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Abstract 

In healthy cells, pro- and anti-apoptotic BCL2 family and BH3-only proteins are expressed in a 

delicate equilibrium. In contrast, this homeostasis is frequently perturbed in cancer cells due to 

the overexpression of anti-apoptotic BCL2 family proteins. Variability in the expression and 

sequestration of these proteins in Diffuse Large B cell Lymphoma (DLBCL) likely contributes to 

variability in response to BH3-mimetics. Successful deployment of BH3-mimetics in DLBCL 

requires reliable predictions of which lymphoma cells will respond. Here we show that a 

computational systems biology approach enables accurate prediction of the sensitivity of 

DLBCL cells to BH3-mimetics. We found that fractional killing of DLBCL, can be explained by 

cell-to-cell variability in the molecular abundances of signaling proteins. Importantly, by 

combining protein interaction data with a knowledge of genetic lesions in DLBCL cells, our in 

silico models accurately predict in vitro response to BH3-mimetics. Furthermore, through virtual 

DLBCL cells we predict synergistic combinations of BH3-mimetics, which we then 

experimentally validated. These results show that computational systems biology models of 

apoptotic signaling, when constrained by experimental data, can facilitate the rational 

assignment of efficacious targeted inhibitors in B cell malignancies, paving the way for 

development of more personalized approaches to treatment. 

Introduction 

Apoptosis is a crucial component for the development of multicellular organisms and the 

functioning of the immune system. The BCL2 family of proteins are the principal regulators of 

mitochondrial-dependent apoptosis. This family of proteins consists of more than twenty-five 

members, and is further categorized into three groups based on their protein structure and 

function (Figure S1A and B): pro-apoptotic BCL2 proteins (BAX and BAK), anti-apoptotic BCL2 

proteins (BCL2, BCL-xL, MCL1, etc.) and BCL2 homology domain 3 (BH3)-only proteins (BID, 
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BIM, PUMA, NOXA, etc.).1 Prior to initiation of apoptosis, anti-apoptotic BCL2 proteins bind to 

BAX/BAK proteins at the mitochondrial outer membrane (MOM), impeding BAX/BAK 

oligomerization, which prevents mitochondrial outer membrane permeabilization (MOMP). 

Initiation of apoptosis leads to activation of BH3-only proteins, which either activate BAX/BAK 

directly through complex formation between BH3-only proteins and BAX/BAK or activate 

BAX/BAK indirectly by sequestering anti-apoptotic BCL2 proteins leading to the release of 

BAX/BAK from complexes containing the anti-apoptotic BCL2 proteins. BAX/BAK activation 

results in MOMP and subsequent apoptotic cell death.2  

 

Avoidance of apoptosis is a hallmark of cancer, which in B cell lymphoma is often achieved 

through the upregulation of anti-apoptotic BCL2 proteins due to DNA translocation, gene 

amplification or constitutive activation of transcription factors that upregulate BCL2 family 

proteins such as nuclear factor kappa B (NF-κB).3-5 BCL2 dysregulation is commonly linked to 

chemoresistance and poor prognosis, and therefore represents a pathologically important 

biomarker and an attractive therapeutic target in B cell lymphoma.6, 7 

 

ABT-199 (venetoclax), a BCL2 specific inhibitor, was first approved for treatment of chronic 

lymphocytic leukemia (CLL) and acute myeloid leukemia (AML),8-10 and has shown significant 

clinical activity in CLL regardless of genotype.11 However, in Diffuse Large B cell Lymphoma 

(DLBCL), responses to ABT-199 are less impressive, despite BCL2 overexpression in about 

40% of cases.8 In a similar vein, BCL-xL is highly expressed in about 95% of DLBCL patient 

samples but only a proportion of DLBCL cell lines respond to BCL-xL inhibition.12, 13 Cell lines 

with comparably high levels of specific BCL2 family proteins frequently show different responses 

to BH3-mimetics that target those proteins.13 For example, there is no correlation between the 

abundance of MCL1 or BCL-xL and response to inhibitors that target these proteins13 and while 

BH3-profiling provides a functional measurement of the state of apoptotic signaling, actual 
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responses to BH3-mimetics can differ from those predicted by BH3-profiling.13, 14 Collectively, 

these data indicate that the heterogeneous responses to BH3-mimetics in DLBCL are 

determined by the complex interactions between the BCL2 family of proteins and their binding 

partners.12, 13 Consequently, there is a need to develop better predictive tools to inform clinical 

decision making relating to optimal drug selection for individual patients. 

