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Abstract  13 

Single-cell RNA-sequencing (scRNA-seq) measures gene expression in single cells, while 14 

single-nucleus ATAC-sequencing (snATAC-seq) enables the quantification of chromatin 15 

accessibility in single nuclei. These two data types provide complementary information for 16 

deciphering cell types/states. However, when analyzed individually, scRNA-seq and snATAC-17 

seq data often produce conflicting results regarding cell type/state assignment. In addition, there 18 

is a loss of power as the two modalities reflect the same underlying cell types/states. Recently, it 19 

has become possible to measure both gene expression and chromatin accessibility from the 20 

same nucleus. Such paired data make it possible to directly model the relationships between 21 

the two modalities. However, given the availability of the vast amount of single-modality data, it 22 

is desirable to integrate the paired and unpaired single-modality data to gain a comprehensive 23 

view of the cellular complexity. Here, we benchmarked the performance of seven existing 24 

single-cell multi-omic data integration methods. Specifically, we evaluated whether these 25 

methods are able to uncover peak-gene associations from single-modality data, and to what 26 

extent the multiome data can provide additional guidance for the analysis of the existing single-27 

modality data. Our results indicate that multiome data are helpful for annotating single-modality 28 

data, but the number of cells in the multiome data is critical to ensure a good cell type 29 

annotation. Additionally, when generating a multiome dataset, the number of cells is more 30 

important than sequencing depth for cell type annotation. Lastly, Seurat v4 is the best at 31 

integrating scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch 32 

effects. 33 

  34 
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Background 35 

 36 

Over the past ten years, hundreds of single-cell RNA-seq (scRNA-seq) (for transcript 37 

abundance in single cells) or single-nucleus ATAC-seq (snATAC-seq) (for chromatin 38 

accessibility in single nuclei) have been produced by laboratories worldwide, leading to the 39 

discovery of new cell types and regulatory circuits. In addition, by applying single-cell assays to 40 

two-state models such as the comparison between control and mutant tissues, changes in gene 41 

expression or chromatin accessibility caused by a gene mutation could be analyzed at the cell 42 

type-specific level easily for the first time. Unfortunately, each single-modality dataset measures 43 

either the gene expression or the chromatin accessibility of a given cell. Although the two 44 

datasets are generated from the same cell population, they measure different cells. Most of the 45 

time, the two experimental modalities result in the identification of similar cell types, as the 46 

promoters of highly expressed genes used to define cell types at the transcript levels are 47 

frequently also identified as highly accessible by the ATAC-seq modality. However, there are 48 

situations in which the two profiles are discordant. In these situations, simultaneous, joint 49 

profiling of gene expression and chromatin accessibility is paramount for resolving inconsistency 50 

and revealing novel cell types and states that show modality-specific features. Moreover, the 51 

joint profiling of gene expression and chromatin accessibility of the same exact cells offers the 52 

most direct link between cis-regulatory elements and their target genes [1].  53 

 54 

Recently, the simultaneous determination of both transcript levels and chromatin state in 55 

the same nucleus has become possible, using so-called “multi-omics” approaches. An example 56 

is the 10x Genomics single cell Multiome ATAC + gene expression technology [2]. Multi-omics 57 

datasets are clearly superior at refining cell types and revealing gene regulatory networks [1]. 58 

However, it is not practical to repeat all prior studies of interest performed using the single-59 

modality assays with the multiome approaches, as frequently precious samples are either no 60 

longer available or funding is limited. Therefore, it is highly desirable to integrate pre-existing 61 

single-modality scRNA-seq and snATAC-seq datasets with multiome data generated 62 

subsequently using the newer technology to achieve more accurate cell type annotations.  63 

 64 

Several methodologies have been developed for multi-omic data integration. Here, we 65 

refer to multi-omic integration as the integration of RNA-seq and ATAC-seq profiles measured in 66 

single cells, either with or without the guidance of multiome data. These methods attempt to 67 

align cells profiled by separate technologies and project them into one common low-dimensional 68 
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space to ensure consistent cell type calling. However, we still lack an objective evaluation of 69 

whether the addition of the multiome data improves the annotation of single-modality datasets. 70 

Furthermore, some of the methods try to impute the missing modality for the single-modality 71 

datasets and identify peak-gene pairs using these ‘pseudo-paired’ datasets. Thus, it is still 72 

uncertain if the imputed missing modality can truly provide additional biological insights to the 73 

same degree as provided by the experimentally produced multiome datasets. Finally, given the 74 

availability of many methods for multi-omic data integration, at present, we do not know which 75 

method performs the best when integrating all three data types. 76 

 77 

The current multi-omic integration methods can be divided into two categories. Methods 78 

in the first category perform multi-omic integration using only the single-modality datasets, 79 

aiming to find a mapping between gene expression profiles and chromatin accessibility states to 80 

create an aligned space that explains both modalities; we call these approaches ‘unpaired 81 

integration’. Representative methods in this category include Seurat version 3 (Seurat v3) [3], 82 

which performs canonical correlation analysis (CCA) to align experimentally measured gene 83 

expression with pseudo-gene expression obtained from chromatin accessibility. One example of 84 

pseudo-gene expression is the gene activity score, calculated by summing up peak counts 85 

within the gene body plus 2kb upstream in the ATAC-seq data. LIGER [4] also uses the gene 86 

expression and gene activity score to obtain shared features between the two modalities and 87 

then derives a low-dimensional embedding through a non-negative matrix factorization 88 

approach. FigR [5] aligns the snATAC-seq and scRNA-seq data using a CCA-based approach. 89 

In addition, it provides matching of snATAC-seq and scRNA-seq cells, which enables the 90 

identification of cis-regulatory elements similar to paired multiome data. BindSC [6] goes beyond 91 

the simple construction of gene activity scores. Instead, bindSC uses a bi-directional CCA to 92 

empirically construct a cell-by-gene matrix for the snATAC-seq cells that preserve its similarity 93 

with the ATAC-seq input and simultaneously maximizes the correlation with the scRNA-seq 94 

matrix it is being integrated with.  95 

 96 

Methods in the second category encompass more recent approaches that incorporate 97 

information from multiome cells and integrate all three data types for a more comprehensive 98 

exploration of cellular identities; we term these approaches ‘multiome-guided integration’. 99 

