3) experts to annotate the same benchmark dataset in a pixel-by-pixel80

manner into dendritic spines, dendrites, and background (see Online Methods). We found that while the81

individual experts agree on a qualitative level (Extended Data Figure 1a, d), quantitatively differences82

are sizeable: the Intersection over Union (IoU) score, a common measure of agreement in semantic83

segmentation tasks that ranges from 0 (no agreement) to 1 (perfect agreement), is on average 0.470±0.07184

for dendrites and 0.423±0.094 for dendritic spines (Extended Data Fig. 1c). These results highlight85

two problems: First, our results call attention to the lack of reproducibility of studies involving spine86

quantification, since manual annotations are the current gold standard of spine counting and localization.87

Furthermore, our findings emphasize the necessity to involve multiple annotators when evaluating a88

dataset. The manual work of annotators already represents the main bottleneck in spine analysis pipelines,89

and the apparent need to perform this task multiple times further decreases the already low throughput90

of this process. Second, most automated methods of spine quantification have been using manual spine91

annotations as ground truth for both training and validation of the method. Here, too, the observed92

amount of inter- and intra-rater reliability suggests that multiple annotators are required for training and93

validation of automated means of spine quantification in order to minimize the subjective bias a single94

user introduces.95

96

97

To address these observations, we have developed and report DeepD3, an open Deep Learning Framework98

for the Detection of Dendritic Spines and Dendrites. The DeepD3 framework employs training, validation,99
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and benchmarking datasets that have been annotated by multiple experts, effectively addressing the vari-100

ability observed among human annotators. The trained neural networks automatically perform semantic101

segmentation of dendrites and dendritic spines across microscopy data from different sources, offering102

a prompt solution to the slow, variable and error-prone manual spine annotation process. Furthermore,103

the emphasis on data heterogeneity during training and validation ensures that DeepD3 performs reliably104

across a range of data types, offering an open-source method for many applications, regardless of the105

provenance of the data.106

Figure 1. DeepD3 framework overview. a, Raw microscopy data (pictogram left) is used as input for
a deep neural network (center) to semantically segment dendrites (magenta) and dendritic spines (green)
against background (black; right). This color code will be used throughout the manuscript. b, DeepD3
database generation for paired ground-truth data. Before training, dendritic spines (top center) and
dendrites (top right) are annotated in raw microscopy data (top left) using pixel-wise and semi-automatic
tracing approaches (magenta circles in top far right image), respectively. During training, tiles from the
DeepD3 database are streamed, dynamically augmented to increase variability, and fed into the DeepD3
training pipeline. c, The DeepD3 architecture features a dual-decoder structure that emerges from a
common latent space ξ and receives skip connections from the encoder. Modules in the encoder are based
on residual layers together with max pooling operations, whereas modules in the decoder contain
upsampling operations, incorporate encoder input and use conventional convolutional layers. Example
network input (left) and output (right) are shown as a microscopy image tile and a localization probability
map ranging from 0 (background) to 1 (foreground). d, Overview of the DeepD3 open framework.
DeepD3 consists of open datasets, a model zoo with training environment for custom neural networks,
and a graphical user interface.

Semantic segmentation of dendrites and dendritic spines107

To achieve this, we utilized supervised learning to adjust the network parameters of a deep convolutional108

neural network (see Online Methods), thereby optimizing its performance on this task (Figure 1a). To109

provide training data for supervised learning, dendritic spines and dendrites were human-expert-annotated110

in microscopy images with single-pixel precision (Figure 1b, see Online Methods). To account for111

user-dependent variability and ensure better generalizability of DeepD3, these data were generated by112

multiple (n=3) experts. This produced an extensive DeepD3 training dataset (Table 1), which consists of113

3D microscopy image stacks of various resolutions, experimental data sources, imaging wavelengths, and114

microscopy modalities, all of which we provide as open data together with this study (see Data Avail-115

ability). During the training of the deep neural network, we streamed single tiles of this training dataset,116
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consisting of paired data containing the raw microscopy data, the binary dendritic spine segmentation117

mask, and the binary dendritic segmentation mask (Figure 1b, see Online Methods). Additionally, we118

applied data augmentations, such as rotation, flipping, blur, and Gaussian noise to these image tiles to119

generate more robust, generalized deep neural networks.120

121

To predict the presence of dendrites and dendritic spines in raw microscopy data, we observed that122

a custom two-decoder network (Figure 1c) inspired by the U-Net architecture (Ronneberger et al., 2015)123

performed better than an optimized vanilla U-Net (Extended Data Fig. 3). In the DeepD3 architecture,124

each decoder originates from a common latent space ξ that contains high-level image information ex-125

tracted by the encoder. This allows independent optimization of dendrite and spine prediction without126

them interfering with each other. By adjusting the parameters of this dual-decoder architecture using127

the training dataset, DeepD3 networks successfully learned to segment dendrites and dendritic spines in128

microscopy image data (Extended Figure 3-5 and Figure 1c). By scaling the neural network, we show that129