 

Computational systems models can facilitate accurate prediction of how a molecular-scale 

signaling network will respond to perturbation with single cell and cell-population resolution.15, 16 

Various aspects of the apoptotic signaling network have been encoded in computational 

models.17-32 However, DLBCL cells exhibit variable expression of multiple anti-apoptotic BCL2 

proteins and show heterogeneous expressions of both pro-apoptotic BCL2 proteins and BH3-

only proteins12, 13. Therefore, new computational models are required to capture the diverse 

abundances of BCL2 proteins implicated in DLBCL with their known interactional complexities to 

enable accurate prediction of responses to BH3-mimetics. 

 

In this study, we aimed to establish virtual DLBCL cell lines generated from mechanistic 

computational models, informed by abundances of BCL2 family proteins. We aimed to use 

virtual cell lines to accurately predict, in silico, the experimentally-determined response of 

DLBCL cell lines to BH3-mimetics, and identify molecular and genetic determinants of treatment 

resistance. Finally, we sought to establish whether a computational systems biology approach 

can be used to rationally predict apoptotic responses in DLBCL by computationally identifying, 

and experimentally validating, novel synergistic combinations of BH3-mimetics. We aim to lay 

the foundation for a personalized medicine approach to targeting the spectrum of anti-apoptotic 

signaling found in B cell lymphoma. 
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Materials and Methods 

More detailed methods are provided in the supplemental Materials and Methods  

Experimental procedures 

U2932 cells were maintained in RPMI-1640 media (21870076, Gibco; Life Technologies) with 

10% fetal calf serum (10270-106, Gibco). Cells were plated at 4x105 cells/mL and treated with 

ABT-199 and AZD5991 (Selleck Chemicals, Houston, TX)33 24 hours before analysis using 

CellTiter-Glo viability assay (Promega, Madison, WI). Response was normalized to a DMSO 

control. 

BCL2 family signaling network model topology. 

The BCL2 family signaling network model was constructed from known protein interactions, 

requiring expression and degradation parameters for each protein,29, 32, 34 as well as binding 

rates for interacting proteins (Table S1).29, 32 The chosen set of interactions yields our BCL2 

network topology (Figure 1). 

 

Model Construction 

Model construction was achieved by building on previous models and incorporating 

experimentally measured BCL2 family protein expressions, binding affinities, kinetic rates, and 

knowledge of genetic lesions, see Supplementary Text.13, 32, 34 Parameter fitting was performed 

manually, informed by experimental data as described in the Supplementary Text. 

 

Three .csv files were created for each virtual cell model, containing reactions between 

interacting proteins, the rate laws defining the reactions and a parameter file, respectively. 

Reactions between interacting proteins are governed by mass action kinetics, where 

interactions can be either simple binding and unbinding or binding/unbinding leading to 

activation of a new species. The three .csv files were used as inputs, to generate the system of 
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Ordinary Differential Equations (ODEs) that defines our network model using custom python 

code (available: https://github.com/SiFTW/CSV2JuliaDiffEq). 

 

Solving Models/Running Simulations 

The programatically generated model files were imported into Julia,35 and solved using the 

DifferentialEquations.jl package.36 Numerical simulations, initial conditions, solver options, and 

the code to generate all figures are available on GitHub (https://github.com/SiFTW/BH3Models). 

 

Simulating Cell-to-cell Variability 

 

Cell populations of 100 cells were simulated with molecular cell-to-cell variability introduced in 

initial conditions. Initial conditions were distributed using a lognormal distribution with coefficient 

of variation (32%) defined by previous live-cell lineage tracking experiments in primary B cells15. 

