
The formation of an expanding memory representation in the hippocampus 
 

Sachin P. Vaidya, Raymond A. Chitwood & Jeffrey C. Magee 

Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondence to:  Jeffrey C. Magee 

    HHMI/Baylor College of Medicine 

    Jan and Dan Duncan Neurological Research Institute 

    1250 Moursund Dr., Houston, TX, 77030, USA 

    Email: jcmagee@bcm.edu 

 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.02.01.526663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526663


Abstract 
 
How episodic memories are stored within brains is poorly understood.  While certain 

memory-retaining neurons have been potentially identified1-3, it is unclear if they retain 

learned information4,5.  Further, there is considerable evidence that neuronal activity is 

unstable and may require additional mechanisms to support robust memory6-11.  To examine 

these issues, we recorded the activity of a hippocampal CA1 neuronal population for 7 days 

as mice learned cued reward locations.  These data and modelling results suggest that two 

place cell (PC) pools, distinguished by place field (PF) stability, are formed each day 

(transient: ~1.5 days; sustained: ~2 weeks)8.  Notably, the proportions of these pools changed 

across the week as unstable transient PCs were progressively replaced by sustained PCs, 

markedly enhancing the stability of the total representation.  This growing stable 

representation contained behaviorally relevant information and sustained PCs became 

active immediately at the start of each session.  Finally, the initial formation of sustained PCs 

was associated with a higher rate and efficacy of behavioral timescale synaptic plasticity 

(BTSP) and these PCs showed elevated and more reliable activity.  It, therefore, appears that 

BTSP stabilizes particularly informative PCs, incorporating them into an expanding and 

readily retrievable representation that displays hallmarks of a long-lasting memory.  

 

Any beneficial information learned by animals during a behavioral episode should be 

retained and later retrieved during similar experiences12,13.  Within the hippocampus, learning 

during an experience produces environment-specific population activities (context 

discriminability)14-16 that include high densities of PCs at reward sites and salient feature locations 

(over-representations) 17-21.  The retrieval of a stored memory of this experience should be 

observable as correspondingly structured population activity on subsequent days of similar 

experience.  

There is evidence, primarily from neuronal tagging studies (e.g., immediate early genes; 

usually c-Fos), that such a memory retrieval, and by implication, storage process may occur in a 

population of active hippocampal place cells (PCs)1-3.  Yet it is not clear from these and other 

studies if the tagged neurons contain the experience-dependent information learned by the 

hippocampus (i.e., the discriminability and over-representations)4,5.  In addition, many 

longitudinal studies that followed populations of PCs for days report that the hippocampal 
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population code is relatively unstable, with only a small fraction of the same PCs remaining active 

over a week-long exposure to the same behavioral environment6-11.  Therefore, how episodic 

memories are stored in sparse neuronal populations within the hippocampus remains poorly 

understood. 

We used two-photon Ca2+ imaging to longitudinally record the activity of a single 

hippocampal CA1 neuronal population for 7 days as head-fixed transgenic mice expressing 

GCaMP6f22 learned two separate reward locations on a linear treadmill that was enriched in tactile 

features (2511 total pyramidal neurons tracked; 126±5 laps/session; 70 sessions over 7 days in 10 

mice) (Fig. 1a; Extended Data Fig. 1).  The mice were first habituated on a featureless track as a 

sucrose-water reward was delivered at random locations.  On day 1, the habituated mice were 

exposed to a new feature-containing track with two alternating reward locations given in 12-18 lap 

blocks.  Reward location was contingent on a specific light cue given to either the left or right eye 

at a set location (Fig. 1b).  Behavioral performance, as assessed by running and licking patterns 

improved over the 7 days (Fig. 1c-e).  Both single neuron (Fig. 1f&g; Extended Data Fig. 2a) and 

population (Fig. 1h; Extended Data Fig. 2b) PC activity also evolved over the recording days such 

that by day 7 two highly distinct and stable neuronal activity patterns had developed 

(discriminability), each with its own PC spatial density profile (over-representations) (Fig. 1i; 

Extended Data Fig. 2).  

 
Fig. 1: Daily evolution of behavior, single neuron and population activity.  a, Schematic of experimental apparatus 
and (b) two different cue-reward location conditions.  c, Average velocity profiles for mice during condition RL1 
(blue; shading is SEM) and RL2 (orange) on day7.  Note selective slowing near reward locations.  d, Licking 
probability in reference to reward locations with anticipatory licking shown in red for day 7.  e, Licking selectivity 
(see Methods) as a function of behavior day. f, example PCs with RL2 preference, RL1 preference, and no preference 
(left to right).  g, Percentage of PCs showing high cell discriminability increased across experimental days.  h, 
Population discriminability index (PDI) increases with experimental day. Dashed line shows PDI for shuffled data.  i, 
Heat maps of PCs with PF activity in condition RL1 (top), during RL1 (top left) and RL2 (top right; both sorted by 
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activity during RL1). Bottom, same as top but for PC with PFs active in condition RL2 (sorted by activity during 
RL2).  
 