Representative methods in this category include Seurat version 4 (Seurat v4) [7], an approach 100 

that first learns a low-dimensional representation of the cells profiled by the multiome 101 

methodology using both the RNA-seq and ATAC-seq profiles by weighted nearest neighbors 102 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.01.526609doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

(WNN) analysis [7]. Subsequently, the two single-modality datasets are projected onto the WNN 103 

embedding space in a supervised manner. MultiVI [8] and Cobolt [9] use a deep-learning 104 

approach called ‘variational autoencoder’ to embed all three data types. Both methods employ 105 

the encoder-decoder system to learn a low-dimensional representation of the data. Specifically, 106 

two encoders and two decoders are set up, one for each modality. However, there are different 107 

model choices. MultiVI assumes a negative binomial distribution for the RNA-seq data and a 108 

Bernoulli distribution for the ATAC-seq data, while Cobolt assumes a Multivariate Normal 109 

distribution for both modalities. Furthermore, the two methods integrate the modality-specific 110 

representation for the paired cells differently. MultiVI first aligns the two embeddings through a 111 

symmetric Kullback-Leibler (KL) divergence loss and then obtains an average of the two 112 

embeddings. On the other hand, Cobolt simply multiplies the two embeddings to represent the 113 

paired cells, while the representation of the unpaired cells is first generated by the 114 

corresponding encoder and refined using a linear transformation to ensure enough similarity 115 

between the RNA-seq derived embedding and the ATAC-seq derived embedding.   116 

 117 

All methods described above aim to project cells from different data types into one 118 

shared space to facilitate the identification of cell types through clustering. Nevertheless, a 119 

common goal for studies profiling chromatin accessibility and gene expression at the single-cell 120 

level is to understand cell type-specific cis-regulatory logic. Since the two single-modality 121 

datasets are generated from different cells in a given population, albeit representing the same 122 

cell types, the single-modality datasets cannot be naïvely combined to test for association 123 

between chromatin accessibility and gene expressions. Therefore, multiple efforts have 124 

attempted to impute the missing modality for the single-modality datasets, aiming to 125 

computationally generate paired profiles similar to those measured experimentally by the 126 

multiome technology. Some methods mentioned above, e.g., Seurat v3, FigR, bindSC, Seurat 127 

v4, and MultiVI, are capable of this task. However, an objective evaluation of how reliable the in-128 

silico imputed profiles are compared to what is directly measured by the paired multiome 129 

technologies is still lacking. Therefore, we aimed to conduct an extensive benchmarking 130 

analysis to evaluate the above-mentioned methods by addressing two important questions. First, 131 

do multiome data help the integration of single-modality datasets? Second, what is the best 132 

computational method for the integration of scRNA-seq, snATAC-seq, and multiome data? 133 

 134 

Results  135 
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Overview of the benchmarking scheme and evaluation strategies 136 

The overall workflow of our benchmarking evaluations is summarized in Figure 1.  Figure 1A 137 

illustrates our approach to evaluate whether multiome data integration can improve the value of 138 

single-modality datasets, while Figure 1B outlines how we assess the effectiveness of each 139 

integration methods, at various conditions of the multiome dataset.  To answer the proposed 140 

questions, we simulated situations where all three data types are available by using two publicly 141 

available multiome datasets [10, 11]. The first multiome dataset [10] profiled 10,085 peripheral 142 

blood mononuclear cells (PMBCs) and represents a simple biological system, because PBMCs 143 

can be easily divided into seven well-separated cell types (Supplementary Figure 1A). The 144 

second dataset profiled bone marrow mononuclear cells (BMMC) [11], an example of highly 145 

complex cell populations. BMMCs are closely related to each other transcriptionally, and contain, 146 

for example, myeloid progenitors and their closely related descendants, CD16+ and CD14+ 147 

monocytes (Supplementary Figure 1B). The individual BMMC cell types are therefore much 148 

harder to separate compared to the PBMC populations, thus allowing us to thoroughly evaluate 149 

the performance of each method in both simple and complex biological systems. Moreover, the 150 

BMMC dataset is composed of samples generated from four research sites and nine donors 151 

[12], which enables the analysis of batch effects and technical replicates.  152 

 153 

We evaluated four popular unpaired integration methods (Seurat v4, LIGER, FigR, 154 

bindSC), and three multiome-guided integration methods (Seurat v4, MultiVI, and Cobolt). To 155 

account for the increased power resulting from the larger absolute number of cells employed 156 

during the integration process by the multiome-guided methods, we created another scenario 157 

termed ‘unpaired (multiome-split)’ in which the RNA-seq and ATAC-seq data from the multiome 158 

samples were treated as independent datasets and appended to the single-modality datasets. 159 

This category again includes the four unpaired-integration methods, the only difference being 160 

that the single-modality datasets now include additional single-modality cells that were 161 

converted from the multiome cells.  162 

 163 

To evaluate the performance of each method for cell type identification, we performed 164 

Louvain clustering [13] on the integrated embedding. For methods capable of missing modality 165 

imputation, we imputed gene expression using snATAC-seq profiles. We then evaluated the 166 

integration results in four aspects as shown in Figure 1A. Specifically, we evaluated cell type 167 

annotation accuracy using two metrics: Adjusted Rand Index (ARI) [14] and Normalized Mutual 168 

Information (NMI) [15]. Both metrics range from 0 to 1, with 1 being the best. The detailed 169 
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approach is described in the Methods section.  The accuracy of cell type annotation depends on 170 

the number of cell clusters identified; therefore, an additional way to measure data integration 171 

quality is via the accuracy of cell type separation. Using the ground-truth annotation, we 172 

evaluated how well cells of different identities are separated, using a cell type specific average 173 

silhouette width (ASW) [16] and a cell type Local Inverse Simpson’s Index (cLISI) [17, 18]. 174 