DeepD3 adapts to changes in capacity, allowing fast and accurate variants (Extended Data Figures 4 and130

5). For more details on the entire DeepD3 framework (Figure 1d), its elements (graphical user interface,131

user manual, datasets, model zoo, custom training environment and DeepD3 website), and its workflow,132

see the Supplementary Note, Table 1, Extended Data Figures 7-10, and Extended Data Tables 2-3.133

Figure 2. DeepD3 a versatile tool for quantification of dendritic spines in microscopy data
a, Maximum intensity projection of the benchmark dataset, a 3D image stack of dendrites and dendritic
spines of CA1 pyramidal neuron of an organotypic hippocampal slice culture (raw data, top). DeepD3-
generated prediction maps of dendrite (magenta) and dendritic spines (green). Segmented 3D ROIs using
the spine prediction map (bottom). Scale bar indicates 50 µm. b, Inter-rater reliability of n=7 raters,
who manually annotated the location of all dendritic spines in the benchmark dataset (see panel A). The
matrix was generated by comparing rater pairs (y-axis = Rater 1, x-axis = Rater 2) using matched spine
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annotations (see Online Methods). The far right column indicates how many dendritic spines annotated by
a given rater (y-axis, Rater 1) were identified by DeepD3 (x-axis, Rater 2). The bottom row indicates how
many spines that were segmented by DeepD3 (here Rater 1) were also identified by a given human rater
(here Rater 2). c, Linear correlation of the number of raters that identified a given spine and the average
DeepD3 dendritic spine prediction probability at the center of the spine. Single points indicate the mean
± SEM, dashed line indicates the regression line. d, Frequency plot of the number of dendritic spines
against the number of raters that identified a given spine (N={1,...,7}). Shown are the performances of
DeepD3 (small green bars) and the raters (small gray bars). The bottom two bars plot the number of
spines that were found by DeepD3 but none of the raters (single wide green bar) and those localized
by a rater but not DeepD3 (single wide gray bar). e, Validation of DeepD3’s performance on three
independently sourced and annotated datasets: In vivo iGluSnFR data was acquired in behaving mice
using two-photon microscopy (dataset A; Kazemipour et al., 2019). In vivo Thy1-YFP data was acquired
in behaving mice using two-photon microscopy (dataset B; Frank et al., 2018). In vitro image stacks of
counter-stained Biocytin-filled neurons of human brain tissue were acquired using confocal microscopy
(dataset C; Peng et al., 2015). Top: maximum intensity projections of example images of all three datasets
with ground-truth annotation (red crosses) and DeepD3 3D ROI centroids (blue circles). Scale bar is 50
µm. Bottom: DeepD3 performance (recall) on the same datasets relative to the previously determined
human IRR of the DeepD3 benchmark dataset (panels A and B). f, Utilization of DeepD3 for determining
preferential localization of a nanobody against PSD-95 (Rimbault et al., 2021), tagged with mTurquoise2,
to dendritic spines measured as the ratiometric spine-to-dendrite ratio (RSDR; see Online Methods). An
RSDR value of >1 indicates preferential localization of the construct to the spine over the dendrite. Top:
a maximum intensity projection of the raw data is overlayed with the RSDR of each DeepD3-generated
spine ROI (purple to yellow, see color bar on the right). Scale bar is 50 µm. Bottom: box- and beeswarm
plots of the RSDR measurements of all analyzed (N = 553) dendritic spines. g, Utilization of DeepD3 's
dendritic spine segmentation for extracting calcium fluctuations of single dendritic spines using GCaMP7b.
Bottom left: average projection of the analyzed calcium-imaging movie with DeepD3-generated spine
ROI outlines in color and assigned numbers. Bottom right: calcium transients (∆F/F0) of the outlined
spines. Top: Pearsons’s correlation coefficient r of calcium transients of DeepD3-generated and manually
generated spine ROIs using either raw data (blue) or 9-point moving averaged data (turquoise).