 

Results 

A computational “unified-embedded-together” model enables exploration of differential 

sensitivities to BH3-mimetics. We hypothesized that the heterogeneous sensitivity of B cell 

lymphoma cells to BH3-mimetics is a predictable result of the state of the molecular signaling 

network in these cells. If true, an in silico computational model with sufficient detail and breadth 

would be able to predict responses, which could be validated experimentally. Combining the 

“embedded-together” and “unified” conceptual frameworks of apoptotic signaling (Figure S1A, 

SI supporting text),37, 38 and building upon established models of apoptotic signaling,17-32 we 

constructed a computational model capturing the complex interactions between BCL2 family 

proteins (Figure S1B) with appropriate granularity to simulate the effects of BH3-mimetics 

(Figure 1). Apoptosis-inducing signaling such as TRAIL or TNF receptor-proximal signaling is 
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approximated as “apoptotic signaling” and kept fixed here, as the apoptosis-inducing signal we 

are studying is the addition of BH3-mimetics, which are explicitly modelled (Figure 1). We 

assume downstream effector-caspase induced biochemical and morphological alterations such 

as PARP cleavage is an inevitable consequence of MOMP. While the model does not explicitly 

include commonly mutated genes such as TP53 or MYC, these mutations can be simulated 

through their impact on kinetic rates in the signaling network. 

 

The experimentally-measured response to BH3-mimetics can be predicted by simulating 

a heterogeneous population of RC-K8 cells. To establish the feasibility of predicting the 

response of DLBCL cells to BH3-mimetics we first focused on the RC-K8 cell line, chosen due 

to lack of response to the BCL2 inhibitor ABT-199.13 We incorporated densitometry readings of 

BCL2 protein expression in RC-K8 cells measured by Western blotting into the newly 

established model in order to capture the expression profiles of BCL2 family proteins (Figure 

2A, see SI supporting text).13 Comparing the predicted heterodimer abundances at steady state 

with co-immunoprecipitation experiments revealed a discrepancy (Figure S2).13 Given that 

previous work indicated that knowledge of the selective interactions between anti-apoptotic 

BCL2 proteins and BAX/BAK is a key determinant of sensitivity to BH3-mimetics, we 

incorporated the impact of complexes trafficking to subcellular localizations outside of the 

model's scope by altering the degradation rates of complexes within the model's signaling 

network (SI supporting text). The result was a virtual RC-K8 cell line with molecular network 

state that closely match expression profiles measured experimentally (Figure 2A and B). 

Simulating the impact of BCL-xL, BCL2 and MCL1 inhibition on MOMP in this virtual RC-K8 cell 

line resulted in strong induction of MOMP in response to BCL-xL inhibition, weak induction of 

MOMP in response to MCL1 inhibition and no response to BCL2 inhibition (Figure S3 A). This 

recapitulated the selective response of this line in experiments and indicated the model could 

predict the selective response of RC-K8 cells to BH3-mimetics. 
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As a fixed and reproducible fraction of the DLBCL cells undergo apoptosis in response to a 

given dose of BH3-mimetic,13 we hypothesized that this may result from molecular cell-to-cell 

heterogeneity within the cell population. The cell-to-cell variability in the abundance of signaling 

components in B cells has been previously quantified through combined lineage tracing and 

computational modelling, and was found to predictably explain fixed proportions of primary B 

cells undergoing distinct fates such as apoptosis, mitosis and differentiation in response to 

antigenic stimulation.15, 16 We therefore converted these simulations of a single average cell-

population response, into simulations representing heterogeneous populations of single cells by 

sampling initial conditions as described previously (Figure 2C).15 Simulating 50% inhibition of 

BCL-xL revealed that distributed initial conditions were sufficient to create heterogeneity in the 

timing that MOMP increased within a simulated cell population (Figure 2D). We considered an 

individual cell to have died in response to BCL-xL when MOMP exceeded a threshold of 10% 

above the level of MOMP in the pre-treatment population and, in this way, we were able to 

simulate viability over time in response to BH3-mimetics in the virtual RC-K8 cells (Figure 2D). 

