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ABSTRACT 

Design principles to improve enzymatic activity are essential to promote energy-material 
conversion using biological systems.  For more than a century, the Michaelis-Menten equation has 
provided a fundamental framework of enzymatic activity. However, there is still no concrete 
guideline on how the parameters should be optimized to enhance enzymatic activity. Here, we 
demonstrate that tuning the Michaelis-Menten constant (𝐾𝑚) to the substrate concentration (𝑆) 
maximizes enzymatic activity. This guideline (𝐾𝑚 = 𝑆) was obtained by applying the Brønsted 
(Bell)-Evans-Polanyi (BEP) principle of heterogeneous catalysis to the Michaelis-Menten equation, 
and is robust even with mechanistic deviations such as reverse reactions and inhibition. 
Furthermore, 𝐾𝑚 and 𝑆 are consistent to within an order of magnitude over an experimental dataset 
of approximately 1000 wild-type enzymes, suggesting that even natural selection follows this 
principle. The concept of an optimum 𝐾𝑚 offers the first quantitative guideline towards improving 
enzymatic activity which can be used for highthroughput enzyme screening. 
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MAIN TEXT 
Introduction 

Enzymes are responsible for catalysis in virtually all biological systems,[1,2] and a rational 
framework to improve their activity is critical to promote biotechnological applications. Since the 
early 20th century, a reaction mechanism where the enzyme first binds to the substrate (E+S → 
ES) before releasing the product (ES → P) has been used as the conceptual basis to understand 
enzyme catalysis (Scheme 1).[3-6] The reaction rate of this mechanism is given by the Michaelis-
Menten equation: 

 𝑣 =
𝑘2𝑆

𝐾𝑚 + 𝑆
𝐸𝑇 (1) 

Here, the reaction rate (𝑣) is expressed as a function of a rate constant (𝑘2), the Michaelis-Menten 

constant (𝐾𝑚), and the substrate (𝑆) and enzyme (𝐸𝑇) concentrations. 𝐾𝑚 can be interpreted as a 
quasi-equilibrium constant for the formation of the enzyme-substrate complex, defined as: 

 𝐾𝑚 ≡
𝑘1𝑟 + 𝑘2

𝑘1

 (2) 

with rate constants defined based on the mechanism shown in Scheme 1. 𝑘2 is the rate constant 
for releasing the product from the enzyme-substrate complex (ES → P), routinely expressed as 
𝑘𝑐𝑎𝑡 in the enzymology literature. These parameters are experimentally accessible by fitting the 
theoretical rate law (Eq. (1)) with experimental data[7-10] and are subsequently registered in 
databases such as BRENDA[11] and Sabio-RK.[12] In principle, the accumulated data may help 
rationalize and improve the activity of existing enzymes.   
 
 
 
 

 
Scheme 1. The standard reaction mechanism of enzyme catalysis. 

 
 
 

However, there is no concrete understanding on how these parameters influence enzymatic 
activity. For example, increasing 𝑘2 may enhance activity according to Eq. (1), or diminish it due to 

a larger 𝐾𝑚  (Eq. (2)).[13] Thus, the mutual dependence between 𝑘2  and 𝐾𝑚  complicates their 
influence on the enzymatic activity ( 𝑣 ), hindering the rational design of enzymes towards 
biotechnological applications such as the synthesis of commodity chemicals,[14] antibiotics,[15] or 
pharmaceuticals,[16] increasing the nutritional content of crops,[17] and restoring the environment.[18]  
 

In this study, we analyzed the Michaelis-Menten equation to clarify the relationship between the 
enzyme-substrate affinity (𝐾𝑚) and the activity (𝑣). The key ingredient of our mathematical analysis 
is the Brønsted (Bell)-Evans-Polanyi (BEP) relationship,[19-23] which models the activation barrier 
as a function of the driving force. This is a well-known concept in heterogeneous catalysis, and in 
conjunction with the Arrhenius equation,[24] can be used to evaluate the mutual dependence 
between 𝑘2  and 𝐾𝑚  to quantitatively. This allowed us to calculate the optimum value of 𝐾𝑚 

required to maximize enzymatic activity (𝑣), a finding which is supported by our bioinformatic 
analysis of approximately 1000 wild-type enzymes. 
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Results 
Construction of the Thermodynamic Model 