Validation on benchmark dataset134

Given the observed amount of human-to-human variability (Extended Data Fig. 1), we concluded that135

the standard evaluation paradigm of automated spine detection methods is not suitable. I.e. comparing136

automated spine detection to a single manual ’ground truth’ annotation and grouping spines into true137

positives, false positives, correct rejections, and false negatives seems inappropriate given that the ’ground138

truth’ of a single annotator is so variable. Hence, we tasked DeepD3 to identify dendritic spines in139

the above-mentioned (DeepD3) benchmark dataset and compared the results to the performance of the140

seven human raters instead of a single one. Using the above-mentioned clustering approach, we were141

able to match spines between DeepD3 and the human raters and found that DeepD3 is able to recall142

most of the annotated dendritic spines by a given rater (91.6±2.8 %, Mann-Whitney U-test p¡0.01, see143

Figure 2b, right column). Inversely, human raters were less likely to recall spines that were identified by144

DeepD3 (76.0±4.5, see Figure 2b, bottom row). To verify human-like behavior of DeepD3, we utilized145

the matched spine annotations to investigate how many spines DeepD3 identifies relative to the spine146

cluster size, i.e. how many human annotators identified the same spine (Figure 2d). Spines that were147

identified by at least four of the seven human annotators were consistently also identified by DeepD3 (354148

out of 369, 95.9%), while those that showed poorer agreement between human experts were also less149

likely to be found by DeepD3 (79 out of 122, i.e. 64.8%).150

151

While, DeepD3 identified the vast majority of spines that had been annotated by at least one of the seven152

raters, it also generated some ’unique’ spine annotations (i.e. those that could not be identified by any153

of the other raters) than the average rater (Figure 2d). We next investigated the origin of this ’liberal154

annotation style’ of DeepD3 and whether it can be fine-tuned to the user’s needs. To that end, we utilized155

the fact that DeepD3 assigns prediction values to all pixels of an image as part of its workflow, with values156

ranging from 0 to 1, depending on the likelihood that DeepD3 deems a pixel to be part of a dendritic157

spine (see Online Methods for more details on the DeepD3 workflow). This spine prediction map was158
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then utilized to compare the probability scores DeepD3 assigned to all dendritic spines to the number159

of human raters that identified a spine: not only is the probability DeepD3 assigns to a spine strongly160

correlated to how well humans detect that dendritic spine (Figure 2c, correlation coefficient r = 0.953),161

DeepD3’s prediction map also seems to reflect the distinct difference between those dendritic spines that162

have been identified by the majority of human experts versus those that have not (Figure 2c). Many of the163

user-defined hyper-parameters during DeepD3’s ROI generation process are implemented based on the164

spine prediction map (see Online Methods and Supplementary Note). Hence, and critically, fine-tuning165

such hyperparameters allows users to utilize DeepD3 as a more liberal or conservative tool with regard166

to spine ROI identification, depending on the user’s needs. We believe that an assessment of whether167

DeepD3 performs at, below or above the level of a human in a spine identification task is misguided,168

as the real ground truth for such an analysis is lacking. Instead, we show that DeepD3 by and large169

follows the spine identification behavior of human experts (Figure 2c,d) with the critical differences that170

hyper-parameters can be tuned to the requirements at hand in a reproducible and transparent manner while171

being considerably faster (Extended Data Figure 5a,b).172

173

Comparison to other automated methods174

Using the segmentations of the benchmarking dataset provided by n=3 human experts, we next compared175

DeepD3 to state-of-the-art (semi-)automated methods for spine detection (Vidaurre-Gallart et al., 2022;176

Singh et al., 2017). DeepD3 (IoU for intersection: 0.474) outperformed a recently described fully177

automated deep learning method (Vidaurre-Gallart et al., 2022, ; IoU for intersection: 0.278, Extended178

Data Figure 12), the semi-automated spine segmentation of the IMARIS platform (IoU of intersection:179

0.343, Extended Data Figure 13), and a fully automated computational method (Singh et al., 2017, IoU180

for intersection: 0.422, Extended Data Figure 14). This indicates that DeepD3 is comparable or better181

than other state-of-the-art spine detection methods.182

Validation on diverse experimental settings183

We next asked whether DeepD3 is also readily employable in other datasets. One key difference across184

experimental settings is the physical resolution of single pixels, measured as nanometers per pixel (nm/px).185

Past approaches of automating dendritic spine segmentation perform more poorly than reported in data186

with different or sometimes even similar physical resolution than their training dataset (Extended Data187

Figure 11), hampering widespread use in the community (see Extended Data Figures 12-14 and Xiao188

et al., 2018). To explore this, we trained the DeepD3 architecture in two independent manners: first, using189

a fixed resolution, i.e. all images of the training dataset were resized to comply with the same resolution190

of 94 nm/px in xy, and second, on a mix of all available resolutions in the training dataset (ranging from191

23.2 to 124.5 nm/px in xy; see Table 1). Next, both of these trained neural nets (fixed and mixed) were192

tested against novel and rescaled (25-250 nm/px in xy) variants of the benchmark dataset. While both193

versions performed well in data with a spatial resolution close to 94 nm/px, the performance of the fixed194

neural net dropped when faced with images of vastly different spatial resolutions (Extended Data Figure195

6a,c). The flexible neural net, on the other hand, performed spine segmentation much more reliably in a196

larger range of spatial resolutions (Extended Data Figure 6). Critically, this change together with other197

data augmentation strategies (see Online Methods) in the training procedure should enable the use of198