To look for the formation of a memory representation in this neuronal population we 

tracked active PCs on each experimental day for the entire week (see methods for PC criteria).  

The total population of active PCs for any given day was relatively constant (average PC count/day 

from 10 mice combined=767±8 PCs, n=14; for 2 reward location (RL) conditions over 7 days; 

PCs are 30.5% of imaged pyramidal neurons).  For PCs active on Day 1 we observed that those 

maintaining a consistent PF location for all of the consecutive days decreased progressively from 

~35% on the next day (day 2) to ~6% by day 7 (Fig. 2a) (PF center of mass (COM) on each 

subsequent day within ±30 cm of location on the first day; see methods and Extended Data Fig. 

3).  Performing this same analysis for each of the subsequent days (i.e., days 2-7) showed a similar 

rate of decrease in PC counts for each day (Fig. 2a).  The decay of consistently active PCs that first 

appeared on days 1&2 were well fit by double exponential functions (tfast=0.67±0.02 day; tslow 

=4.6±0.19 days; n=4, 2 RL conditions for each day; Fig. 2a; Extended Data Fig. 3).  This suggests 

the presence of two separate pools of PCs that can be distinguished by the duration over which 

they maintain a consistent PF on consecutive days20.  Further, the enhanced stability of a set of 

PCs (presumably those producing tslow) resulted in an accumulation of PCs that had first appeared 

on previous days (past PCs), while the number of newly appearing PCs (new PCs) decreased 

through the week (Fig. 2b-e).  The quantity of past PCs was much higher than expected from a 

random memoryless process suggesting that these PCs are part of an expanding memory 

representation (data; pastPC total=2284 vs expected=490; Fig. 2d; Extended Data Fig. 2).   

All aspects of the above process were adequately captured by the dynamics of a competitive 

interaction between three pools of model “neurons”, which simulated (1) available pyramidal cells, 

(2) transient cells and (3) sustained cells (see Methods; Extended Data Fig. 4a-e). The different 

decay rates in the model (based off the double exponential fits in Fig. 2a) produced a sustained 

group that decayed back to the available population nearly an order of magnitude more slowly 

(tsust=4.6 days) than the transient population (ttrans = 0.67 days) (Extended Data Fig. 4f&g).  The 

resulting accumulation of the sustained model cell group over 7 days simulated the activity of real 

PCs (Fig. 2f) and the model results accurately predicted the PC counts over the week (MSE= 182, 

n=28; Fig. 2g).   
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Fig. 2: Two pools of PCs are formed each day.  a, counts for PCs that first appear on day 1 and maintained a 
consistent PF on subsequent days (consistent PF present on each day from 1 through 7; red).  Other colors are PCs 
that first appear on days 2-7 and maintained a consistent PF on subsequent days (day 2, black; day 3, dark blue; day 
4, dark green; day 5, dark red; day 6 light blue; day 7, light green).  PCs during RL1 (squares) and RL2 (circles).  Solid 
lines over PC counts for days 1 and 2 are double exponential functions produced by fits of data.  b, (left) PCs active 
on day 1 sorted by PF location, (right) PCs active on day 7 separated into new PCs (upper; have not maintained 
consistent PF) and past PCs (lower; maintained consistent PF from previous days), sorted by PF location on day 7.  c, 
PCs divided into past PCs (red) and new PCs (blue) plotted against experimental day.  All PCs (which is equal to the 
sum of past and new PCs; black) versus experimental day.  PC counts are the average of RL conditions.  d, Ratio of 
past PC to new PC counts for each experimental day (Gray circles).  Calculated ratio from random process (black line; 
Extended Data Fig. 3).  e, Example PCs.  f, Model cell counts for transient (blue), sustained (red) and available (black) 
pools for continuous model run for 7 days.  At top, 1 hour on-track, (100 time-steps for activation; Black rectangles) 
and 23 hours off-track (2300 timesteps for decay; gray rectangles) are shown for each day.  g, PC numbers (average 
of two RL conditions), color scheme same as panel b.  Gray lines are from single day runs of model with sustained 
and transient components combined (both; see Extended Data Fig. 4g).  MSE =182. h, PC counts for sustained group 
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(red circles) and sustained population model estimate (red line), total PC count (black circles) and total model pool 
count (black line), blue shading is transient model pool count and red shading is sustained model pool count.  Open 
circles on days 6&7 indicate predictions from model.  i, Fraction of total PCs count that are sustained PCs versus 
experimental days (circles) and model predictions (line).  j, Visualization of transient PCs and sustained PCs evolution 
for each experimental day using PC activity heat maps for each group sorted by PF location in that population.  Color 
bars on sides are coded according to (a).  PCs from RL2 condition and total counts are shown at top.  Dashed line on 
days 6 and 7 indicates where cell counts were inferred from model.   
 