In principle, an ideal enzyme with low 𝐾𝑚  and large 𝑘2 can be realized if both 𝑘1 and 𝑘2 are 
increased simultaneously. However, this is physically unrealistic, because the driving force which 
can be allocated to 𝑘1 and 𝑘2 is limited by the free energy change of the entire reaction. Within this 
thermodynamic context, maximum activity is realized by optimizing the distribution of the total 
driving force between the first (E +S → ES) and second (ES → P) steps shown in Scheme 1. To 
quantitatively evaluate the relationship between the driving force and the activity, we have used the 
BEP relationship[19-23] to convert driving forces ( Δ𝐺 ) into activation barriers ( 𝐸𝑎 ), and the 
Arrhenius[24] equation to convert activation barriers to rate constants. 

 
The thermodynamic model which served as the basis of our calculations is shown in Fig. 1. In a 

classical Michaelis-Menten reaction, the enzyme and substrate first form an enzyme-substrate 
complex (E+S → ES) before producing the product in the second step (ES → P). This mechanism 
is conceptually similar to reactions that occur on a heterogeneous catalyst surface, where the 
substrate molecule first binds to the catalyst surface before being converted into the product.[19-23] 
The Gibbs free energies for the formation of the enzyme-substrate complex and the product are 
denoted as Δ𝐺1 and Δ𝐺2, respectively. By definition, their sum must equal the total free energy 
change of the reaction Δ𝐺𝑇: 

 Δ𝐺𝑇 = Δ𝐺1 + Δ𝐺2 (3) 

 
Figure 1. The free energy landscape corresponding to the mechanism shown in Scheme 1. Each 
reaction in the mechanism is labeled by its corresponding rate constant. The free energy landscape 
below indicates the free energy changes (Δ𝐺1, Δ𝐺2) and activation barriers (𝐸𝑎1, 𝐸𝑎1𝑟 , 𝐸𝑎2). 
 
 
From these thermodynamic constraints, we will use the BEP relationship[19-23] to obtain activation 
barriers (𝐸𝑎), and then the Arrhenius[24] equation to obtain rate constants, which ultimately yields 

quantitative insight on the relationship between 𝑘1,  𝑘2, and 𝐾𝑚. Based on the BEP relationship, the 
activation barrier corresponding to 𝑘1 can be written as: 

 𝐸𝑎1 = 𝐸𝑎1
0 + 𝛼1Δ𝐺1 (4) 
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where 𝐸𝑎1
0  represent the activation barriers when the elementary reaction is in equilibrium (Δ𝐺1 =

0). They are positive constants which reflect the inherent favorability of this elementary step. 𝛼1 is 
a positive constant coefficient which indicates the sensitivity of the activation barrier with respect to 
the driving force. Recently, Kari et al have shown that fungal cellulases indeed satisfy such linear 
free energy relationships between the activation barrier and the driving force.[25] Next, activation 
barriers can be converted to rate constants based on the Arrhenius equation[24] as follows: 

 𝑘1 = 𝐴1 exp
−𝐸𝑎1

𝑅𝑇
 (5) 

Here, 𝐴1 is a pre-exponential factor, and 𝑅 and 𝑇 are the gas constant and absolute temperature, 
respectively. Using Eqs. (4) and (5), 𝑘1 can be expressed as: 

 𝑘1 = 𝑘1
0 exp

−𝛼1𝛥𝐺1

𝑅𝑇
   

 = 𝑘1
0𝑔1

−𝛼1 (6) 

where 𝑘1
0 ≡ 𝐴1 exp

−𝐸𝑎1
0

𝑅𝑇
 and 𝑔1 ≡ exp

Δ𝐺1

𝑅𝑇
 were used to aggregate factors independent and 

dependent on the driving force, respectively (see Supporting Information, Appendix 1 for details). 
𝑘1𝑟 and 𝑘2 can also be written similarly as: 

 𝑘1𝑟 = 𝑘1
0𝑔1

𝛼1𝑟 = 𝑘1
0𝑔1

1−𝛼1 (7) 