Furthermore, because the three data types could have technology-specific differences, we used 175 

a batch ASW [16] and the k-nearest neighbor batch effect test (kBET) [16] to measure batch-176 

mixing of the integrated results. These four measurements were normalized to be in the range 177 

of 0 and 1 in which 1 is the best result, namely high separation between cell types and complete 178 

mixing of data batches.  179 

 180 

We also evaluated the quality of ‘peak to gene pair’ predictions by assessing the 181 

accuracy of assigning an ATAC-seq peak to a specific gene. Using the measured ATAC-seq 182 

and imputed RNA-seq data, we computed the percentage of significant peak-gene pairs 183 

recovered as compared to a ground truth obtained using all cells in the multiome dataset. To 184 

penalize for the presence of false positives reported by the data integration methods, we also 185 

calculated an F1 score [15], which normalized the absolute percent recovery of the true peak-186 

gene pairs by the occurrence of false positive and false negative relationships.  187 

 188 

Do Multiome data improve the annotation of single-modality datasets? 189 

 190 

PBMC 191 

To answer if multiome data improve the analysis of single-modality datasets (scRNA-seq and 192 

scATAC-seq), we first simulated the situation with 1,000 scRNA-seq cells and 1,000 snATAC-193 

seq cells based on the PBMC data. These single-modality cells were integrated using each of 194 

the four unpaired integration methods. To evaluate if multiome data improve the analysis of 195 

single-modality datasets, we considered the situation where we have a multiome dataset, 196 

potentially with different numbers of cells (e.g., 1000, 3000, or 8000). These multiome data were 197 

integrated with the single-modality datasets using the multiome-guided methods. However, 198 

because the number of cells used during clustering and gene expression imputation impacts the 199 

clustering accuracy and peak-gene association identification, we ran the unpaired integration 200 

methods again, this time treating the multiome dataset as single-modality cells and adding them 201 

to the existing single-modality data. Here, any increase in performance is solely caused by the 202 

increase in cell number; the results from these evaluations are labeled as the ‘unpaired 203 
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(multiome-split)’ category. For each simulation, we randomly drew the cells from the 10,085 204 

PBMC dataset and each condition was repeated five times. The parameters used for this 205 

simulation are summarized in Figure 2A.  206 

 207 

The evaluation result for each method is summarized in Figure 2B. Without the 208 

incorporation of multiome data, the cell type annotation accuracy was already good, being 0.81 209 

in ARI and 0.81 in NMI when integrating the unpaired data using the bindSC program (Figure 210 

2B). Surprisingly, in the presence of 1,000 multiome cells, the multiome-guided approaches 211 

performed worse than simply integrating the data from the 2,000 single-modality cells by 212 

themselves (Figure 2B). This unexpected result is likely caused by the fact that 1,000 multiome 213 

cells alone do not achieve good cell type separation, which is a critical requirement for the 214 

multiome-guided methods to succeed. However, when we used 3,000 or 8,000 multiome cells, 215 

Seurat v4, one of the multiome-guided methods, achieved the best results in terms of cell type 216 

annotation (Figure 2B). Furthermore, when comparing the multiome-guided results with 217 

unpaired (multiome-split) results, the performance of Seurat v4 remained higher when there are 218 

3,000 or 8,000 cells (Figure 2B). Thus, our findings indicate that the multiome data can improve 219 

cell type annotation of the single modality datasets, provided that there is a sufficient number of 220 

multiome cells available.  221 

 222 

Next, we evaluated the performance of each method in predicting peak-gene pairs. 223 

Peak-gene pairs are calculated using 1,000 measured chromatin accessibility profiles and the 224 

corresponding 1,000 imputed gene expression profiles. Here, we compared predicted peak-225 

gene pairs to the ground-truth list calculated using multiome cells in the full PBMC data. Seurat 226 

v3 performed very well at recovering the absolute number of peak-gene pairs, and the 227 

incorporation of data from multiome cells through splitting only marginally increased the 228 

performance (Figure 2B). BindSC had a slightly better F1 score than Seurat v3, meaning that 229 

the Seurat v3 results contained more false positives (Figure 2B). For the multiome-guided 230 

methods, the more multiome cells available during gene expression imputation resulted in 231 

higher peak-gene pair recovery (Figure 2B). Nevertheless, the incorporation of data from 232 

multiome cells using the multiome-guided methods did not perform better than the unpaired 233 

methods, with the exception that the F1 score was higher in MultiVI (Figure 2B).  234 

 235 

The number of cells used for predicting peak-gene pairs influences the accuracy. To 236 

give a general idea of how well the predicted gene expression profiles are, we compared the 237 
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peak-gene pair identification result to the one obtained using the real paired profiles. We 238 

included a red dashed line in Figure 2B to indicate the percentage of peak-gene pair recovery 239 

and F1 score calculated using the measured, paired gene expression and chromatin 240 

accessibility profiles of the 1,000 cells being evaluated, instead of the gene expression profile 241 

imputed from chromatin accessibility. What’s surprising is that the in-silico prediction profile from 242 

Seurat v3 revealed a higher percentage of recovered peak-gene pairs and a better F1 score 243 

than the measured paired gene expression and chromatin accessibility profile from 1,000 cells. 244 

This is likely due to the dropout issue common to single-cell assays and the predicted RNA 245 

profile can borrow information from similar cells, thus recovering the trend better. However, we 246 

also note that the predicted profiles only recovered less than 45% of the ground-truth list 247 

calculated using the full PBMC data with 10,412 cells. Although the predicted profiles are better 248 

than the measured gene expression profiles, it is only recovering a small percentage of peak-249 

gene pairs revealed by the experimentally generated multiome dataset.  250 

 251 

BMMC 252 

Having evaluated the various data integration platforms with the PBMC data, which represent a 253 

low-complexity situation with clearly defined major cell types, we next sought to determine how 254 

the different methodologies perform when analyzing data from highly complex cell populations, 255 

as is the case for bone marrow mononuclear cells (BMMC). Here, to avoid complexity caused 256 

by batch differences, we only used 6,740 multiome cells from one sample (site 1 donor 2). We 257 

again started with 1,000 scRNA-seq and 1,000 snATAC-seq cells, and then tested the result 258 

when incorporating 1000, 2000, and 4000 multiome cells, composed of 21 cell types (Figure 2A). 259 

In this biological system, we found that including a larger number of multiome cells improved 260 

cell type annotation, with Seurat v3 performing the best among the unpaired (multiome-split) 261 

methods (Figure 2C). Among the multiome-guided methods, Seurat v4 achieved the best 262 

performance when the input data included 4,000 multiome cells. Remarkably, when we 263 

employed data from only 1,000 or 2,000 multiome cells, all multiome-guided methods performed 264 

worse than when inputting the multiome data as two separate, unpaired modalities (Figure 2C). 265 

