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Abstract: Recent advances in synthetic biology have enabled the construction of molecular circuits that
operate across multiple scales of cellular organization, for example by interfacing gene regulation with sig-
nalling or metabolic pathways. Computational methods can effectively aid and accelerate the design process,
but current methods are generally unsuited for systems with multiple temporal or concentration scales, as
these are challenging to simulate due to their numerical stiffness. Here, we present a machine learning method
for the efficient optimization of biological circuits across scales. We employ a Bayesian optimization approach
and nonparametric statistical models to learn the shape of a performance landscape and iteratively navigate
the design space towards an optimal design. This strategy allows the joint optimization of both circuit ar-
chitecture and parameters, and hence provides a feasible approach to solve a highly non-convex optimization
problem in a mixed-integer input space. We illustrate the applicability of the method on gene circuits designed
to control biosynthetic pathways, as these display strong nonlinearities and have molecular components that
evolve in different timescales and different scales of molecular concentrations. We test the method on various
models of dynamic production pathways previously built in the literature, and highlight its ability to optimize
large multiscale models with more than 20 species and circuit architectures, as well as large parametric sweeps
that are useful for assessing the robustness of optimal designs to perturbations. The method can serve as an
efficient in silico screening method for circuit architectures prior to experimental testing.

I. INTRODUCTION

The design of molecular circuits with prescribed func-
tions is a core task in synthetic biology1. These cir-
cuits can include components that operate across var-
ious scales of cellular organization, such as gene ex-
pression, signalling pathways2 or metabolic processes3.
Computational methods are widely employed to dis-
cover circuits with specific dynamics4–6 and, in partic-
ular, optimization-based strategies can be employed to
search over design space and single out circuits predicted
to fulfil a desired function7–10. However, circuit design
requires the specification of circuit architecture, i.e. the
circuit “wiring diagram”, as well as the strength of in-
teractions among molecular components. Since circuit
architectures are discrete choices and molecular interac-
tions depend on continuous parameters such as binding
rate constants, circuit design leads to mixed-integer op-
timization problems that can be notoriously difficult to
solve11. Moreover, when circuits operate across multiple
scales, their computational models become numerically
stiff12, resulting in extremely slow simulations that make
their mixed-integer optimization challenging or even im-
possible to solve.

Previous works on computational circuit design has
largely focused on genetic circuits that operate in iso-
lation from other layers of the cellular machinery (Fig-
ure 1A). A range of techniques have been employed
to identify functional circuits, including exhaustive
search4–6,13, computational optimization7,8, Bayesian
design14,15, and machine learning9,16. While these meth-
ods differ on their specific modelling strategies and as-

sumptions, they all require computational simulations at
many, typically thousands to millions, parameter value
locations in the design space. In the case of multiscale
circuits, the computational cost of simulations grows
sharply and limits the application of current optimiza-
tion. As a result, often these multiscale systems cannot
be simulated at the large number of locations in the de-
sign space needed by computational search algorithms.

A notable example of this challenge appears in genetic
circuits for dynamic control of metabolic pathways17–20.
These systems are receiving substantial attention thanks
to several successful implementations that improved
yields as compared to classic techniques in metabolic
engineering21–23. The key principle is to put enzymatic
genes under the control of metabolite-responsive mecha-
nisms that couple heterologous expression to the concen-
tration of a pathway intermediate3. This creates feed-
back loops between enzyme expression and pathway in-
termediates that allow controlling pathway activity in
response to upstream changes in growth conditions or
precursor availability. Such dual genetic-metabolic sys-
tems are particularly challenging to simulate efficiently,
as metabolites and enzymes vary in different timescales,
from milliseconds (enzyme kinetics) to minutes (enzyme
expression), and they also appear in vastly different
concentrations; in bacteria enzymes are typically ex-
pressed in nanomolar concentrations, whilst metabolites
are found typically above the millimolar range24. More-
over, the implementation of these systems is costly and
requires substantial experimental fine-tuning. As a re-
sult, a central task prior of implementation is the choice
of a suitable feedback control loops between metabolites
and enzymatic genes, and the strength of interactions be-
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tween metabolites and actuators of gene expression such
as transcription factors25 or riboregulators26. The de-
sign of control architectures is particularly important,
because there are many ways of building similar control
loops27, for example by employing combinations of tran-
scriptional activators and repressors28,29, that may differ
in their performance and cost of implementation.

Here, we present a fast and scalable machine learning
approach for optimization of multiscale circuit architec-
tures and parameters (Figure 1A). The method is based
on Bayesian optimization coupled with differential equa-
tion models, and we highlight its utility in various models
of metabolic pathways under genetic feedback control30.
Using a toy example for a simple pathway, we first show
that the method converges rapidly and outperforms other
optimizers by a substantial margin. We then consider
real-world models of metabolic pathways in Escherichia
coli for the production of several relevant precursors: glu-
caric acid31, fatty acids28, and p-aminostyrene29. We use
these pathways to illustrate how the speed of our method
enables screening optimal designs in realistic design tasks
that would otherwise be infeasible to compute, includ-
ing the impact of uncertain enzyme kinetic parameters,
the use of layered architectures that combine metabolic
and genetic control, and the optimization of a complex
model with 23 differential equations, 27 candidate con-
trol architectures, and 19 parameters to be optimized.
Our parameterization of the discrete architecture space
enables both large numbers of possible architectures and
removal of oscillatory or positive feedback architectures
from consideration. Machine learning methods such as
this one can speed the construction of synthetic biologi-
cal circuits and present a novel approach to design space
exploration.