The presence of two very different PC stabilities suggests a relatively straightforward 

method for isolating PCs into separate populations based on the number of days that they 

maintained consistent PFs (transient PCs ≤ 2 days; sustained PCs > 2 days; Extended Data Fig. 

4f).  Using this method to separate the model pools, which have a known identity, predicts only a 

small error in the numbers of PCs assigned to each group (mean error =6.9%; Extended Data Fig. 

4h).  We thus separated the actual PCs present on each experimental day and the accumulation of 

PCs within the sustained group at the expense of the transient population was readily observable 

(Fig. 2h-j).  Indeed, the proportion of the total active PC population provided by sustained PCs 

increased nearly three-fold after 5 days of repeated learning and this was significantly correlated 

with a similar increase in the stability of the total PC population over the same days (Fig. 2i; 

Extended Data Fig. 5a-c).  Together, these data suggest that two populations of PCs are active on 

each day, one that rapidly becomes inactive or with altered PF tuning, and another much more 

stable population that appears to be added to a progressively expanding memory representation of 

the animal’s past experience. 

For the sustained PCs to function as a memory of what was previously learned we would 

expect to find properties of the sustained representations that reflect the animals prior experience. 

Thus, we determined the spatial density profiles of the two groups of PCs (Fig. 3a) and found that 

the PC density (PC count/cm) around salient regions (reward and cue) was substantially more 

elevated in the sustained group than in the transient population (see confidence intervals in Fig. 

3b, Extended Data Fig. 5d,e)20.  In addition, we determined the level at which each individual 

neuron (CDI) as well as the entire population (PDI) was able to discriminate the two different 

reward conditions and found that sustained PCs were more discriminative than transient (mean 

CDI; sustained:0.172±0.003, n=2455 cells, transient:0.089±0.002 n=1874 cells, p=<1.0e-7 

unpaired two-tailed students t-test; mean PDI; sustained: 0.14±0.02, n=10 mice, transient: 

0.09±0.01 n=10 mice, p=1.0e-3 paired two-tailed students t-test; Fig. 3c-e, Extended Data Fig. 5f).  

Thus, the experience-dependent development of both the spatial over-representation of salient 
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regions and reward condition discrimination were found to be markedly elevated in the sustained 

over the transient PC group.  

 
Fig. 3:  Properties of sustained and transient PC groups.  a, PC activity heatmaps for sustained (left) and transient 
(right) groups under RL2 condition days 1-5 combined.  b, PF densities for sustained PCs (left, red) and transient PCs 
(right, blue) under RL1(dark colors) and RL2 (light colors) conditions.  Gray lines are 99% confidence intervals of 
random distribution produced via bootstrapping 10,000 times.  Sustained groups include identified PFs from days 1-
7 and transient groups includes identified PFs from days 1-5.  c, Cosine similarity matrices for sustained (left) and 
transient (right) populations on day 5 from a single mouse.  d, Population discriminability (PDI) versus experimental 
day, p- values from two-way, paired t-tests are shown for each day.  e, cell discriminability (CDI) versus experimental 
day, n- (sustained, upper; transient, middle) and p- values (lower) from two-way, unpaired t-tests are shown for each 
day.  f, Cumulative distribution of onset lap (first trial PC appeared) for the first days that PC appeared for sustained 
(days 1-5) and transient groups (days 1-6).  g, Sustained group on subsequent days (2-7).  Transient group is same as 
in panel (f).  h, Ratio of number of sustained PCs to number of transient PCs for a given lap for days 2-5 (gray dashed 
day 2; gray solid, day 3; black dashed, day 4; black solid, day 5).  Inset shows ratios normalized to the peak amplitude 
of each day.  i, Reward licking selectivity versus fraction of total population that is composed of sustained PCs.  P-
value for linear regression is shown. 
 