A similar trend was observed in the peak-gene pair prediction (Figure 2C). The likely reason 266 

causing the poor performance of the multiome-guided methods is the limited quality of multiome 267 

data and the high complexity of the biological system being profiled. Note that peak-gene 268 

prediction recovery and F1 score obtained via the unpaired Seurat v3 algorithm are still higher 269 

than the association calculated from the observed multiome profile indicated by the red dash 270 

line in Figure 2C.  271 
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 272 

Comparison of run time and visualization of integration 273 

Another important issue to consider when comparing various computational approaches is the 274 

computation time needed to complete a given task. All methods were run with 8 CPU cores and 275 

64GB of RAM. Figure 2D shows the runtime, measured in seconds. Unpaired methods all have 276 

similar runtimes, and the increase in the unpaired (multiome-split) category was due to the 277 

incorporation of the additional data from multiome experiments. Importantly, the multiome-278 

guided methods vary greatly in runtime and thus costs. Cobolt was the fastest method, but 279 

unfortunately, it exhibited comparatively low clustering accuracy and peak-gene recovery. 280 

Seurat v4 had a shorter runtime than the unpaired (multiome-split) methods, while MultiVI took 281 

the longest to complete the assigned tasks, due to its use of variational autoencoder.  282 

 283 

To visually examine the integration results, we generated UMAP plots using the 284 

integrated latent embedding and colored the cells by the ground-truth annotation, the predicted 285 

identity, and the dataset origin (Figure 2E).  We showed the best-performing results from both 286 

the unpaired (multiome-split) and multiome-guided categories for each of the PBMC and BMMC 287 

simulations. Additional evaluation on cell type separation and batch-mixing are shown in 288 

Supplementary Figure 2. Most metrics show method-specific values, meaning the rankings of 289 

methods do not change across different numbers of multiome cells. Among the unpaired 290 

methods, Seurat v3 is the best at separating cell types in the integrated space, but it has the 291 

worst batch mixing result. On the other hand, FigR shows the opposite trend; it ranked the 292 

highest for batch mixing, but the lowest for cell type separation. Among the multiome-guided 293 

integration methods, MultiVI mixes the batches better while Seurat v4 often results in a higher 294 

cell type silhouette score, especially when there is a greater number of multiome cells. We also 295 

evaluated the integration results visually, through examining UMAP projection of the integration 296 

results as shown in Supplementary Figure 3 for the PBMC simulations and Supplementary 297 

Figure 4 for the BMMC simulations. Visually, we do not see drastic differences between 298 

methods and there are no methods showing particularly poor cell type separation or batch 299 

mixing result. Therefore, we conclude that the incorporation of multiome cells improves cell type 300 

annotation when there are enough cells to resolve the cell type heterogeneity in the multiome 301 

dataset alone.  302 

 303 

 304 

How to spend your sequencing dollars: more cells or increased sequencing depth? 305 
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 306 

Experimentalists are commonly constrained by budget limitations and need to consider whether 307 

sequencing a larger number of cells at low depth or a smaller number of cells at high depth is 308 

the more productive approach.  To answer this question, we evaluated how the sequencing 309 

depth of the multiome approach influences the integration result. Since we know that including 310 

multiome data improves cell type annotation for the single-modality datasets, for this analysis, 311 

we aimed to evaluate the cell type annotation accuracy of the three data types together. Table 1 312 

shows the sequencing depth of the original multiome samples. To simulate data with lower 313 

depths, we down-sampled the reads for both RNA and ATAC profiles to 25%, 50%, 75% of the 314 

original data (Figure 3A) and compared these results to the original samples. We performed this 315 

experiment on both the PBMC dataset (Figure 3B) and the BMMC dataset (Figure 3C). For the 316 

PBMC study, the increase in sequencing depths resulted in an increase in cell type annotation 317 

accuracy for all methods, with Seurat v4 achieving the highest ARI and NMI among all methods 318 

for 75% and 100% depth. In contrast, when we used the BMMC data set as the input, we noted 319 

that when including only 2,000 multiome cells, regardless of sequencing depth, the unpaired 320 

method (Seurat v3) performed the best. However, when we included 4,000 cells in the BMMC 321 

multiome sample, 50% of read depth was sufficient for Seurat v4 to annotate the cell types most 322 

accurately. These conflicting results prompted us to ask whether sequencing depth is less 323 

important than cell number.  324 

 325 

To answer this question, we designed another simulation. Given a fixed cost for 326 

1,000,000 RNA-seq reads and 4,000,000 ATAC-seq reads, we used either 400 cells with 100% 327 

of the depth (see Table 1), or 10% of the reads for 4,000 cells. Next, we analyzed the datasets 328 

using Seurat v3 and Seurat v4, the best-performing method in each category based on Figure 329 

3C. For cell type annotation accuracy, the sequencing depth curve plateaued sooner than the 330 

number of cells curve. For Seurat v4, the ARI and NMI did not increase much beyond 60% 331 

sequencing depth, while both scores increased consistently as the number of cells increases. 332 

Comparing Seurat v3 with Seurat v4, we noted that Seurat v4 performed better when there was 333 

30% sequencing depth given 4,000 cells or 2,600 cells given 100% depth. Therefore, for the 334 

accuracy of cell type annotation for integrated data, having more cells is more important than 335 

having a higher sequencing depth. Importantly, once a sufficient number of cells has been 336 

profiled to capture the complexity of a given sample, the multiome-guided methods, specifically 337 

Seurat v4, are the best. Our analysis also demonstrated that the ‘sufficient’ number of cells 338 

depends on the complexity of the biological system in question. For PBMC, we see that if the 339 
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goal is to detect seven distinct cell types, 2,000 cells is already enough. However, for BMMC 340 

with its more complex cell type composition at least 2,600 cells are needed.  341 