Extending this approach to the effect of other BH3-mimetics revealed specific timings of 

apoptosis within the cell population, and the proportion of cells undergoing apoptosis in 

response to 50% inhibition of BCL2, BCL-xL and MCL1, with the largest proportion of cell death 

occurring rapidly in simulations of RC-K8 cells following BCL-xL inhibition (Figure 2E and F). 

Simulating 0-100% inhibition of BCL2, BCL-xL and MCL1 within a heterogeneous cell 

population enabled predictions of the proportion of the RC-K8 cells that would be viable at 72 

hours (Figure 2G and H); these predictions were comparable to experimentally determined EC50 

values; the concentration of a drug required to produce 50% of its maximal effect (Figure 2H).13 

We find that this systems biology approach predicts that RC-K8s have low EC50 BCL-xL 

inhibitors, high EC50 for MCL1 inhibitors, and that the EC50 for BCL2 inhibitors will not be 

reached even at 100% inhibition of BCL2 (Figure 2H). This is in strong agreement with 
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experimentally determined EC50 values (Figure 2H right), and independent of the specific 

threshold of MOMP activity chosen to trigger apoptosis (Figure S3B).  

 

Virtual lymphoma simulations can predict response to BH3-mimetics. As we found a 

systems biology approach could predict the response of RC-K8 cells to BH3-mimetics, we 

expanded the approach to a library of six DLBCL lines (RIVA, U2932, RC-K8, SUDHL8, 

SUDHL10, and U2946), chosen to capture the diversity of responses to BH3-mimetics seen 

within both patient samples and cell lines.13 We incorporated the heterogeneous expression of 

BCL2 family proteins and their heterodimerization profiles, measured by immunoprecipitation 

and co-immunoprecipitation, in the same way as we did for RC-K8 cells (Figure 2).13 The result 

was a library of virtual DLBCL cell lines that accurately captured the abundance and binding 

partners of BCL2 family proteins (Figure 3A). Simulating the response of the library of DLBCL 

lines to BH3-mimetics targeting BCL2, BCL-xL and MCL1 predicted highly heterogeneous 

responses (Figure 3B). Simulations predicted that RIVA cells would only respond to BCL2 

inhibition, while U2932 cells were predicted to be broadly resistant to all BH3-mimetics (Figure 

3B). Comparing this prediction to experimentally determined EC50 values showed that the model 

had correctly predicted that RIVA cells only responded to BCL2-targeting ABT-199, while the 

predicted lack of response in U2932 cells was confirmed by the high (micromolar) EC50 values 

of U2932 cells when challenged with all three BH3-mimetics (Figure 3B). Both RC-K8 cells and 

SUDHL8 cells were predicted to be most sensitive to inhibition of BCL-xL, with both lines also 

responding to MCL1 inhibition (at intermediate doses in SUDHL8 cells, and high doses in RC-

K8 cells) (Figure 3B). Comparing these predictions to experimentally determined EC50 values 

revealed that these computational predictions closely match experimental measurements 

(Figure 3B). Simulation of SUDHL10 and U2946 cell lines predicted that these lines would only 

respond to inhibition of MCL1, which was validated by experimental measurements (Figure 3B). 
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Taken together, our virtual lymphoma simulations accurately predicted experimentally measured 

responses to BH3-mimetics. 

 

Considering genetic lesions in virtual lymphoma can improve accuracy of simulations. 

While the computational model could accurately assign the right drug to the right DLBCL cell 

lines informed by protein-expression data alone, some quantitative discrepancies between 

computationally predicted responses and experimentally measured EC50 values suggests that 

additional mechanisms may contribute to selective responses. Genetic lesions, such as MYC 

translocations and p53 mutations, present in all modeled cell lines except RC-K8 cells,39 can 

have numerous potential consequences, and the most functionally significant impact of these 

mutations is likely on the apoptotic network state. We sought to predict which of these potential 

impacts was functionally significant in controlling the response to BH3-mimetics by 

computationally identifying which effect improved the match between the computational 

predictions and experimental validation.   