We next asked if the sustained population was active over the same range of trials during 

a given behavioral session as the transient population.  We found that while the range of PC onset 

trial was similar between the two groups on the first day that a PC appeared (KS test p = 0.9541; 

Fig. 3f, Extended Data Fig. 5g), on all subsequent days the sustained PCs became active much 

earlier in the session than the transient population (KS test p = 3.63e-06; Fig. 3g; Extended Data 
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Fig. 5h). This caused the fraction of the total representation contributed by the sustained population 

to be higher at the beginning of each session, particularly on later days (Fig. 3h).  Thus, stable PCs 

appear to be immediately retrieved into activity during each new day’s experience.  Finally, we 

found that the daily increase in the selectivity of licking that occurred across the week of behavior 

was highly correlated with the proportion of the total PC population made up of sustained PCs on 

a given day (Fig. 3i Extended Data Fig. 5i). These data suggest that the daily rapid retrieval of a 

growing memory representation could contribute to the progressive enhancement of the behavior 

observed in these mice. 

To investigate what mechanisms might be responsible for the different levels of stability 

observed in the above two populations we more closely examined the activity of each PC on the 

first day that it became active (first day of appearance).  Specifically, we looked for the known 

signatures of behavioral timescale synaptic plasticity (BTSP) within each population23-25.  BTSP 

is a directed form of synaptic weight plasticity that is induced when input from the entorhinal 

cortex (EC3) drives Ca2+ plateau potentials in the dendrites of CA1 neurons.  Accumulating 

evidence suggests BTSP is the primary mechanism of PF formation and learning-related changes 

in CA1 population activity23-28.  Here, we found that both the transient and sustained groups 

showed prominent signatures of BTSP induction on the first day of appearance (Fig. 4a-d; 

Extended Data Fig. 6a-i), suggesting that BTSP is involved in producing both PC pools.  However, 

we also observed that the sustained population had a significantly higher average number of BTSP 

induction events per cell than the transient population (5-day mean, sustained; 1.02±0.02 

events/cell, n=1107; transient 0.65±0.01 events/cell, n=2904; p=<1.0e-7, unpaired two-tailed 

students t-test; Fig. 4e, Extended Data Fig. 6j).  Consistent with a higher level of BTSP induction 

in the sustained PCs, we found that the sustained PCs had a larger PF amplitude in general, were 

more reliable from trial to trial and a given BTSP event induced a greater amount of PF potentiation 

(5-day mean amplitude; sustained; 1.25±0.02 DF/F, n=1107; transient 1.01±0.01 DF/F, n=2904; 

p=<1.0e-7, unpaired two-tailed students t-test; Fig. 4f, Extended Data Fig. 6k; 5-day mean 

reliability, sustained; 0.72±0.006 fraction of active laps, n=1107; transient 0.58±0.004 fraction of 

active laps, n=2904; p=<1.0e-7, unpaired two-tailed students t-test; Fig. 4g, Extended Data Fig. 6l; 

Event associated amplitude increase: sustained, 1.22±0.03 DF/F, n = 748; transient, 

1.09±0.02 DF/F, n = 1475, p=0.0019, unpaired two-tailed students t-test; Extended Data Fig. 

6a,d&i).  Properties of BTSP induction events, which presumably reflect the somatic component 
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of the plateau potential, were either not significantly different or had minor differences (Sustained 

vs Transient: BTSP Event Duration (s): 3.88±0.37 vs 3.44±0.17: p=0.23; BTSP Event Amplitude 

(DF/F): 3.19±0.07 vs 2.95±0.05; p=0.008, unpaired two-tailed students t-test; Sustained n = 748, 

Transient n = 1475).  These data indicate that, both in terms of frequency and efficacy, a greater 

amount of BTSP induction within a subset of PCs may produce the stable memory representation. 

 

 
Fig. 4: Role of BTSP in producing sustained and transient PC pools.  a, PC activity (sustained and transient 
combined) around BTSP induction event on the first day of appearance.  Average activity aligned to trial where a 
large (20th percentile) Ca2+ signal associated with an increase in PF amplitude and reliability occurred.  b, Histogram 
of PF center of mass shift for combined pools determined from part (a).  c, Relationship between PF width and running 
velocity of mouse on event lap for PCs determined from part (a).  d, Example of Sustained and Transient cells on first 
day of appearance.  Only laps from one RL condition are shown. e, Average number of BTSP induction events per 
cell for sustained (red) and transient (blue) pools versus the first day of appearance (inset shows cumulative 
distributions for all days combined).  f, Average PF amplitude for sustained (red) and transient (blue) PC pools versus 
the first day of appearance (inset shows cumulative distributions for all days combined) g, Average PF reliability for 
sustained (red) and transient (blue) PC pools versus the first day of appearance (inset shows cumulative distributions 
for all days combined).  h, Schematic explaining that all comparisons are between transient and sustained groups for 
the first day of PC appearance. Ns for each day in (e-g): sustained 168, 271, 370, 392, 443; transient 644, 474, 401, 
322, 301.   
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The results presented above suggest that BTSP-mediated learning produces two separate 