 𝑘2 = 𝑘2
0𝑔2

−𝛼2 = 𝑘2
0 (

𝑔1

𝑔𝑇

)
𝛼2

 (8) 

using notations similar to those defined for 𝑘1 (See Appendices 2 and 3 for details). Substituting 

these rate constants into Eq. (2) yields the following expression for 𝐾𝑚: 

 𝐾𝑚 ≡
𝑘1𝑟 + 𝑘2

𝑘1

  

 = 𝑔1(1 + 𝐾) (9) 

where 𝐾 was defined as 𝐾 ≡
𝑘2

0𝑔1
𝛼1+𝛼2−1

𝑘1
0𝑔𝑇

𝛼2 . Finally, based on Eqs. (8) and (9), the enzymatic activity 

(𝑣) can be expressed as: 

 𝑣 =
𝑘2𝑆

𝐾𝑚 + 𝑆
𝐸𝑇  

 =
𝑘2

0𝑔1
𝛼2𝑔𝑇

−𝛼2𝑆 

𝑔1(1 + 𝐾) + 𝑆
𝐸𝑇 (10) 

To illustrate how Eq. (10) captures the tradeoff relationship between 𝑘2  and 𝐾𝑚 , numerical 
simulations were performed (Fig. 2A). Hereafter, all simulations will be performed at 𝛼1 = 𝛼1𝑟 =
𝛼2 = 0.5 , which is a common assumption used to make baseline models in heterogeneous 
catalysis.[22,26-28] Physically, this means that when the driving force of an elementary reaction is 
increased by 1 kJ/mol, its activation barrier decreases by 0.5 kJ/mol. In reality, typical experimental 
values of 𝛼 range between 0.3 and 0.7 for artificial catalysts,[29-31] and the experimental value 

reported for cellulases is 0.74.[25] Therefore, the influence of 𝛼 deviating from 0.5 will be discussed 
in detail in Fig. 5D.  
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Fig. 2A shows three possible thermodynamic landscapes for a reaction with a total driving force 
of Δ𝐺𝑇 = −40 kJ/mol. This parameter was chosen as a representative value based on the fact that 

the Δ𝐺𝑇 of typical biochemical reactions is between −80 ~ + 40 kJ/mol.[32,33] Similar calculations 
with different values of Δ𝐺𝑇  can be found in Figs. S1-S3. When the first reaction is 

thermodynamically favorable compared to the second (Δ𝐺1 < Δ𝐺2; Fig. 2A, black lines), the activity 
increases rapidly from low substrate concentrations (Fig. 2B, solid black line), consistent with the 
small 𝐾𝑚  value. However, an enzyme with a small 𝐾𝑚  suffers from a small 𝑘2 value, which is 

evident from the saturating behavior at 𝑆 > 1 µM. Increasing the driving force of the second step 

(blue and red lines) leads to a larger 𝑘2  and thus higher activity at large 𝑆  values (𝑆 > 1 µM) 

compared to the enzyme shown in black. At the same time, however, 𝐾𝑚  increases, which 
decreases the enzymatic activity at low 𝑆 (𝑆 <  1 µM). The difference in activity at low and high 
substrate concentrations occurs because the substrate participates in only the first elementary step. 
For example, even if 𝑘1 < 𝑘2  (Δ𝐺1 > Δ𝐺2), the rates of the two forward reactions (𝑘1𝐸 ∙ 𝑆  and 
𝑘2(𝐸𝑆)) can be matched if the substrate concentration (𝑆) is sufficiently large. However, at low 

substrate concentrations, a small 𝑘1 can no longer be compensated, resulting in the first step being 

rate-limiting. For this reason, a large 𝑘1  is necessary to increase the enzymatic activity at low 

substrate concentrations, whereas a large 𝑘2 is more desirable when the substrate concentration 
is sufficient. The balance in tradeoff changes when the rates of the two forward reactions are equal 

(𝑘1𝐸 ∙ 𝑆 = 𝑘2(𝐸𝑆)  ↔ 𝑆 =
𝑘2(𝐸𝑆)

𝑘1𝐸
. As the optimum values of 𝑘1 and 𝑘2 are dependent on the substrate 

concentration (𝑆), the 𝐾𝑚 value necessary to maximize the activity must also be dependent on (𝑆).  
 