 

RIVA cells were more sensitive to BCL2 inhibition than predicted from protein data alone (Figure 

3B). Simulating the impact of BCL2 gene amplification and MYC translocation (resulting in 

elevated BAX expression),40 increased the sensitivity of virtual RIVA cells to ABT-199 indicating 

an important role for these mechanisms in modulating the response to BH3-mimetics (Figure 

S4A and B). Incorporating the presence of a MYC-overexpressing subclone in U2932 cells, 

which resulted in increased BIM and BAX expression, explained the response of this line to high 

doses of ABT-199 (Figure S4A and B). In RC-K8 cells the magnitude of the difference in 

response to A1331852 and S63845 was underestimated by our simulations (Figure 3B). The 

match between simulation and experiment in both lines was improved by decreasing the 

abundance of MCL1. Biologically, this could be mediated by the truncated p300 expressed in 

RC-K8 cells, which reduces the acetylation of MCL1 thereby decreasing MCL1 protein 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.02.01.526592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526592
http://creativecommons.org/licenses/by/4.0/


 11

stability.41 In SUDHL8 cells, mutated TP53 may cause the reduced gene expression of MCL1 

(Figure S4A and B).42 While the simulation accurately predicted the response of SUDHL10 and 

U2946 cells to the MCL1 inhibitor S63845, the simulation only predicted apoptosis at high doses 

of the inhibitor (Figure 3). MYC translocation in SUDHL10 may increase expression of MCL1, 

BIM and NOXA resulting in increased sensitivity to inhibition of MCL1, while mutated TP53 in 

SUDHL10 cells may decrease the affinity of MCL1 for p53 protein, increasing the binding 

between MCL1 and BIM (Figure S4A and B).43 Taken together these data show that by 

comparing computational predictions with experiment results, and iteratively improving the 

match between the two, we can narrow down the plethora of potential effects of genetic lesions 

to those that are predicted to be functionally significant. By iteratively improving the model in this 

way, the correlation between the predicted response from simulations and experiments across 

the library of virtual cell lines substantially improved (R2 from 0.38 to 0.67, Figure S4C and D). 

This suggests that while the optimum BH3-mimetic can be reliably identified from protein data 

alone (Figure 3), once genetic lesions are considered, the virtual cell lines can quantitatively 

predict experimentally determined EC50s in virtual cell lines (Figure S4D). 

 

Inherent resistance to BH3-mimetics in cellular sub-populations is the predictable result 

of cell-to-cell molecular variability. As fractional killing of a cell line can be explained as the 

predictable result of inherent molecular heterogeneity between cells (Figure 2), we sought to 

use simulations to predict the molecular determinants of inherent resistance to BH3-mimetics. 

Simulating a dose of BH3-mimetics that causes 50% reduction in viability and then analyzing 

the starting state of cells revealed statistically significant differences (p<0.05) in the predicted 

molecular network state of cells that would undergo apoptosis in response to the inhibitor when 

compared to those that would be resistant to the treatment (Figure S5-12). As expected, within 

a population of RIVA (Figure S5), U2932 (Figure S6), SUDHL10 (Figure S7) and U2946 cells 

(Figure S8) responding to BCL2 inhibition, the treatment-sensitive cells had higher abundances 
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of pro-apoptotic and lower anti-apoptotic BCL2 proteins prior to the drug being applied. 

Furthermore, cells that undergo apoptosis were predicted to have fewer complexes between 

anti-apoptotic BCL2 proteins and BH3-only proteins (Figure S5-6). In RC-K8 cells responding to 

BCL-xL inhibition (Figure S9) and MCL1 inhibition (Figure S10), the cells that undergo apoptosis 

expressed more pro-apoptotic BCL2 proteins, more BH3-only proteins, and more complexes 

between pro-apoptotic BCL2 and BH3-only proteins. Intriguingly, cells susceptible to BCL-xL 

and MCL1 inhibition had significantly more pro-apoptotic proteins bound to the mitochondria 

(Figure S9 and 10).  