DeepD3 for data with a large range of image properties and thus considerably improve its applicability in199

the community.200

201

To test this and extensively validate DeepD3, we gathered data from typical experimental paradigms in202

systems neuroscience (see Extended Data Table 2). Importantly, this data collection comprises high-203

and low-contrast anatomical data generated by different microscopy techniques (confocal, ex vivo and204

in vivo two-photon microscopy), using a variety of fluorescent indicators and dyes (YFP, iGluSnFR,205

tdTomato, GCaMP7b, biocytin + HRP + DAB) in different species (mouse, rat, human) and brain regions206

(retrosplenial cortex, hippocampus, frontal cortex; Figure 2e-g) Peng et al., 2015; Kazemipour et al., 2019;207

Frank et al., 2018). We determined the DeepD3 recall for spine localization across this collection and208

found that DeepD3 consistently performs at or above the human IRR (Figure 2e), despite large differences209

in the resolution of the data (67 to 240 nm/pixel). In contrast to other existing spine quantification methods,210

DeepD3 is therefore a readily employable tool for automated spine detection which is effective throughout211

a large variety of data sources with different resolutions, fluorophores, areas of origin and the like. Similar212
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to other toolboxes, such as DeepLabCut (Mathis et al., 2018), we include the option to utilize transfer213

learning to improve performance even further.214

215

Finally, we tried to extend DeepD3’s use cases to fluorescence extraction-based analyses by leveraging216

the fact that DeepD3 generates image segmentation for dendritic spines and dendrites. In particular, we217

asked whether we could capture the preferential localization of a major postsynaptic protein (PSD-95)218

to the dendritic spine using DeepD3-generated ROIs. Indeed, a nanobody against PSD-95 tagged with219

the fluorophore mTurquoise2 was found to be more prevalent in spines than in the dendritic arbor of220

single CA1 neurons (ratiometric spine-to-dendrite ratio >1, Figure 2f Rimbault et al., 2021, see Online221

Methods). In a separate experiment, DeepD3 was also found to be applicable to extract spontaneous222

synaptic transmission in the shape of calcium events at dendritic spines in two-photon calcium imaging223

data (Figure 2g): calcium traces of DeepD3-generated ROIs were strongly correlated with those generated224

by manually drawn spine ROIs (mean Pearson’s r = 0.97, see Figure 2g top, Extended Data Figure 15).225

226

227

Taken together, we provide an open-source framework which we called DeepD3. In the course of228

generating the DeepD3 framework, we quantified user-dependent variability of manual spine annotations229

(available in the DeepD3 benchmark dataset). This led us to introduce a novel approach to evaluating230

spine detection performance of automated spine quantification methods: in light of the subjectivity of231

manual spine annotations and consequently the lack of true ”ground truth”, we propose that an automated232

method’s performance should be evaluated against multiple annotations. DeepD3 performs well in233

such spine quantification tasks and has been validated for various data types. We were able to show234

that DeepD3 works in a human-like fashion but with much-improved speed and the benefit that spine235

quantification is performed in a transparent and reproducible manner. The entire DeepD3 framework236

is readily implemented in common microscopy analysis pipelines, providing an immediate end-to-end237

solution to the community. Lastly, by openly providing all training and benchmark datasets, a neural238

network model zoo, a method to train new networks, a GUI and batch execution function, as well as239

hosting the DeepD3 website to crowdsource and distribute annotated data and additions to the model240

zoo, we hope to have laid the foundation for a spine quantification tool, which will be useful for the241

community.242

ONLINE METHODS243

Sample preparation244

Animals245

All experiments were carried out in compliance with institutional guidelines of the Max Planck Society246

and of the local government (Regierung von Oberbayern). Wistar rats were housed under a 12 hour247

light-dark cycle with water and food available ad libitum. Pups (P4-9) were weaned and sacrificed to248

prepare organotypic hippocampal slice cultures the same day. Female Thy1-GFP mice were housed under249

a 12 hour light-dark cycle with water and food available ad libitum. One mouse (P100) was sacrificed to250

obtain the brain and generate brain slices.251

DNA252

The PSD-95-binding nanobody construct pCAG Xph15-mTurquoise2-CCR5TC was generated via Gib-253

son assembly by exchanging mNeonGreen (pCAG Xph15-mNeonGreen-CCR5TC, Addgene 135533;254

Rimbault et al., 2021) with mTurquoise2. The sequence of the final construct was verified via PCR255

sequencing. pENN.AAV.CAG.tdTomato.WPRE.SV40 was obtained via Addgene (105554; Wilson lab,256

unpublished). pGP-AAV-syn-jGCaMP7b-WPRE was obtained via Addgene (104489, Dana et al., 2019).257