 342 

In addition to the cell type annotation accuracy, we also evaluated recovery of peak-343 

gene association for the 1,000 single-modality ATAC-seq cells when incorporating mulitome 344 

samples generated at ten different depths and numbers of cells. We see that Seurat v3 is 345 

consistently better than Seurat v4 (Figure 3D). Moreover, the number of cells and sequencing 346 

depth did not affect the percentage of peak-gene pair recovery nor the F1 score. This is likely 347 

because Seurat v3 predicts RNA expression using a nearest neighbor approach on the 348 

integrated space, and the software had enough cells in the scRNA-seq dataset for the prediction, 349 

thus changes in the multiome data did not affect the result.  350 

 351 

 Next, we evaluated cell type separation and batch mixing results as summarized in 352 

Supplementary Figure 5. Most metrics increased slightly as sequencing depth increased, but 353 

the ranking of methods is similar as described before. Overall, Seurat v4 shows the best 354 

separation of cell types in the integrated space, but the mixing of batches is the worst, across 355 

sequencing depths. A UMAP projection of each method under each simulated scenario is 356 

shown in Supplementary Figures 6-8 for visual comparison.  357 

 358 

Overall, we conclude that the number of cells in the multiome data is more critical than 359 

sequencing depth for annotating cell types in the integrated data. On the other hand, treating 360 

multiome data as unpaired single-modality datasets recovers peak-gene pairs at a higher 361 

accuracy. 362 

 363 

Which method is the best at removing batch effects? 364 

 365 

It is common that scRNA-seq and snATAC-seq data are generated by different labs or from 366 

different individuals than the multiome data. Therefore, another key characteristic for integration 367 

methods is whether they can integrate samples displaying batch effects. To answer this 368 

question, we leveraged the complex batch structure present in the BMMC dataset. Figure 4A 369 

shows the technical batch or biological batch structure we aimed to evaluate, with the multiome 370 

cells coming from a different research site, or a different donor. Figure 4B shows the results of 371 

cell type annotation accuracy for unpaired integration methods and the multiome-guided 372 

methods. We again saw increasing cell type annotation accuracy as the number of multiome 373 
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cells increased. With 3,000 or more multiome cells, Seurat v4 again was the best-performing 374 

method. Seurat v4 is a supervised approach, meaning that the multiome sample serves as a 375 

reference to which the single-modality datasets are mapped to. Figure 4B shows that although 376 

the multiome sample has strong batch effects (Supplementary Figure 9), the supervised 377 

mapping approach resulted in the most accurate cell type annotation. Additional integration 378 

results are shown in Supplementary Figure 10 and the UMAP projections are shown in 379 

Supplementary Figures 11-12. 380 

  381 

To further challenge all methods in the situation of complex mixtures of samples, we 382 

considered a situation where the multiome sample includes cells from a mixture of two donors, 383 

and the scRNA-seq and snATAC-seq data come from the same or different research sites. Due 384 

to batch effects in the multiome samples, we added one more category called ‘Seurat v4 385 

integrate’, in which the integration of samples was first done on each modality separately, then 386 

two modalities were joined using the Seurat v4 weighted nearest neighbor approach, and lastly 387 

combined with the single modality dataset (see more in Supplementary methods). Figure 4D 388 

shows that in the case of low batch effects between the two donors, Seurat v4 and ‘Seurat v4 389 

integrate’ performed similarly well at annotating cell types. However, in the presence of stronger 390 

batch effects, ‘Seurat v4 integrate’ outperformed all other methods for cell type annotation, with 391 

much higher cell type separation as measured in cell type average silhouette width (ASW) 392 

(Supplementary Figure 13). From the UMAP projection in Supplementary Figure 14, we see that 393 

‘Seurat v4 integrate’ mixes cells from the two multiome samples much better than Seurat v4. 394 

Therefore, when the multiome data include two donors with strong batch effects, integration 395 

across the batches is required before mapping the single-modality datasets.   396 

 397 

 398 

Discussion  399 

In summary, we evaluated seven multi-omic integration methods under three realistic scenarios. 400 

Firstly, we showed that the incorporation of multiome data improves the cell type annotation 401 

accuracy of scRNA-seq and snATAC-seq data when there are sufficient number of cells in the 402 

multiome data to reveal cell type identities. Secondly, we showed that the number of cells in the 403 

multiome data plays a more important role than sequencing depth per cell for cell type 404 

annotation accuracy. Thus, when generating a multiome dataset with a fixed budget, a better 405 

strategy is to profile more cells so that rare cell types can be captured. Lastly, when the three 406 
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datasets to be integrated are confounded by batch effects, Seurat v4 resulted in the best cell 407 

type annotation accuracy. 408 

 409 

In all evaluations, Seurat v4 demonstrated superior performance at resolving cell type 410 

heterogeneity when data from many multiome-profiled cells are available. This makes sense as 411 

Seurat v4 is a supervised approach in which single-modality cells are merely projected to the 412 

integrated space learned from the multiome dataset. Therefore, when the multiome data have 413 

an insufficient number of cells to reveal accurate cell types, the integration will lead to poor 414 

annotation accuracy. The other two multiome-guided methods, e.g., Cobolt and MultiVI, claim to 415 

be able to make use of all three data types. The hope is that the single-modality cells can help 416 

the clustering when multiome cells are small. However, as shown in Figures 2 and 3, both 417 

Cobolt and MultiVI performed worse than the unpaired integration methods that do not leverage 418 

the paired relationship of the multiome data. Therefore, when the multiome dataset has a small 419 

number of cells, it is better to treat the multiome cells as unpaired and append them to the 420 

single-modality datasets for the integration of three datasets.  421 

 422 

There are several limitations of this study. Firstly, our simulations represent the most 423 

ideal situation, where the single-modality cells are generated from the exact same dataset as 424 

the multiome cells. In reality, the single-modality and the multiome data are generated from 425 

different experimental kits that could have slight differences since the multiome workflow is 426 

optimized to capture both gene expression and chromatin accessibility. Moreover, the gene 427 

expression captured through the multiome workflow is in fact measuring mRNA in individual 428 

nuclei, while scRNA-seq captures mRNA in whole cells. Slight differences between snRNA-seq 429 

and scRNA-seq datasets have been reported [19]. Lastly, the PBMC dataset did not have 430 

expert-annotated cell type labels. We followed a tutorial by Seurat v4 to obtain annotations [20], 431 

thus the evaluation of PBMC-simulated scenarios might favor Seurat v4. However, the BMMC 432 