 

While BCL2A1 was not predicted to contribute to the inherent treatment-resistant cell population 

in some cell lines (U2932, RIVA, SUDHL10, and U2946), in others (RC-K8 and SUDHL8) the 

BCL-xL resistant cell populations were predicted to be significantly higher in BCL2A1 (Figure 

S9-12). Interestingly, in SUDHL8 cells responding to MCL1 inhibition a significant role was 

predicted for BCL2A1, while this was not seen in RC-K8 cells (Figure S10 and S12). 

 

Virtual cell lines reveal that inherent cell-to-cell variability in the sequestration of anti-apoptotic 

BCL2 proteins, and subcellular localization of pro-apoptotic complexes, can create an inherent 

treatment resistant cell population. Importantly, we found that the mechanisms of inherent 

treatment resistance were predicted to be diverse between different cell lines and BH3-

mimetics. 

 

Synergistic combinations of BH3-mimetics can be computationally identified and 

experimentally validated. To test the ability of this systems biology approach to enable rational 

targeting of DLBCL we simulated combinations of BH3-mimetics and identified a number of 

synergistic combinations (Figure S13). In BCL-xL dependent cell lines, RC-K8 (Figure S13C) 

and SUDHL8 (Figure S13D), synergy was predicted between BCL-xL and MCL1 inhibitors. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.02.01.526592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526592
http://creativecommons.org/licenses/by/4.0/


 13

Additionally, in RC-K8 cells, the model predicted synergy between BCL-xL and BCL2 inhibition. 

The exquisite sensitivity of RC-K8 cells to A1331852 monotherapy (BCL-xL -targeting BH3-

mimetc) meant that experimentally testing this predicted synergy would be challenging and 

unlikely to identify therapeutically significant combination therapies. 

 

Simulations in virtual U2932 cells predicted no response to MCL1 inhibition alone. However, 

adding MCL1 inhibition in the context of BCL2 inhibition was predicted to synergistically induce 

apoptosis (Figure 4A, left). Predicting the impact of combining BCL2 and MCL1 inhibition across 

a broad range of doses indicated that it should be possible to experimentally test this prediction 

(Figure 4B left, average Bliss synergy score: 15.31). The model prediction of synergy between 

BCL2 and MCL1 inhibitors in U2932 was experimentally tested by treating U2932 cells with 

ABT-199, AZD5991 and the combination in equimolar concentrations to recapitulate the 

computational predictions. In striking concordance with the computational prediction, U2932 

cells were insensitive to the MCL1-specific monotherapy (AZD5991) but in combination with the 

BCL2-specific BH3-mimetic, ABT-199, showed synergistic induction of apoptosis (Figure 4A, 

right). Extending this analysis to all combinations of doses in both the computational model and 

experimental system (Figure 4B, Figure S14) confirmed the combination of BH3-mimetics was 

synergistic (average Bliss synergy score: 23.96). While 50% inhibition of MCL1 and BCL2 was 

predicted to kill 0% and 50% of cells, respectively, the combination was predicted to result in a 

70% reduction in viability. This was confirmed by our experimental findings, which showed that 

100 nM of AZD5991 and ABT-199 killed approximately 0% and 40% of cells, respectively while 

combining these two agents at the same concentrations induced over 70% cell death (Figure 

4B). Computationally identifying and experimentally validating synergistic combinations of BH3-

mimetics demonstrates that a systems biology approach has the potential to enable rational 

assignment of efficacious targeted therapies in DLBCL. 
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Discussion 

In this study we created a novel computational model of apoptosis and, using experimental 

data, we established a library of virtual DLBCL cell lines that could reliably predict 

experimentally measured responses to BH3-mimetics. Importantly, this systems biology 

approach was also capable of identifying novel synergistic combinations of inhibitors, which we 

then experimentally validated. The success of our approach when using a library of 

heterogeneous cell lines indicates that it might be feasible to expand this approach to patient-

derived samples, which may form the foundation of a personalized treatment approach in 

DLBCL. 