Solutions258

Sterile cortex buffer, sterile phosphate buffered saline (PBS), Cesium-based internal solution and K-259

gluconate-based intracellular recording solution were prepared as described earlier (Weiler et al., 2018).260

ACSF was prepared as described in Weiler et al. 2018 with the exception that calcium and magnesium261

concentrations were 3.7 mM and 0.15 mM, respectively. ACSF was supplied with D-serine (10 µM) and262

Trolox (1 mM). Culture medium for organotypic hippocampal slice cultures was prepared as described in263

Stoppini et al. 1991a and supplemented with penicillin (0.7 mM) and streptomycin (0.343 mM).264

265
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Organotypic Hippocampal Slice Culture Preparation266

Organotypic hippocampal slice cultures (OHSCs) were prepared from Wistar rats on P4-9 (day of birth =267

P0) by cutting 400 µm transverse section as previously described (Stoppini et al., 1991b). OHSCs were268

kept in an incubator at 35°C with 5 % CO2 enriched atmosphere. Medium (50 % volume of each well)269

was exchanged twice a week.270

271

272

Single-Cell Electroporation273

To express DNA constructs in single hippocampal CA1 neurons (DIV 10-18), single-cell electropora-274

tion (SCE) was performed, as described previously (Judkewitz et al., 2009). Utilized constructs were275

pENN-AAV-CAG-tdTomato-WPRE-SV40 and either pGP-AAV-syn-jGCaMP7b-WPRE or pCAG Xph15-276

mTurquoise2-CCR5TC, diluted to a total concentration of 100 ng/ml in K-gluconate-based intracellular277

solution. Constructs were given 2-8 days to express while slice cultures remained in the incubator.278

Immunohistochemistry279

A Thy1-GFP mouse brain (P100) was sliced into 300 µm thick coronal brain slices, which were subse-280

quently brain cleared using RapiClear 1.47 for ∼3 h. Subsequently, slices were embedded in RapiClear281

solution and placed on a coverslip with a custom-made 300 µm spacer to prevent squeezing of the slice.282

Electrophysiology283

To obtain structural imaging data of dendrites and spines with different signal-to-noise ratios to the used284

genetically encoded structural markers (tdTomato/EGFP), patch-clamp recordings were performed as285

described earlier (Bauer et al., 2021). To allow for sufficient filling of pyramidal CA1 neurons, at least 15286

minutes separated break-in time and the beginning of structural imaging.287

Pharmacology288

Imaging of rat OHSCs was performed in the presence of voltage-gated potassium and sodium channel289

inhibitors (4-AP and TTX, respectively; both obtained from Tocris, USA).290

Two photon setup291

A custom-made two-photon imaging setup was utilized for imaging dendrites and dendritic spines in292

OHSCs. An 80 MHz pulsed femtosecond Ti:sapphire laser (MaiTai eHP, Spectra-Physics, USA) was used293

as excitation source for two-photon (2p) imaging. An electro-optical modulator (Pockels cell; Conoptics,294

USA, Model 350-80) was utilized for turnaround blanking and control over 2p excitation intensity. A295

galvo-resonant scan system (8 kHz) was utilized for bidirectional raster-scanning. A total of four photo-296

multiplier tube detection modules (PMTs) captured emitting photons in two separate detection paths: two297

PMTs were placed epidirectionally (via the objective) and two transdirectionally to the objective (via a 1.4298

NA oil immersion condenser; Thorlabs, Germany). Photons were spectrally separated (560nm dichroic299

beam splitters) and filtered (red/green imaging: 525-50nm and 607-70nm bandpass filters; blue-shifted300

fluorophores: 510-84nm bandpass filter and 6.0ND filter) according to use before hitting the PMTs, such301

that always one PMT of each detection path captured photons of the same wavelength. Images were302

obtained using a 60x, 1.1 NA water immersion objective (Olympus, Japan).303

304

305

Calcium imaging was performed using volumetric two-photon imaging, as described earlier (Lu et al.,306

2017). The desired light pattern was achieved using a spatial light modulator (SLM, XY-series, Mead-307

owlark, USA) and produced a z-elongated point spread function (FWHM ∼14 µm), which allowed for308

effective stimulation of a volume.309

Data acquisition310

Structural and Xph-15-mTurquoise-based images of rat CA1 pyramidal neurons in OHSCs were acquired311

at different spatial resolutions (see Table 1), with a 60x 1.1 NA water immersion objective (Olympus,312

Japan). Image acquisition was usually performed at a resolution of 2048 × 2048 px (7.3 Hz), a step size313

of 0.5 µm (using a piezoelectric z-scanner, Physik Instrumente, Germany), while frame averaging 50314

frames online. Excitation wavelengths for TdTomato, Alexa-594 and mTurquoise2 were 1040 nm, 810315

nm, and 860 nm, respectively. Average laser power under the objective was kept below 15 mW.316
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317