 
 
 

 
Figure 2. Thermodynamic landscapes (A) and their corresponding activity shown in the form of 
Michaelis-Menten plots (B). The 𝐾𝑚 values are indicated as vertical dashed lines in (B). Increasing 
the driving force of the first step increases activity at low substrate concentrations but lowers the 
activity at high substrate concentrations. Therefore, the thermodynamic landscape of an optimum 
enzyme depends on the substrate concentration (𝑆). The free energies of the enzyme-substrate 
complex (Δ𝐺1) were −25, −20, and − 15 kJ/mol for the black, blue, and red lines, respectively, and 

that of the total reaction ( Δ𝐺𝑇)  was  −40 kJ/mol. All numerical simulations in this study were 

performed at 𝐸𝑇 = 1 µM, 𝑘1
0 = 𝑘2

0 = 1 (1/𝜇𝑀/𝑠 and 1/s units, respectively). 
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Analysis of the Activity – Driving Force Relationship 
To directly illustrate the influence of driving force ( Δ𝐺1  and Δ𝐺𝑇 ) on enzymatic activity, we 

performed numerical simulations using Eq. (10) at various substrate concentrations (Fig. 3). At a 
substrate concentration of 0.1 𝜇M (Fig. 3A), the region of highest enzymatic activity (orange) was 
observed in the bottom left region. It is reasonable for activity to be higher in the lower half of the 
panel, due to the more negative Δ𝐺𝑇. A negative Δ𝐺1 is also beneficial for activity at a low substrate 

concentration (S =0.1 𝜇M), leading to enzymatic activity being higher in the left half of the panel. At 
higher substrate concentrations, the overall color within each panel changed from blue to red, 
because a higher substrate concentration always increases activity (Figs. 3B-3D). At the same 
time, the Δ𝐺1 corresponding to maximum activity gradually shifted positively (black dashed lines). 

This finding is consistent with Fig. 2 which shows that a more positive Δ𝐺1 is desirable when the 
substrate concentration is increased. In each panel, the location with the highest activity at a given 
Δ𝐺𝑇 value is shown as a dashed black line. Notably, when the 𝐾𝑚 value was calculated at the 

(Δ𝐺1, Δ𝐺𝑇) values under the dashed line using Eq. (9), the obtained value was always equal to the 

substrate concentration 𝑆 in each panel. In other words, the dashed line is not only the ridge of the 
volcano plot, but also the contour line showing 𝐾𝑚 = 𝑆 . This suggests that the condition for 

maximizing enzymatic activity can be represented by 𝐾𝑚 = 𝑆.   
 

 
 
Figure 3. Enzymatic activity (𝑣) plotted against Δ𝐺1 and Δ𝐺𝑇  based on Eq. (10). The substrate 
concentration (S) in each panel was (A) 10-1, (B) 1, (C) 10, and (D) 102 µM, as indicated in the 

bottom right of each panel. In all panels, the black dashed line corresponding to 𝐾𝑚 = 𝑆 overlaps 
with the region with the highest enzyme activity. 
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To examine why 𝐾𝑚 = 𝑆 leads to maximum activity, Eq. (10) was rearranged to give the following 

expression for the activity (𝑣): 

 
𝑣 =

𝑘2
0𝑔𝑇

−𝛼2𝑆

𝑆𝑔1
−𝛼2 + 𝑔1

1−𝛼2 +
𝑘2

0𝑔1
𝛼1

𝑘1
0𝑔𝑇

𝛼2

𝐸𝑇 
(11) 

in which 𝑔1 is only in the denominator. The derivative of the denominator, denoted as 𝑓 is: 

 
𝑑𝑓

𝑑𝑔1

= −𝛼2𝑔1
−(𝛼2+1)

𝑆 + (1 − 𝛼2)𝑔1
−𝛼2 +

𝑘2
0𝛼1

𝑘1
0𝑔𝑇

𝛼2
𝑔1

𝛼1−1
 (12 

To maximize the activity (𝑣), 𝑓 must be minimized which is realized at: 