data were manually annotated by experts and Seurat v4 still showed outstanding performance 433 

in evaluations based on this dataset. 434 

 435 

Secondly, although Seurat v4 was the best at annotating cell types, it performed worse 436 

than unpaired integration methods at recovering peak-gene associations. Furthermore, even the 437 

best method only revealed 45% of peak-gene pairs detected in the paired multiome dataset, 438 

and many of the detected pairs are false positives. Moreover, we did not explore the possibility 439 

of imputing chromatin accessibility from scRNA-seq or appending imputed profile with observed 440 
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multiome sample. To truly integrate the three data types and understand the underlying cis-441 

regulatory logic, one would hope to impute the missing modality for both the scRNA-seq and 442 

snATAC-seq data, and then append the imputed profiles with the multiome dataset to identify 443 

peak-gene pairs with the largest number of cells. Therefore, additional work needs to be done to 444 

evaluate the performance of different methods in jointly integrating the imputed single-modality 445 

datasets with the multiome samples for downstream analyses.  446 

 447 

 448 

Conclusions 449 

Our benchmarking evaluations showed that multiome data are helpful for annotating single-450 

modality data. The number of cells in the multiome data is critical to ensure a good cell type 451 

annotation after integration and the exact number of cells depends on the complexity of the 452 

biological system. When generating a multiome dataset, the number of cells is more important 453 

than sequencing depth for cell type annotation. Lastly, Seurat v4 is the best at integrating 454 

scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch effects. 455 
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Methods  456 

 457 

Datasets  458 

 459 

Peripheral blood mononuclear cell (PBMC) dataset  460 

This dataset was generated using the 10x Genomics Single Cell Multiome ATAC + Gene 461 

Expression kit [10]. The PBMC dataset with granulocytes removed was downloaded from the 462 

10x Genomics website, which included 11,909 cells. The dataset was processed and annotated 463 

into 30 cell types following the Seurat tutorial [7, 20]. We grouped similar cell types and refined 464 

the annotations into 9 broad cell types (similar to the level 1 categories from the Azimuth 465 

database [3]): B-cells (‘B’), CD4 T cells (‘CD4 T’), CD8 Naïve T cells (‘CD8 Naïve’), CD8 466 

Effector T cells (‘CD8 TEM’), Dendritic cells (‘DC’), Monocytes (‘Mono’), Nature killer cell (‘NK’), 467 

other T cell (‘other_T’), and other cell categories (‘other’). The ATAC-seq profile released on 10x 468 

Genomics website was counting the Tn5 insertion events in each genomic region. Here, we 469 

retabulated the cell-peak matrix by the number of reads overlapping each genomic region, using 470 

the Signac’s FeatureMatrix function [21]. We used the peak-based counting result as input for 471 

the peak-gene pair identification (described below) and subsequent simulations. The list of 472 

peak-gene pairs identified using all cells in the multiome dataset (10,412 cells) is treated as the 473 

ground truth when calculating percentage of peak-gene pair recovery or F1 score. ‘Other_T’ and 474 

‘other’ cells were excluded from the data simulation due to their extensive separation in the 475 

UMAP embedding. After removal of cells, there are 10,085 cells used for simulation. 476 

 477 

Bone marrow mononuclear cells (BMMC) dataset 478 

This dataset was generated as part of the “Open Problems in Single-cell Analysis” competition 479 

[12]. BMMC cells from nine healthy donors were profiled at four different research sites using 480 

the 10x Multiome ATAC + Gene Expression kit. The dataset was analyzed by Lance and 481 

colleagues [12], who annotated the cells into 22 cell types. The values in the cell-peak matrix of 482 

the ATAC-seq data was also the insertion-based counting, so we again converted it into peak-483 

based counting as mentioned above. Data simulations related to Figures 2 and 3 were 484 

performed using cells from the site 1 donor 2 (S1D2) BMMC sample. This sample contains 485 

6,740 cells, annotated into 21 cell types. The peak-gene pair prediction accuracies shown in 486 

Figures 2 and 3 were calculated by comparing the result to a ground-truth list generated with the 487 

S1D2 sample. To simulate technical batch and biological batch effects (Figure 4), we used cells 488 
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generated at research site 1 or from donor 1, which includes a total of 29,486 cells, composed 489 

of 21 cell types (Supplementary Figure 1B).  490 

 491 

Evaluation metrics 492 

Annotation accuracy  493 

Each integration method returns an integrated latent embedding matrix for cells. Louvain 494 

clustering was performed to identify k clusters, in which k is the number of cell types in the 495 

ground-truth annotation. To evaluate annotation accuracy, Adjusted Rand Index (ARI) [14] and 496 

Normalized Mutual Information (NMI) [15] from the Scib package (v1.0.2) [18] were calculated to 497 

compare the predicted cluster labels with the ground truth. Specifically, ARI compares every 498 

pair of cells in the dataset and calculates a similarity measurement by considering the number 499 

of cell pairs that are in the same cluster in both annotation results, versus the number of cell 500 

pairs showing discordant annotations. This metric is then adjusted by chance, as there will be a 501 

non-zero similarity between the two clustering results just due to random permutation of labels. 502 

The resulting metric ranges from 0 to 1 in which 1 means perfect matching between the two 503 

results while 0 means random labeling of cells. NMI is another measurement commonly used 504 

for comparison of two clustering results. NMI measures if knowing one label provides 505 

information about the other label. If the two lists are highly correlated, then it has high mutual 506 

information. NMI is then normalized by a factor to control for differences due to the number of 507 

clusters in each set of labels.  508 

 509 

Cell type separation  510 

We evaluated the separation of clusters and the tightness of cells in the integrated latent space 511 

derived from each method. We calculated cell type-specific average silhouette width (ASW) [18], 512 

using the ground-truth annotation and the joint embeddings. The resulting score is between 0 513 

and 1 in which 1 means small intra-cluster distance and high inter-cluster distance. We also 514 

calculated a cell type Local Inverse Simpson’s Index (cLISI) [18], which is an adaptation of LISI 515 

previously used to quantify the degree of batch effects [17]. Here, cLISI was calculated using 516 

the ground-truth labels again in which it evaluates how many cells need to be drawn from a 517 

cell’s neighborhood to draw a second cell of the same type. The score is normalized again so 518 

that 1 means good local neighborhood preservation of the same cell type while 0 is otherwise.  519 