populations of PCs in hippocampal area CA1.  One population, whose stable PF activity last 

approximately 36 hours, appears to collectively map spatial locations in the environment with a 

relatively low context discriminability.  A second population, with a stability lasting for weeks, is 

composed of PCs whose activity showed a bias to salient regions of the environment and a high 

discriminability.  Daily repeated learning causes the stable PC population to grow such that it is 

predominant by the end of one week’s learning.  Notably, this growing stable population maintains 

the information about the environment learned in the prior days and retrieval of this population is 

immediate at the start of a new day’s behavioral session.  This suggests a process that seeds the 

current day’s representation with learned information from the animal’s past experience.  Finally, 

we found a strong correlation between the relative size of the stable memory representation and 

behavioral performance.  Overall, we interpret these data to indicate that the sustained PC 

population is acting as an accumulating representation of past experience and that this long-lasting 

memory is beneficial for behavior.   

The widely varying stability of the above PC pools is reminiscent of past theoretical work 

on the so-called synaptic plasticity-stability tradeoff present in network models of memory 

storage29-31.  The obvious interpretation here would be that these two PC pools are produced by 

the induction of different levels of BTSP that, in turn, generates widely varying weight stabilities 

within a single type of synapses (e.g. the Schaffer collateral synapses from CA3 to CA1).  

However, future experiments should examine if there are actually two different types of synapses 

involved in producing the two pools of PCs.  That is, perhaps the rapid and transient learning 

occurs by weight changes to one group (SC synapses) while a slower weight change, that is more 

resistant to overwriting, occurs within another (e.g. the perforant path synapses from EC3 to CA1).  

The similarity between the spatial density distributions of the sustained PCs and that of EC3 input 

to CA1 during similar experience reinforces this possibility23.  Other questions relate to processes 

that could regulate the size and stability of the sustained population (i.e. alter the fraction of 

sustained PCs or tslow) such as different behavioral regimes, modulation of neuronal excitability, 

sleep and perhaps various neuropathologies32-34.  In the end, our observations suggest that PCs 

with relatively stable synaptic weights produce an informative, readily retrievable, and 

progressively expanding memory representation in the mouse hippocampus.  We also present 
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experimental methods for tracking this process and exploring its mechanisms that might be useful 

in further determining how episodic memories are formed in brains. 
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Online Methods 

Mice and Surgery 

All experiments were performed according to methods approved by the Baylor College of 

Medicine Institutional Animal Care and Use committee (Protocol AN-7734) and in compliance 

with the Guide for Animal Care and Use of Laboratory Animals. The data was collected from 29 

GP5.17 mice of either gender (Jackson Laboratory, stock no. 025393). All experiments were 

performed in adult (>10 weeks) mice. Mice were housed under an inverse 12-hour dark/12-hour 

light cycle (lights off at 9 am) with temperature (~21 degrees Celsius) and humidity (~30-60%) 

control. All surgical procedures were performed under deep isoflurane anesthesia as described 

before22. After locally applying topical anesthetics, the scalp was removed, and the skull was 

cleaned. A 3 mm-diameter craniotomy was centered at 2.0 mm posterior from Bregma and 2.0 mm 

lateral from the midline above the hippocampus. Cortical tissue within the craniotomy was slowly 

aspirated under repeated irrigation with warmed sterile saline 0.9%. Once the external capsule was 

exposed, the cannula (3 mm diameter, 1.7 mm height) with a window (CS-3R, Warner 

Instruments) on the bottom was inserted and cemented to the skull. Finally, a custom-made 

titanium head bar was attached to the skull parallel to the plane of the imaging window using dental 

acrylic (Ortho-Jet, Lang Dental). Mice were given a recovery period of one week before any 

further behavioral training. 

Behavioral Apparatus 

A linear treadmill apparatus with stationary head-fixation posts and a self-propelled belt of length 

180 cm was used to train the animals to run and perform subsequent behavioral experiments. The 

treadmill was equipped with rotary encoders that digitized the animal’s position and velocity using 

Arduino- based microcontrollers. The location data was interfaced with a behavioral control 

system using a BPod module (Sanworks LLC) that delivered rewards through a solenoid valve 

(quiet operation, Lee valves) or light cues through an LED system at appropriate locations of the 

belt. All behavioral variables (position, velocity, lap markers, licks, trial types) were digitized at 

10KHz via a PCIe-6343, X series DAQ system (National Instruments) using WaveSurfer software 

(wavesurfer.janelia.org).  