 
𝑑𝑓

𝑑𝑔1

= 0 ↔ 𝑆 = 𝑔1 (
1 − 𝛼2

𝛼2

+
𝛼1

𝛼2

𝐾) (13) 

Considering that 𝐾𝑚 is defined as 𝐾𝑚 ≡ 𝑔1(1 + 𝐾) (Eq. (10), Eq. (13) yields a surprisingly simple 
formula for the condition of maximum activity when 𝛼1 = 𝛼1𝑟 = 𝛼2 = 0.5: 

 𝐾𝑚 = 𝑆 (14) 

Eq. (14) provides the theoretical basis for why maximum activity was consistently observed along 
the contour line 𝐾𝑚 = 𝑆 in Fig. 3: The combination of (Δ𝐺1, Δ𝐺𝑇) necessary to maximize activity 

guarantees 𝐾𝑚 = 𝑆. This finding is further illustrated in Fig. 4, where the activity (𝑣) is plotted as a 

function of 𝐾𝑚 at different substrate concentrations. In all cases, maximum activity (𝑣) is observed 
when the binding affinity (𝐾𝑚) is equal to the substrate concentration (𝑆). Thus, the derivations and 

simulations so far provide mathematical evidence that having a 𝐾𝑚 value equal to the substrate 

concentration 𝑆  guarantees maximal enzymatic activity as long as the enzyme follows the 
Michaelis-Menten mechanism (Scheme 1), and the rate constants follow the BEP relationship with 
𝛼1 = 𝛼1𝑟 = 𝛼2 = 0.5.  

 

Figure 4. Volcano plots showing how the activity is expected to change with respect to the 
Michaelis-Menten constant (𝐾𝑚 ). As the substrate concentration was increased from 10-1 µM 

(black) to 102 µM (red), the volcano plot shifted to the upper right. The apex is located at 𝐾𝑚 = 𝑆, 

as indicated by the vertical dashed lines of the corresponding color. Δ𝐺𝑇 = −40 kJ/mol and 𝑘1
0 =

𝑘2
0 = 1 [1/μM/s and 1/s units, respectively] were used for the numerical simulations. Changing 

these values did not influence the conclusion that the activity is maximized when 𝐾𝑚 = 𝑆, as shown 
in Fig. S4. 
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Robustness of the Theoretical Model 
To confirm the robustness of our finding, we have performed numerical simulations by loosening 

each of the theoretical requirements. Deviation from the Michaelis-Menten mechanism (Scheme 1) 
are shown in Fig. 5A-C, and deviation of 𝛼 values from 0.5 are shown in Fig. 5D. The possibility of 

reverse reactions (P→S) or inhibition (E + I → EI or ES + I → ESI) are common deviations from 

Michaelis-Menten kinetics.[34] The net rate in the presence of a reverse reaction when the substrate 
and product are in equal concentrations ( 𝑆 = 𝑃 = 10  µM) is shown in Fig. 5A. In terms of 

maximizing the activity in the forward direction (S → P), the physically meaningful region is (Δ𝐺𝑇 <
0), where the net reaction proceeds in the forward direction. Under this condition, the dashed line 

corresponding to 𝐾𝑚 = 𝑆 and the solid line corresponding to the true maximum activity (forward 

minus reverse reaction rates) overlap almost completely, indicating that 𝐾𝑚 = 𝑆 is a good guideline 
to enhance activity even in the presence of reverse reactions (P → S).  
 

 
Figure 5. Influence of (A) Reverse reaction, (B) Competitive inhibition, (C) Uncompetitive inhibition, 
and (D) BEP coefficient, 𝛼 on the optimal 𝐾𝑚. The dashed line corresponds to 𝐾𝑚 = 𝑆, with 𝑆 =
 10 µM. The true optimum 𝐾𝑚 for each mechanism is shown as a solid line along with its analytical 
equation (refer to the SI for the derivations). In panel A, the product concentration (𝑃) was set to 
10 µM. The top half of (A) was colored at an arbitrarily low activity because the reverse reaction is 
more favorable in this region. The large discrepancy between the dashed and solid lines at Δ𝐺𝑇 >
0 is physically irrelevant, because the activity of the forward reaction cannot be discussed when 
the net reaction proceeds in the reverse direction. In panels B and C, the degree of inhibition (𝛾 ≡
𝐼/𝐾𝑖  ) was set to 10. In panel D, the BEP coefficients were set to 𝛼1 = 𝛼2 = 0.2. No analytical 
solution was obtained for D.  
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Similar calculations for competitive and uncompetitive inhibition, where the inhibitor binds to 
either the free enzyme or the enzyme-substrate complex, are shown in Fig. 5B,C. The degree of 