Calcium images were acquired at a temporal resolution of 30 Hz with a spatial resolution of 1024318

× 512 px using extended depth-of-field Bessel beam imaging (see above). GCaMP7b was imaged319

using an excitation wavelength of 940 nm. Two-photon images were acquired using ScanImage r4.2320

(Mathworks, USA).321

322

Cleared organotypic hippocampal slice cultures (OHSCs) were imaged using a confocal microscope (Sp8,323

Leica, Germany) at voxel sizes of 0.061-0.117 x 0.061-0.117 x 0.5 µm equipped with an argon-ion laser324

(476 nm). Images were acquired through an HC PL APO L 20x/0.75 IMM CORR CS2 objective (Leica,325

Germany), scanning bidirectionally at 600 Hz. Emitting photons were captured via a PMT (488 nm - 738326

nm). Images were captured with a resolution of 1024 x 1024 pixel, online averaging 20 frames per z level.327

328

Structural images (iGluSnFR) of L1 and L2/3 neurons in mouse V1 were obtained with permission329

from the authors and generated as previously described (Kazemipour et al., 2019). Structural images330

(YFP) of L5 neurons of mouse retrosplenial cortex were obtained with permission from the authors and331

generated as previously described (Frank et al., 2018). Structural images of human cortical neuron were332

obtained via the BigNeuron project (gold166 dataset, http://bigneuron.org) of the Allen Brain Institute333

(Peng et al., 2015; Chen et al., 2017; Manubens-Gil et al., 2022).334

Data processing335

All two-photon images of rat CA1 pyramidal neurons were deinterlaced using custom-written Matlab code.336

Deinterlaced structural and PSD-95-nanobody images of rat CA1 pyramidal neurons were first manually337

registered using custom-written Matlab code and subsequently registered using the Computational Mor-338

phometry Toolkit (CMTK, https://www.nitrc.org/projects/cmtk/) . ROIs of dendritic spines and dendrites339

were generated using DeepD3. ROI outlines were utilized to extract average raw fluorescence values340

of dendrites and spines in 3D from the two registered image stacks (tdTomato, structural; mTurquoise2,341

PSD-95-nanobody). To quantify the localization preference of the nanobody Xph-15 (Rimbault et al.,342

2021), the ratiometric spine-to-dendrite-ratio (RSDR) was utilized, comparing the ratiometric expression343

levels of Xph-15-mTurquoise2 and tdTomato of each spine to that of the entire dendritic arbor in the344

image:345

RSDR =

Maturityspine
Structurespine

Maturitydendrite
Structuredendrite

(1)

Where Maturityspine and Structurespine are the average raw fluorescence values of all voxels within a given346

spine ROI of the maturity and structural images, respectively. Maturitydendrite and Structuredendrite are the347

mean raw fluorescence values of all voxels that had been labeled as dendrite, extracted from the maturity348

and structural images, respectively. RSDR values of above one indicate preferential localization of the349

PSD-95-nanobody to a dendritic spine over the dendrite.350

351

Deinterlaced calcium images were registered via cross-correlation using custom-written Matlab code.352

ROIs of dendritic spines were either generated using DeepD3 or manually performed using PiPrA (Gómez353

et al., 2020). ROI outlines were utilized to extract average raw fluorescence values of dendrites and spines354

per frame. Using these time series, normalized fluorescence fluctuations were computed:355

∆F/F0(t) =
F(t)−F0

F0
(2)

where F is the mean fluorescence of the green channel of a given ROI at timepoint t, and F0 is the mean356

raw fluorescence of that same channel during baseline (20 frames without spontaneous calcium events).357

358

The benchmarking dataset was filtered using a Gaussian filter (sigma = 2) to improve the segmentation359

performance of IMARIS (Bitplane, USA).360
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Model Image type Fluorophore XY [µm] Z [µm] λ [nm]
OHSC CA1 2-photon tdTomato 0.094 0.5 1040
OHSC CA1 2-photon Alexa-594 0.1035 0.5 810
OHSC CA1 2-photon Alexa-594 0.094 0.5 810
OHSC CA1 2-photon tdTomato 0.0212 0.5 940
OHSC CA1 2-photon tdTomato 0.0232 0.5 1040
OHSC CA1 2-photon tdTomato 0.0458 0.5 1040
OHSC CA1 2-photon tdTomato 0.1245 1.0 1040
Thy1-GFP mouse Cortex Confocal EGFP 0.075 0.5 476
Thy1-GFP mouse Cortex Confocal EGFP 0.117 0.5 476
Thy1-GFP mouse Cortex Confocal EGFP 0.061 0.5 476
Thy1-GFP mouse Cortex Confocal EGFP 0.104 0.5 476
OHSC CA1 2-photon tdTomato 0.0458 0.5 1040

Table 1. Overview of generated training data
Overview of generated training data, with model indicating the model organism and brain region (n.b.: all
cells were pyramidal neurons), microscopy type, pixel size (resolution) in xy, and in z, imaging
wavelength λ . All training data was generated in-house.