Behavioral Task and Training 

After a 7-day recovery period, mice were placed on water restriction (1.5ml/day). The behavioral 

training started with habituation to the experimenter for water rewards for 30 mins per day for at 
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least 5 days. The mice were then introduced to the treadmill and trained to run for water rewards 

at random locations on a blank belt with no sensory features. The mice were accustomed to the 

light cue (blue LED positioned in front of both eyes, flashing at 10 Hz for 500 ms) as well as 2-

photon imaging during later parts of the training regime. The mice were trained for 5-7 days and 

had to run 100 laps in one hour before they were deemed ready to be introduced to the experimental 

task.  

On day 1 of the behavioral task, the mice were introduced to a new featured belt (6 varying sensory 

cue patterns of approximately 15 cm equidistantly placed on a new belt). A light cue on either side 

of the animal was triggered at 40 cm (flashing 10 Hz for 500 ms) that predicted the reward location 

at 100 cm when activated on the left side and 160 cm when activated on the right side. Trials for 

each location were grouped in epochs of 12-18 laps and randomly switched. Mice performed one 

session per day of this task for a succession of 7 days.  

Two-photon Ca2+ longitudinal image acquisition and signal processing 

All Ca2+ imaging recordings were performed in the dark using a custom-made two-photon 

microscope (Janelia MIMMS design). Transgenetically expressed GCaMP6f was excited at 

920 nm (typically 40 – 60 mW) by a Ti:Sapphire laser (Chameleon Ultra II, Coherent) and imaged 

through a Nikon 16x, 0.8 Numerical Aperture (NA) objective. Emission light passed through a 565 

DCXR dichroic filter (Chroma) and was detected by GaAsP photomultiplier tubes (11706P-

40SEL, Hamamatsu). Images (512 × 512 pixels) were acquired at ~30 Hz using the ScanImage 

software (Vidrio Technologies, LLC).  

A reference field of view (FOV) was chosen and registered before the start of the experiment for 

every animal. Each day, the FOV was aligned to this reference and the experiment aborted if 

differences were noted in the imaging plane on subsequent days. Acquired two-photon images 

were motion-corrected using Suite2p34 (Python version, https://github.com/MouseLand/suite2p).  

Images were registered across days and only data from mice with stable FOVs across 7 days was 

considered for further processing. Image Segmentation into regions of interest (ROIs) to identify 

neuronal somata was done manually in ImageJ (version 2.3.0) to ensure that each ROI could be 

reliably tracked across all days.  Briefly, frames were subsampled from across all sessions to form 

a composite image across days. Image segmentation was performed on this composite image with 

subsequent manual verification that every ROI adequately and exclusively represented the given 

cell on each day.  Signal extraction was performed using custom code in Python (scipy.ndimage). 
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The raw fluorescence was converted to Df/f, where Δf/f was calculated as (F – F0)/F0, where F0 

is the 50th percentile of a 25-s moving window. Only significant Ca2+ transients, defined as 

transients larger than 3 Standard Deviations above the baseline noise were considered as functional 

activity for any further analysis. Baseline noise was estimated from deviations below peak 

histogram values of all Δf/f activity. 

Determination of Place Field Activity 

Spatial maps of neural activity were formed by dividing the 180 cm track into 50 spatial bins of 

3.6 cm each. For each spatial bin, for every lap, the mean Df/f was calculated when the velocity of 

the animal was above 2cm/s. 

A behavioral epoch was determined to have place field (PF) activity if 1) Spatial Activity in the 

epoch had spatial information that exceeded 95% confidence interval determined by shuffling the 

epoch activity as previously described23,35. 2) Only laps with peak Df/f within 30 cm of the peak 

average epoch activity were considered for further PF analysis. 3) An onset lap could be 

determined as the first instance where 3/5 laps showed PF activity. 4) The reliability of PF activity 

after the onset lap was 40% for the rest of the epoch. 

The PF location for a given reward location was determined as the peak of the average lap activity 

for all laps within the active behavioral epochs for that reward location.  