inhibition (𝛾 ≡
𝐼

𝐾𝑖
), is determined by the inhibitor concentration (𝐼) and the equilibrium constant of 

inhibition (𝐾𝑖).
[34] Based on the experimental data of Park et al.,[35] 𝛾 can range from 10-4 to 104. As 

𝛾 was less than 10 in approximately 80% of their data, 𝛾 = 10 was used here for the numerical 
simulations. Again, the optimal 𝐾𝑚 (solid line) deviates only slightly from the dashed line (𝐾𝑚 = 𝑆), 

and both lines pass through the region of high activity (orange). The 𝐾𝑚 values are approximately 
1 order of magnitude apart between dashed and solid lines, yet there is only a 57 % difference in 
activity at a specific Δ𝐺𝑇. This is much smaller than the scale of the entire diagram (10 orders of 
magnitude), suggesting that adjusting 𝐾𝑚 to the substrate concentration 𝑆 is a robust strategy to 
enhance the activity, even in the presence of inhibition. A detailed discussion on the parameter 
dependence (𝛾, 𝑆), as well as for other mechanisms such as substrate inhibition or allostericity can 
be found in Section 3 of the supporting information. The derivations for the equations of the true 
optimal Km can also be found in the same section. 
 
  The influence of the second assumption (𝛼1 = 𝛼1𝑟 = 𝛼2 = 0.5) is shown in Fig. 5D. As physical 

constraints require 𝛼1𝑟 =  1 − 𝛼1 (Appendix 2), only 𝛼1 and 𝛼2 are independent. In an extreme case 
where 𝛼1 = 𝛼2 = 0.2, the activity is markedly diminished because rate constants hardly change 
even if their driving force is increased. However, the dashed line still passes through the region of 
high activity, and the activity is still less than an order of magnitude away from the true optimum 
(solid lines). Taken together, these simulations confirm that 𝐾𝑚 = 𝑆 is a robust theoretical guideline 
to enhance enzymatic activity. 
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Validation based on Experimental Data 
Finally, to evaluate whether 𝐾𝑚 = 𝑆 can rationalize enzymatic properties in nature, we have 

analyzed their relationship based on the experimental data from Park et al.[35] The original data 
consisted of 𝐾𝑚 values of wild-type enzymes obtained from BRENDA, and intracellular 𝑆 values 
obtained from Escherichia coli, Mus musculus, and Saccharomyces cerevisiae cells, yielding a total 
of 1703 𝐾𝑚–𝑆 combinations. This dataset was then classified based on the number of entries for 
each substrate, based on the expectation that a substrate which participates in many reactions is 
more likely to deviate from Michaelis-Menten kinetics. ATP is the most frequent substrate with 313 
entries and is shown in black. Both the raw 𝐾𝑚 and 𝑆 values (Fig. 6A) and their relative distribution 

(Fig. 6B) shows that 𝑆 > 𝐾𝑚 for ATP. The deviation from 𝐾𝑚 = 𝑆 may be because the Michaelis-
Menten mechanism, which is the basis of our mathematical analysis, does not consider scenarios 
where multiple reactions compete for the same substrate. The next subset shown in blue covers 
410 entries and consists of 5 substrates which each appear more than 50 times: NAD+, NADH, 
NADP+, NADPH, and acetyl-CoA. These cofactors are less universal than ATP, and 𝑆 is only 

slightly larger than 𝐾𝑚. The remaining 980 entries are shown in red. This subset contains 115 
substrates such as carbon metabolites and amino acids and appear within the dataset 8 times on 
average. As the substrate becomes less universal, their 𝐾𝑚  and 𝑆  values become roughly 
consistent. In particular, the Gaussian distribution fitted to the red histogram (Fig. 6B) has a center 
at  log10 𝑆/𝐾𝑚 = 0.18  and a standard deviation of 1.3, which is reasonable considering that 

influences from inhibitors or the BEP coefficient can change the optimum 𝐾𝑚 by roughly an order 
of magnitude (Fig. 5). Thus, the dataset from wild-type enzymes supports the theoretical prediction 
that a Michaelis-Menten constant equivalent to the substrate concentration is favorable for the 
activity, especially when the substrate participates in fewer reactions and Michaelis-Menten kinetics 
becomes more accurate. 
 