 

While the model constructed here was based on B cell lymphoma, many of these apoptotic 

interactions are conserved in other cell types both in health and malignancies.26, 44 To facilitate 

translating this approach to the challenges associated with the rational assignment of targeted 

inhibitors in other hematological and solid malignancies, we have made the complete library of 

virtual cell lines freely available (https://github.com/SiFTW/BH3Models).  

 

One strength of computational modeling is the ability to incorporate and test the consistency of 

multiple modalities of data and assimilate them into a model that encapsulates the current state 

of knowledge for a given system. While we acknowledge that immunoprecipitation and co-

immunoprecipitation blots provide semi-quantitative data, the ability of this data to create 

models capable of accurate predictions across a library of cell lines and BH3-mimetics indicates 

that our modelling approach is robust to the inherent variability of such data. While proteomic 

data may provide more precise quantification, this data critically lacks information on binding 

partners that were found to be key to determining response. Given the challenges of obtaining 
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immunoprecipitation data for each patient, future work to identify surrogate biomarkers that 

provide clinically-obtainable measurements for the underlying network state will be required. 

Modelling results can be used to inform statistical regression to identify the most informative 

parameters that can be experimentally measured and perturbed. Such approaches have been 

successfully experimentally validated in B cells.15 

The model utilized here is a sub-network of the apoptotic signaling network. As such, the model 

only accounts for the mutational and molecular heterogeneity in a proportion of the important 

signaling networks implicated in B cell malignancies. To assess the impact of dysregulation of 

multiple signaling networks (including upstream receptor proximal signaling, NF-κB regulation, 

cell cycle and differentiation), and treatment modalities targeting these networks, future work will 

necessarily require more comprehensive models. Established multi-scale B cell models 

containing these signaling networks and linking them to cell fates have demonstrated utility in 

predicting the emergent impact of genetic events and inhibitors on cell population phenotypes.15, 

16 Re-purposing these models for lymphoma, and incorporating the insight generated here, may 

enable rational targeting of additional therapies and combinations of therapies that target these 

signaling networks (such as ibrutinib45, idelalisib46, and copanlisib47, 48). 

 

While we have tested many of the computationally generated predictions in this study in order to 

validate our models, many intriguing predictions remain as avenues for future work. For 

example, predictions of which cells will survive BH3-mimetic treatment may provide insight into 

how combination therapies or pre-treatments might be deployed to optimize the molecular 

network state for sensitivity to BH3-mimetics. It is likely that treatment-resistant cells are 

vulnerable to alternative targets as each apoptotic network state we investigated had both 

resistances and vulnerabilities. The cell lines we investigated covered a broad range of 
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expression of BCL2 family member expression, a broad variety of protein-protein interaction 

states, multiple cell-of-origin classifications, and common mutational events (Figure 3 and 

Figure S4). However, the existence of B cell lymphoma lines (such as DLBCL line HBL-1, and 

primary mediastinal B cell lymphoma line such as Karpas-1106) that do not respond well to any 

BH3-mimetic indicates that additional cellular archetypes exist.13 Identifying therapeutic 

vulnerabilities in the network state of these broadly resistant cells may help target the most 

challenging cases. However, as these lines are in the minority, the primary challenge in 

adopting more targeted therapies in B cell lymphoma appears to be getting the right 

combination of drugs that are already available into the right patients. Systems biology modeling 

may enable this and by modeling individual patients unlock the potential of personalized 

medicine.  
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Figures

 