Determination of day-to-day Place Field stability criteria and stability index 

To determine the amount of day-to-day PF shifting or jitter that should be tolerated for a PC to be 

considered as having a consistent PF we generated a distribution of the day-to-day COM shifts of 

the population of PCs.  This distribution was generally normal (however, with a slight negative 

shift from zero) and thus was fit with a gaussian function from which 3 SD was found to be 25 cm 

(Extended Data Fig. 2a).  Based on this we used a window of ±30 cm to fully capture the PCs 

within this central process.  Thus, to be considered a stable PC the neuron had to express a 

consistently active PF on each consecutive day as defined by its COM being within 30 cm of that 

on the first day of appearance.  We calculated the expected results (as in Fig. 2a) of a random, 

memory-less, process that used the ±30 cm window of COM jitter (A·0.3d·0.33d-1).  Where A is 

the available population of neurons on a given day (starts at 2511 on day 1 and decreased as A 

minus pastPCs on a given day), 0.3 is the probability of any particular neuron becoming a PC 

(given the fraction of average PC count and total imaged neurons or 767/2511), 0.33 is the jitter 
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window (60 cm/180cm) and d is the day of the “recording”.  The difference between the analysis 

shown in Extended Data Fig. 3B and that in Fig. 2a gives confidence that using the ±30cm window 

does not cause our data to be heavily impacted by a random process.  Finally, we analyzed the PC 

data using a ±20 cm window and found that although there were fewer PCs in the stable 

populations the data were still well fit by a double exponential with similar time constants as found 

using the ±30 cm window (Extended Data Fig. 3c).  We surmise that the tighter window slightly 

reduced the time constants as more PCs were removed from the stable groups on later days because 

they had shifted outside the window for one day during the week (even if they returned the next 

day; see SFig. 3E, cell 909).  In this way the tighter time window can be viewed as overly 

restrictive. 

For calculations of sustained and transient PC numbers (Fig. 2) we identified transient cells as 

those that had a stable PF for 1 or 2 days (≤2 days) and sustained as those with a stable PF for 3 or 

more days (>2 days).  For calculations of sustained and transient PC properties (Figs. 3 &4) we 

identified transient cells as those that had a stable PF for 1 day (1 day) and sustained for 3 or more 

days (>2 days).  We based this on accuracy data from the model shown in Extended Data Fig. 

3i&j.  This later criterion gave less accurate PC counts but more accurate properties since there 

was a reduced misidentification.  

PF stability index was the fractional difference between the number of PCs per mouse that had a 

minimum level of shift (<20 cm) and that expected from random.  To calculate this we subtracted 

the upper 99% confidence interval of a random distribution from the total number of PCs with a 

two-day interval (d versus d+2) shift <20 cm (1st three 5 cm bins) then divided this by the total 

number of PCs in that mouse for the given day (Extended Data Fig. 5a).   

 Behavioral data quantification 

The Velocity and Licking behavior was mapped into 50 spatial bins per running lap for 

quantification of behavior. For licking selectivity, the probability of licking at a given location bin 

was quantified as the percentage of laps with at least one lick inside the given spatial bin for the 

entire session. The reward anticipatory zone was defined as 3 bins before reward location and the 

random zone consisted of any 3 bins not overlapping the active or alternate reward zone. Licking 

Selectivity was quantified as  

𝐿𝑖𝑐𝑘𝑖𝑛𝑔	𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑃!"#$(𝐴𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑜𝑟𝑦	𝑅𝑒𝑤𝑎𝑟𝑑	𝑍𝑜𝑛𝑒) − 𝑃!"#$(𝑅𝑎𝑛𝑑𝑜𝑚	𝑍𝑜𝑛𝑒)

𝑃!"#$(𝐴𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑜𝑟𝑦	𝑅𝑒𝑤𝑎𝑟𝑑	𝑍𝑜𝑛𝑒)
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Trial-by-trial Cosine Similarity and Discrimination Indices 

Cosine Similarity Matrices for individual cells and across population were calculated as previously 

described36. Briefly, for the Cosine Similarity Matrix of an individual cell, every row of the cell’s 

spatial activity map, 𝐴"	, was divided by its 𝑙! norm to give the matrix 𝐴"̅. The cosine similarity 

matrix for each cell is then given by 𝐶" = 	𝐴"̅𝐴"̅". For Population Similarity matrices, the single cell 

spatial activity maps were horizontally concatenated to form a fat matrix 𝐴 = [	𝐴#|𝐴!| … |𝐴$], 

where 𝑁 is the number of neurons recorded in that session. Each row of 𝐴 was divided by its  

𝑙!	norm to give the matrix 𝐴̅. The Population Similarity Matrix was then given by 𝐶 = 𝐴̅𝐴̅". 

The Cellular Discrimination Index was calculated for each cell from 𝐶". For each row of 𝐶", the 

average ‘within RL’ cosine similarity per row was calculated as the average value from all trials 

of the same reward location and ‘between Rl’ cosine similarity per row, as the average value from 

all trials of the alternate reward location. The difference in the within RL and between RL averages 

across all rows was deduced as the Cellular Discrimination Index (CDI). The Population 

Discrimination Index (PDI) was likewise calculated using the Population Similarity Matrix, 𝐶 as 

the starting matrix. 