Manual annotation of dendritic spines361

To identify the location of dendritic spines in three-dimensional microscopy stacks, human experts were362

tasked to manually annotate the (x,y,z) position of the dendritic spine that was closest to the center of363

mass of the spine head. Experts were tasked to annotate all dendritic spines and utilized the ImageJ ROI364

Manager for this annotation task.365

Manual segmentation of dendritic spines366

To segment dendritic spines in images, a custom open-source graphical user interface (PiPrA; Gómez367

et al., 2020) was utilized to perform pixel-wise annotations for spine labeling. The resulting binary368

segmentation masks were used as input data for training of model networks (see below) or to extract369

average raw fluorescence values from images.370

Current spine segmentation methods371

Segmentation of a smoothed version of the benchmarking dataset was performed with IMARIS 9.9.0372

(Bitplane, USA) using the following parameters: dendrites were semi-automatically traced using the373

filament tracer in the AutoPath setting (threshold: 1.31) and spine seed points generated (0.25-2.5 µm)374

and filled (threshold: 0.82). The resulting surface was exported in .wrl format, subsequently converted375

to .stl format using MeshLab v2022.02 (Ranzuglia et al., 2013), and finally converted to binary .tif files376

using custom-written Matlab code. As a consequence, spine and dendrite signal could no longer be377

differentiated, which is why IoU scores were calculated on the union of both segmentation sources (see378

also Extended Data Figure 12).379

380

The benchmarking dataset was also segmented using two recently published automated spine detec-381

tion methods (Vidaurre-Gallart et al., 2022; Singh et al., 2017). NB: centerline extraction and hence382

differentiation of spine and dendrite signal did not work in our hands using the code provided by Singh et383

al., (2017) reducing comparability to IoU scores of both spine and dendrite signal.384

Training data generation385

We manually labeled a collection of in-house acquired data to generate the DeepD3 training dataset (1).386

Manual pixel-precise annotations of dendritic spines were generated as described above. Dendrites were387

traced in three dimensions using NeuTube (Feng et al., 2015). Traced dendrites were saved in the SWC388

file format. We used a Python-based custom-written toolbox to generate a TIFF stack with the same389

dimension as the respective stack based on the SWC annotation files by drawing interpolated spheres390

between the anchor points traced and defined by NeuTube. The code is openly available together with the391

DeepD3 framework.392
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Benchmark dataset generation393

The benchmark dataset consists of a z-stack that was manually annotated by seven independent experts394

(see manual annotation of dendritic spines) to compute the inter-rater reliability. We used DBSCAN to395

cluster the point cloud (the pooled seven center-of-mass annotations) into individual clusters to identify396

annotations of the different human experts that pertain to individual dendritic spines. After DBSCAN’s397

initial cluster creation, we used a priori knowledge to adjust the clusters accordingly: (i) we removed398

points that were spatially too distant from the cluster center (0.85 µm in x and y, 2.5 µm in z), (ii) we split399

clusters that have more than seven annotations using K-Means (n clusters = 2), (iii) we merged clusters400

that were closer than 0.85 µm in x and y and closer than 2.5 µm in z, but only if the new cluster did not401

exceed a total of seven annotations. This cluster map is used to assess inter- and intra-rater reliability and402

to evaluate the performance of DeepD3 in relation to human annotators (Figure 2b,d). Additionally, two403

of the seven experts annotated the full z-stack twice to also determine intra-rater reliability using the same404

clustering approach. The two annotation rounds were separated by at least 14 days to prevent carry-over405

effects from the first annotation. Further, three experts labeled the dataset in a pixel-precise fashion using406

PiPrA and NeuTube to assess inter-rater reliability on a segmentation level (Extended Data Figure 1c).407

All of this data is available on zenodo: https://doi.org/10.5281/zenodo.7590772.408

Deep neural networks409

The DeepD3architecture is based on an encoder-decoder neural architecture that condenses information410

to the bottleneck latent space ξ, which provides a high-level abstract embedding of the input image. Our411

architecture contains a dual-decoder structure for spines and dendrites, respectively, and it is similar in412

its main concept to the U-Net architecture (Ronneberger et al., 2015) that has seen widespread attention413

in the biomedical domain (Falk et al., 2019; Isensee et al., 2021; Stringer et al., 2021). In detail, we use414

3×3 kernel sizes, Batch Normalization layers (Ioffe and Szegedy, 2015) before activation, and the swish415

activation function (Ramachandran et al., 2017) for all convolutional layers (eq. 4), except the last one,416

where the logistic function (eq. 3) is used to ensure a dendrite/spine probability between 0 and 1. We417

further utilize residual connections He et al. (2016).418

f (x) =
1

1− e−x (3)

g(x) = x · f (x) =
x

1− e−x (4)