Figure 1. A schematic diagram of the apoptotic signaling network. Lines correspond to 

interactions between different species, with open circles, closed dots, and perpendicular lines 

denoting activation, binding, and inhibition/sequestration. Dashed lines correspond to the 

translocation of species. Some translocations are omitted as most BH3-only proteins and anti-

apoptotic BCL2s are continuously trafficking between the cytoplasm and the MOM. Complete 

model details are provided in the supplemental modelling methodology and full code defining 

and running the model is available on GitHub (https://github.com/SiFTW/BH3Models). 
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Figure 2. The experimentally-measured response to BH3-mimetics can be predicted by 

simulating a heterogeneous population of RC-K8 cells. (A) Comparison of the relative 

protein expression in the computational model to experimental data. Abundance of each protein 

is normalized to the most highly expressed anti-apoptotic BCL2 family protein and quantified 

from Smith et al.13 (B) Comparison of the proportion of pro-apoptotic and BH3-only BCL2 

proteins bound to BCL-xL in the computational simulation compared to experimental data 

quantified from Smith et al.13 (C) Schematic of the method used to simulated BCL-xL inhibition 

in a heterogeneous cell population. From the RC-K8-speific parameterisation established in 

panels A and B initial conditions are independently sampled from a log-normal distribution to 

create heterogeneous cells with distinct starting states. Within all cells in the population the 

target protein (e.g. BCL-xL) is inhibited and the response to this perturbation recorded (see 

Methods). (D) Line graphs showing the simulated response to 50% BCL-xL inhibition in a 

heterogeneous RC-K8 cell population. A threshold of death (10% higher than is present within 

the naive population) is calculated. The time of death of in each cell is determined as the time 

this threshold is crossed (top panel). The percentage viability of the cell population can then be 

determined over time in response to BCL-xL inhibition (bottom panel). (E) Schematic showing 

that the process used to simulate BCL-xL inhibition in panels A to D is repeated for multiple 

BH3-mimetics. (F) Line graph of the simulated viability of the RC-K8 cell population in response 

to BCL2 inhibition (black, BCL-xL inhibition (red) and MCL1 inhibition (blue). The viability of the 

cell population is recorded to 72 hours to match experimental methods. (G) Schematic showing 

that the process used to simulate 50% inhibition in panels A to F is repeated for 10 distinct 

strengths of inhibition between 0 and 100% to enable comparison to dose-response 

experiments. (H) Line graphs showing the simulated percentage of the RC-K8 cell population 

viable at each percentage inhibition of the indicated target protein. This prediction can be 

compared to experimentally measured EC50 values, right.13   
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Figure 3. Cell line-specific computational models recapitulate experimentally measured 

protein expression and heterodimerisation profiles, and enable accurate prediction of the 
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optimal BH3-mimetic for each cell line. (A) Right: Comparison of the relative protein 

expression in the computational model to experimental data. Abundance of each protein is 

normalized to the most highly expressed anti-apoptotic BCL2 family protein and quantified from 

Smith et al.13 Left: Comparison of the proportion of pro-apoptotic and BH3-only BCL2 proteins 

bound to the dependent anti-apoptotic BCL2 protein in each line in the computational simulation 

compared to experimental data. (B) Model simulations (left) of cell population viability (%) in 

response to 10 different strengths of BH3-mimetics compared to experimentally-measured 

EC50 values.  
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Figure 4. Synergistic interactions between BH3-mimetics can be computationally 

identified and then experimentally validated. (A) (Left panel) Model simulation predicting 

synergy between BCL2 and MCL1 inhibition in U-2932 cells (green curve). The model predicts a 

moderate response to BCL2 inhibition alone (black curve), no response to MCL1 inhibition alone 

(blue curve) but a greater than additive response when MCL1 and BCL2 inhibition is combined 

at equal levels. (Right panel) Experimental data validates the model prediction, demonstrating 
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synergy between the BCL2-specific inhibitor, ABT-199, and the MCL1-specific inhibitor, 

AZD5991. The combination was tested at equimolar concentrations. (B) Complete dose-

response matrices showing the impact on cell viability of all combinations of simulated inhibition 

strengths (left) and experimentally measured BH3-mimetic doses (right) for BCL2 inhibition 

(ABT-199) and MCL1 inhibition (AZD5991). Viability was calculated at 72 hours for both 

computational models and experimental measurements. Bliss synergy scores of the model 

simulation (left panel) and experimental data (right panel), calculated using SynergyFinder 

software.49 
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