BTSP Analysis 

A putative BTSP event was identified as 1) a strong Calcium event that had an amplitude in the 

top 20th percentile for all Calcium events in that cell for a given session. 2) Only laps with peak 

Df/f within 30 cm of the putative BTSP event peak were considered for further BTSP analysis. 3) 

the event associated with 4/5 subsequent laps actively firing, and 4) an amplitude increase of 50% 

when the activity of following 5 laps was compared to that of the preceding 5 laps. The values for 

all BTSP related events with respect to peak, duration, location were determined in the time 

domain and not from the average spatial activity maps. 

Pharmacology during two-photon imaging 

For the local pharmacology experiments, the animal was briefly anesthetized >120 minutes before 

the recording session using isoflurane. The hippocampal window was carefully punctured (~100 

μm-wide hole) near the imaging field of view and then covered with a silicone elastomer (Kwik-

Cast). This procedure lasted about 5-10 min. The animal was allowed to recover at least 120 mins. 

Thereafter, the animal was positioned under the two-photon microscope, the Kwik-Cast plug was 
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removed, and the cannula was filled with D-APV (50-75 µM) dissolved in sterile saline or with 

sterile saline alone. The animal was prevented from running for initial 10 mins to allow for 

diffusion of the drug. APV or saline was present in the cannula throughout the remainder of the 

recording session. 

Computational model 

To simulate the production of two groups of active PCs with distinct PF activity decay rates 

we used a standard first order competitive interaction between three cellular pools, which modelled 

(1) available pyramidal cells, (2) transient cells and (3) sustained cells, as schematized (Extended 

Data Fig. 3).  The reactions were separated into two phases to reproduce the two components of 

the behavior (time on- and off-track).  Forward rate equations (activations) were: 
%[']
%)

= −(k1 + k2)[A]; 

%["]
%)

= k1[𝐴]; 

%[*]
%)

= k2[𝐴]; 

where initial [A] was 2511 and dt was 0.01 hour for 100 time steps (1 hour).  After which the 

elements were allowed to decay back to the available population for an additional 2300 time steps 

(23 hours) according to rate equations (decay) 
%["]
%)

= −k3[T]; 

%[*]
%)

= −k4[S]; 

%[']
%)

= k3[T] + 	k4[S]; 

Rate constants (k1, k2, k3, k4) are shown in Extended Data Fig. 4.  The values of each of these 

were determined from the data where k3 and k4 were set by the fast and slow time-constants, 

respectively, produced in Fig. 2.  [A] was initialized to the total number of imaged neurons. k1 and 

k2 by the initial, fractional amplitude of the slow component (Amp2) determined in Figure 1. 

Initial [A] = 2511 

𝑘1 = 𝑙𝑛 ;!+##,-.-/0	234	5/6#
!+##

< · ; '78#
'78#9	'78!

<; 

𝑘2 = 𝑙𝑛 ;!+##,-.-/0	234	5/6#
!+##

< · ; '78!
'78#9'78!

<; 

k3 = #
:#

; 
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𝑘4 = #
:!

; 

To reproduce multiple days of on- and off-track experience, repeated activations and decays were 

given and k1 and k2 were scaled daily by the fraction of the population present at the beginning 

of each day and the desired daily total population from data  

𝑘1	 × 	𝑎;      𝑎 = 1 − ; [*]!9["]!
;<8;=);%	%>?@A	)B)>@	CDE

<; where d is day.     

𝑘2	 × 	𝑏;      𝑏 = 𝑎	 × 	0.6. 

b was the only free parameter in the model and was adjusted to minimize MSE between the model 

results and the data shown in Fig. 2a.  

To generate the data to compare with that in Fig. 2a we ran the model for single day activations, 

starting at day 1 and progressing through day 7.  The daily values of k1, k2 and [A]t calculated 

from the multiple day run of the model were used.  To determine how well the model corresponded 

to the data we calculated residuals (total residual= -10.1; n=28) and mean squared error (MSE= 

182; n=28) between the model results and the 28 data points shown in Fig. 2a (Fig. 2g).  

Statistical methods.  

The exact sample size (n) for each experimental group is indicated in the figure legend or in the 

main text. No statistical methods were used to predetermine sample sizes, but our sample sizes are 

similar to those reported in previous publications10,23,37 using a similar behavioral task and by the 

expected number of active neurons that can be imaged with the two-photon microscope in awake 

behaving mice. Normality for data was tested with a Kolmogorov-Smirnov test before using any 

parametric statistical testing. If not otherwise indicated in the figure, data are shown as mean ± 

SEM. 
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