 520 

Batch mixing  521 
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To evaluate batch mixing, two metrics were employed. A batch ASW score was used to 522 

evaluate the within-batch distance and the across-batch distance [18]. The score was rescaled 523 

so that 0 is the worst and 1 is the best separation. To evaluate the local neighborhood accuracy, 524 

k-nearest neighbor batch effect test (kBET) was also performed [16]. Specifically, kBET 525 

measures the difference between observed batch frequency in the k-nearest neighbors 526 

compared to an expected frequency based on the number of cells in each batch. The value is 527 

rescaled to 0 and 1 in which 1 represents the optimal mixing of cells from different batches in 528 

which cells in the neighborhood are highly similar to the expected frequency.  529 

 530 

Peak-gene pair recovery  531 

To identify correlated peak-gene pairs, we used the methodology introduced in the SHARE-seq 532 

paper [1]. Specifically, a Pearson correlation is calculated between the raw accessibility count of 533 

every peak and the normalized UMI count of every gene if the peak is within 50,000 base pairs 534 

from the transcription start site (TSS) of the gene. The null distribution of correlation coefficients 535 

was then generated through selecting 100 peaks that have similar GC content, length, and 536 

accessibility as the target peak, and calculating correlation of the background peaks and the 537 

target gene. A one-sided t-test was used to calculate a p-value for every peak-gene pair by 538 

comparing to the background peaks and the peak-gene pairs with p-value less than 0.05 and z-539 

score greater than 0.05 identified as significant peak-gene pairs. Associated peak-gene pairs 540 

were identified using all cells from each dataset. To evaluate the performance of each method 541 

at imputing gene expression from snATAC-seq data, a peak-gene association was calculated in 542 

the same manner using the raw cell-peak count of the unpaired ATAC data and the predicted 543 

gene expression generated by the evaluated methods. To evaluate the in silico imputed gene 544 

expression results, we calculated the percentage of peak-gene pairs recovered using the 545 

imputed gene expression and the observed snATAC-seq peak counts. To account for false 546 

negative results, we calculated an F1 score. Thus, the peak-gene pair percent recovery and the 547 

F1 score were used to evaluate each method that can impute missing gene expression.  548 

 549 

Evaluation scenarios  550 

We simulated three scenarios to evaluate the performance of each method. For each scenario, 551 

we simulated five independent replicates. Details regarding how each method was implemented 552 

are described in the Supplementary Methods.  553 

 554 

Scenario 1: evaluating the effect of multiome cells on single-modality integration. 555 
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 556 

Data simulation 557 

In this task, we first defined the number of cells to be drawn for each data type with an example 558 

shown in Figure 2A. Then, we randomly selected cells from the ground-truth multiome dataset 559 

according to the desired number of cells for each data type. For scRNA-seq, we kept the gene 560 

expression matrix; for snATAC-seq, we kept the cell-by-peak matrix and the fragment file; lastly, 561 

for the multiome sample, we kept all three data files. The cells were sampled without 562 

replacement.  563 

 564 

Evaluated methods  565 

We first ran the four unpaired integration methods (Seurat v3, LIGER, FigR, and bindSC) to 566 

integrate the simulated scRNA-seq and snATAC-seq datasets and the results were summarized 567 

under the ‘Unpaired’ categories.  To make use of the multiome data, we ran the four methods 568 

again, with the multiome cells treated as unpaired. Specifically, the RNA profile from the 569 

multiome cells was appended to the scRNA-seq dataset, and the ATAC-seq profile was 570 

appended to the snATAC-seq dataset. The results from this category were summarized under 571 

‘Unpaired (multiome-split)’. Lastly, we ran the multiome-guided methods with the scRNA-seq, 572 

snATAC-seq, and multiome datasets as input.  573 

 574 

Evaluations 575 

To evaluate if the presence of multiome cells improves the integration of single-modality 576 

datasets, we evaluated the annotation accuracy, peak-gene pair recovery, cell type separation, 577 

and batch mixing of the scRNA-seq and snATAC-seq cells.  578 

 579 

Scenario 2: evaluating the impact of sequencing depth in multiome cells on multi-omic 580 

data integration. 581 

 582 

Data simulation 583 

For this task, we first defined the number of cells in each data type as well as the percentage of 584 

original depth the multiome cells will be down-sampled to; an example is shown in Figure 3A. 585 

We first generated the three data types according to the number of cells defined. Then, we 586 

performed depth-down-sampling for both the gene expression and chromatin accessibility 587 

profiles of the multiome dataset. To down-sample the cell-by-gene count matrix for gene 588 

expression, we used Scuttle::downsample [22] to reduce the sample depth to a percentage of 589 
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the original dataset. To down-sample the ATAC-seq depth, we performed down-sampling on the 590 

fragment file and then regenerated the cell-by-peak count matrix. Specifically, we first counted 591 

the number of fragments corresponding to the selected cells, then we calculated the target 592 

depth by multiplying the original depth to the percentage factor. We randomly selected the 593 

number of reads as calculated, without replacement, and saved this file as the new fragment file. 594 

Then the down-sampled fragment file was sorted, recompressed, indexed with tabix and, 595 

tabulated into peak counts with the original feature set with Signac:: FeatureMatrix [21] function. 596 

This often resulted in less reduction in peak counts, as some of the fragments removed were 597 

not previously assigned to the peaks.  598 

 599 

Evaluated methods  600 

We ran the unpaired integration methods with the multiome data appended to the single-601 

modality datasets as described above, the results were summarized under ‘Unpaired (multiome-602 

split)’. We also ran the three multiome-guided methods.  603 

 604 

Evaluations 605 

The evaluation of annotation accuracy, cell type separation and batch mixing were calculated 606 

using all cells present in simulated scRNA-seq, snATAC-seq, and the multiome datasets. Given 607 

how the multiome data were split and appended to the single-modality datasets for the ‘unpaired 608 

(multiome-split)’ category, it resulted in doubling the number of multiome cells. Thus, to ensure 609 

a fair comparison between the two categories of methods, half of the multiome cells appended 610 

to the RNA-seq were dropped while the other half of the multiome cells appended to the ATAC-611 

seq were dropped. As a result, the same number of cells was evaluated for the ‘unpaired 612 