We optimize the DeepD3architecture using two losses, the Dice loss (eq. 5) and the mean squared error419

(eq. 6), for the semantic segmentation of dendrites and spines, respectively.420

LDendrites = 1− 2∑i ŷi · yi

∑i ŷ2
i +∑i y2

i
(5)

LSpines = ∑
i
(yi− ŷi)

2 (6)

Images are provided with a single channel, where image intensities are by default linearly rescaled to -1421

(minimum Intensity) and 1 (maximum Intensity). We trained DeepD3 on two-dimensional 128 × 128 px422

tiles dynamically streamed from z-stacks (see 1b) and a learning rate starting at 0.5 ·10−3 for 15 epochs423

and then with an exponential decay with a time constant of 0.1. The network was optimized using the424

Adam optimizer (Kingma and Ba, 2014). Networks were set up in TensorFlow using the high-level Keras425

package (Abadi et al., 2016).426

427

We used realistic just-in-time data augmentation (Figure 1b) to increase our training dataset. These428

included random rotation (90 °and r ∈ [−10,10]) and flipping, Gaussian noise, brightness and contrast429

changes. We provide the training dataset openly on Zenodo (see Data Availability).430
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Prediction postprocessing431

We first removed dendritic prediction segments in 2D and 3D that were too small for a valid patch432

using binary thresholded 3D connected component analysis. Next, we dilated this cleaned dendritic433

prediction map such that we included all spine predictions that were close to a dendrite, therefore implicitly434

incorporating a distance-to-dendrite metric ensuring that a spine is next to a dendrite. In general, these435

postprocessing options are optional and can be adjusted according to the special use case.436

ROI detection437

Regions of interest (ROIs) are identified spines in either 2D or 3D using different methods. We either use438

a custom flood-filling paradigm or perform threshold-based 3D connected component analysis (Extended439

Data Figure 9). In general, each successfully identified ROI complies with a given set of properties. For440

custom flood filling: (1) spine prediction above user-set threshold to determine a seed pixel to create a441

novel ROI, (2) maximum euclidean distance to seed pixel, (3) relation to seed pixel. For 3D connected442

component analysis, spine prediction needs to be above a user-set threshold to determine the area of a443

given spine. Both methods set further requirements to keep an ROI: (1) minimum ROI size, (2) maximum444

ROI size, (3) minimum planes span, (4) implicit or explicit maximum distance to dendrite (see also section445

Prediction postprocessing). We measure the distances in µm using the user-defined resolution in x, y,446

and z of the stack. The settings can be combined if desired.447

Graphical user interfaces448

As a companion to DeepD3, we provide two graphical user interfaces (GUIs): one, to prepare training449

data according to custom needs (Extended Data Fig. 10), and a second GUI, to infer dendrite and spine450

labels from a loaded dataset and to fully automatically create a set of two- or three-dimensional ROIs451

(Extended Data Fig. 7-9). Both GUIs are written in Python 3.7+ and are based on PyQt5 as graphical452

interface and pyqtgraph for plotting. We further allow the export of predictions to *.tif files and created453

ROIs to the ImageJ/FIJI-specific format to maximize interoperability with existing ecosystems. Further454

information is provided in the Supplementary Note.455

Evaluation456

We used private and public datasets for evaluating DeepD3. We focused on multiple species, namely rat,457

mouse and human, as well as imaging modalities, namely ex vivo and in vivo two-photon and confocal458

microscopy, across several brain areas including V1 and the hippocampus. To quantify performance, we459

computed the recall metric (eq. 7). TPs are the true positive, and FNs the false negative detected dendritic460

spines. To evaluate the pixel-wise agreement across segmentation masks, we use the Intersection over461

Union (IoU) score (eq. 8). When comparing the performance of DeepD3 to other state-of-the-art spine462

identification methods, we use a combination of all three pixel-precise, human-annotated segmentation463

masks (provided by raters U, V and W): the intersection of all raters (U ∩V ∩W ), the union of all raters464

(U ∪V ∪W ) and the individual segmentation mask (Extended Data Figure 12).465

recall =
T P

T P+FN
(7)

IoU(A,B) =
Intersection

Union
=

A∩B
A∪B

(8)

CODE AVAILABILITY466

All code is openly available at https://github.com/ankilab/DeepD3.467

DATA AVAILABILITY468

The training data and pre-trained deep neural networks are available at https://doi.org/10.469

5281/zenodo.7590772 and https://doi.org/10.5281/zenodo.7590704, respectively.470

All data can be accessed through the project website at https://deepd3.forschung.fau.de/.471
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