 
 
 

 
Figure 6. Relationship between 𝐾𝑚 and 𝑆 from the dataset reported by Park et al.[35] The raw 

values of 𝐾𝑚 and 𝑆 are shown in (A), and their relative values are plotted in (B). Each entry of 𝐾𝑚 
and 𝑆 was categorized based on the number of times the substrate appeared in the entire 
dataset. Black: > 300 (ATP), blue: > 50 (NAD+, NADH, NADP+, NADPH, and acetyl-CoA), red: < 
50 (others). The number of entries was used as a proxy for the validity of the Michaelis-Menten 
mechanism of the specific substrate. The dashed line in (A) corresponds to 𝐾𝑚 = 𝑆, and the 
shaded area shows a deviation of 1 order of magnitude. 
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Discussion 
So far, various criteria[13,34,36] such as large 𝑘2  (𝑘𝑐𝑎𝑡 ), small 𝐾𝑚 , or large 𝑘2/𝐾𝑚  have been 

proposed to characterize enzymes with high activity, making it difficult to rationally evaluate or 
engineer the activity of an enzyme. The lack of a universal consensus is largely due to the mutual 
dependence between 𝑘2 and 𝐾𝑚. As our theoretical model addresses this challenge directly and 

maximizes the activity within the thermodynamic constraints imposed by 𝑘2 and 𝐾𝑚, we believe 

that 𝐾𝑚 = 𝑆 is a criterion for high activity which is viable in a wider range of scenarios. 
 
The idea that the Michaelis-Menten constant should be increased at higher substrate 

concentrations to maximize activity is consistent with the experimental work by Kari et al,[37] who 
measured the activity of cellulases with different 𝐾𝑚 . When the substrate concentration was 
increased 6 times, the 𝐾𝑚 value of the most active enzyme increased approximately 2.4 times. 

Considering that 𝐾𝑚 can change by roughly 6 orders of magnitude, the experimental trend supports 

our hypothesis 𝐾𝑚 = 𝑆, especially when their experimental BEP coefficient of 0.74 is considered. 
The idea of the optimum binding affinity being dependent on the reaction condition and driving force 
is also consistent with recent theoretical models of heterogeneous catalysis.[22,38-40]  

 
As a corollary, our model which quantifies the relationship between 𝐾𝑚  and 𝑘2  immediately 

rationalizes the recently reported free energy relationship between them in cellulases.[25] Namely, 
the relationship between 𝐾𝑚 and 𝑘2 can be written as: 

 𝐾𝑚 = (1 + 𝐾)𝑔𝑇 (
𝑘2

𝑘2
0)

1/𝛼2

  

 ∴ log 𝑘2 = 𝛼2 𝑙𝑜𝑔𝐾𝑚 − log(1 + 𝐾)𝑔𝑇 + log 𝑘2
0 (15) 

This equation shows that log 𝑘2 and log 𝐾𝑚 are linearly correlated by a factor of 𝛼2, and provides a 
physical basis to the high linearity (R2 = 0.95) observed for cellulases.[25] The consistency between 
our theoretical model and previously accumulated experimental insight suggests that it may be 
possible to quantitatively rationalize enzymatic properties based on fundamental principles of 
physical chemistry. 
 
Online Methods 
The mathematical formulas were derived by hand, and the step-by-step derivations for the standard 
Michaelis-Menten mechanism are explained in the main text. The derivations in the presence of 
inhibition and allostericity are provided in the supporting information. Numerical simulations and 
bioinformatic analysis were performed using Python 3.9.12. The code used for the analysis can be 
found in the extended data or accessed directly at github: 
https:github.com/HideshiOoka/SI_for_Publications. 
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