(multiome-split)’ and ‘multiome-guided’ methods.  613 

 614 

 615 

Scenario 3: evaluating the impact of batch effects on multi-omic data integration. 616 

 617 

Data simulation 618 

The analysis of batch effects was only possible for the BMMC dataset. As mentioned before, the 619 

BMMC dataset contains multiome cells generated at four different research sites and nine 620 

donors. To create different types of batches, we used the multiome cells from donor 1 but 621 

processed at three different sites (S1D1, S2D1, S4D1) as the data source to generate technical 622 

batches. We used the multiome cells generated at research site 1 but from different donors 623 
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(S1D1, S1D2, S1D3) as the source of biological batches. To generate scenarios with mixed 624 

technical and biological batch effects, we created more complex batch structures described as 625 

‘complex test’ in Figure 4D using all samples that were either generated at research site 1 or 626 

donor 1. After defining which sample each data type comes from and the number of cells, the 627 

simulation is the same as described in ‘Sceanrio 1’, in which cells were randomly drawn from 628 

the ground-truth multiome dataset to simulate scRNA-seq, snATAC-seq, and multiome samples.  629 

 630 

Evaluated methods  631 

The same seven methods, four from the ‘unpaired (multiome-split)’ and three from ‘multiome-632 

guided’ were ran. For situations were multiome were composed of two donors, an additional 633 

variation of Seurat v4 was added, termed ‘Seurat v4 integrate’. Specifically, the two multiome 634 

datasets were first integrated across donors to generate one integrated reference before it was 635 

used to integrate scRNA-seq and snATAC-seq datasets.  636 

 637 

Evaluations 638 

We calculated metrics measuring annotation accuracy, cell type separation, and batch mixing. 639 

For batch mixing, we calculated both the mixing of data types, as well as the mixing of samples. 640 

Similar to what was described in ‘Scenario 2’, to ensure that the same number of cells were 641 

evaluated for the unpaired (multiome-split) methods and the multiom-guided methods, half of 642 

multiome cells appended to the RNA-seq and the other half of the ATAC-seq dataset were 643 

dropped.  644 

645 
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 749 

Table 1: Summary of the data used for simulation. Columns are number of cells (n_cells), 750 

number of unique genes expressed per cell on average in the RNA profile (nGene_RNA), total 751 

counts expressed per cell on average in RNA profile (nCount_RNA), number of unique 752 

fragments per cell on average in the ATAC profile (nFrag_ATAC), number of peak counts per cell 753 

on average in the ATAC profile (nPeakCount_ATAC).  754 

 755 

 756 

  757 

Source n_cells nGene_RNA nCount_RNA nFrag_ATAC nPeakCount_ATAC 

PBMC 10085 2013 4463 15510 11305 

BMMC site 1 

donor 2 (S1D2) 6740 1365 2525  11064 7512 

BMMC site 1 

or donor 1 29486 1205 2227 11798 7615 
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Figure legends 758 
 759 
Figure 1: Outline of the benchmarking evaluations. (A) Scheme to evaluate if multiome data 760 
help the integration of single-modality data. (B) Scenarios simulated to evaluate multi-omic 761 
integration methods. 762 
 763 
Figure 2: Comparison of integration performance without vs. with multiome cells. (A) The 764 
number of cells and cell types for each simulated dataset using the PBMC or BMMC multiome 765 
data as the ground truth. (B – C) Performance of cell type annotation and peak-gene 766 
association recovery in the PBMC-based simulations (B) and BMMC-based simulations (C). ARI 767 
and NMI measure agreement between predicted cell type and ground-truth labels. Peak-gene 768 
pair % recovered is the percentage of peak-gene pairs correctly identified comparing to the 769 
ground-truth list calculated using 10,412 paired PBMC cells (B) and 6,740 BMMC cells (C). F1 770 
is the prediction accuracy normalized by the number of false positives and false negatives. 771 
Dashed line shows the percent recovery and F1 score calculated using 1,000 multiome cells. 772 
Error bar is mean ± standard deviation. (D) Runtime measured in seconds, for each method, in 773 
log2 scale. Error bar is mean ± standard deviation. (E) UMAP projection using integrated 774 
embedding for a select number of methods. UMAP projection for the other methods are shown 775 
in Supplementary Figures 3 (PBMC) and 4 (BMMC). 776 
   777 
Figure 3: Evaluation of integration performance at varying sequencing depth for multiome cells. 778 
(A) Details of the simulation scheme. (B – C) Performance of cell type annotation and peak-779 
gene association recovery in the PBMC-based simulations (B) and BMMC-based simulations (C: 780 
left panel, 2,000 multiome cells; right panel, 4,000 multiome cells). ARI and NMI measures 781 
agreement between predicted cell type and ground-truth labels. Peak-gene pair % recovered is 782 
the percentage of peak-gene pairs correctly identified comparing to the ground-truth list 783 
calculated using 10,412 paired PBMC cells (B) and 6,740 BMMC cells (C). F1 is the prediction 784 
accuracy normalized by the number of false positives and false negatives. (D) Performance of 785 
cell type annotation using Seurat v3 or Seurat v4 at increasing depth or increasing number of 786 
cells. (E) Performance of peak-gene association recovery using Seurat v3 or Seurat v4 at 787 
increasing depth or increasing number of cells. For all subplots, error bar is mean ± standard 788 
deviation. 789 
 790 
Figure 4: Evaluation of integration performance in the presence of batch effects. (A) Simulation 791 
details for the constructed data with technical batches and biological batches. (B) Performance 792 
of cell type annotation and runtime in the presence of technical and biological batches shown in 793 
(A). ARI and NMI measure agreement between predicted cell type and ground-truth labels. 794 
Runtime is measured in seconds, for each method, in log2 scale. Error bar is mean ± standard 795 
deviation. (C) Simulation details for two datasets with more complex batch structures. (D) 796 
Performance of cell type annotation and runtime in the presence of technical and biological 797 
batches shown in (C). ARI and NMI measure agreement between predicted cell type and 798 
ground-truth labels. Runtime is measured in seconds, for each method, in log2 scale. Whisker is 799 
1.5 times the inter-quartile range. 800 
 801 
 802 
 803 
 804 
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