II. RESULTS

A. Bayesian optimization for joint optimization of circuit
architecture and parameters

In general, a circuit design task can be stated as the
following mixed-integer optimization problem:

min
pd, pc

J(x, pc, pd),

subject to:
dx/dt = h(x),

pc 2 C, pd 2 D,

(1)

where J(x, pc, pd) is a performance objective to be op-
timized over a space of continuous parameters pc and a
discrete set of circuit architectures pd. The function h(x)
is a nonlinear function describing the dynamics of x. The
ODE in (1) describes the temporal dynamics of circuit
components and are typically built from mass balance
equations. Common examples of continuous parameters
in applications are binding affinities between DNA and

regulatory proteins, or the strength of protein-protein in-
teractions. Conversely, circuit architecture would typi-
cally involve various combinations of positive and nega-
tive feedback loops among molecular species. We have
stated the problem as minimization of J , but similar for-
mulations can be posed as a maximization problem.

To illustrate the utility of the method in a range of
design problems, we focus on genetic control circuits for
metabolic pathways that synthesize high-value products.
In this case, the ODE in (1) contains two sets of equa-
tions:

ds/dt = f(s, e)� �s,

de/dt = u(s, pc, pd)� �e,
(2)

where s and e are vectors of metabolite and enzyme con-
centrations, respectively. Both sets of species change in
vastly different timescales; metabolic reactions operate
in the millisecond range or faster36, whilst enzyme ex-
pression changes in the scale of minutes or longer. More-
over, metabolites and enzymes are also present in differ-
ent ranges of concentrations, from nM for enzymes to mM
and higher for metabolites24. As a result, simulation of
the ODE in (2) is time consuming, particularly when this
needs to be done many times as part of an optimization-
based search. The term f(s, e) describes the mass bal-
ance relations between pathway intermediates, while the
parameter � models the dilution effect by cell growth.
The vector u(s, pc, pd) describes the enzyme expression
rates controlled by some pathway intermediates, and typ-
ically take the form of sigmoidal dose-response curves
that lump together processes such as metabolite-TF or
metabolite-riboregulator interactions25. The continuous
parameters pc model the dose-response curves of the feed-
back mechanisms, whereas the discrete parameters pd
specify the control architecture.

The performance objective J can be flexibly used to
model common design goals such as production flux, yield
or titer, as well as cost-benefit tasks that balance produc-
tion with the deleterious impact of the pathway on the
physiology of the host. To first establish a baseline for
the performance of our method, we employed a simple
toy pathway model that displays common features found
in real metabolic pathway (Figure 1C). The model in-
cludes a metabolic branch point through a heterologous
pathway with two enzymatic steps. As a performance
objective we used

J = ↵1

Z T

0
|Vin � Vout(t)| dt

| {z }
production loss

+↵2

Z T

0
(u1(t) + u2(t)) dt

| {z }
pathway cost

,

(3)

where Vin is the metabolic flux through the main branch,
Vout(t) is the temporal evolution of the production flux,
and ui(t) are the expression rates of both pathway en-
zymes. Minimizing the first term in J is equivalent to
maximizing the production flux, while minimization of
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FIG. 1. Bayesian optimization for the design of circuit architectures and parameters. (A) Previous optimization methods have
focused on genetic circuits in isolation from other cellular processes. For multiscale circuits, optimization approaches become infeasible
due to the difficulty of simulating stiff dynamical systems in many locations of the design space; a common example of such multiscale
systems are gene circuits that control metabolic production3. We propose the use of Bayesian optimization (BayesOpt) for efficient
optimization of architectures and parameters in multiscale circuits. (B) Schematic of a mixed-integer Bayesian optimization loop; the
objective function is regarded a random variable to be optimized over an input space comprised of continuous parameters and a set of
discrete circuit architectures. At each iteration, the algorithm computes the value of the objective function from the solution of an ordinary
differential equation (ODE) model at a single location in the input space. The algorithm learns the shape of the objective landscape using
a nonparametric statistical model32, which is employed to propose a new location in the input space through an “acquisition function”
designed to balance exploration and exploitation of the input space; more details in Methods. The algorithm iteratively learns the shape of
the performance landscape until convergence to a global optimum. (C) Example metabolic pathway under gene regulation. We consider
three negative feedback architectures plus open loop control. The intermediate X1 binds a transcription factor (TF) that controls the
expression of pathway enzymes, either as an activator or repressor. The TF dose-response curve (at right) is described by three parameters,
ki, ✓i, and n, where i = 1, 2.. The aim is to find designs with optimal architecture and dose-response parameters (ki, ✓i); for simplicity the
Hill coefficient was fixed to ni = 2. (D) Performance landscapes of the four feasible circuit architectures. We exclude architectures with
positive feedback loops as these are prone to multistability33. The shape of the performance landscape defined in (3) shows substantial
variation across the four architectures. This leads to a highly non-convex mixed-integer optimization problem. Heatmaps show the value
of the objective J computed on a regular grid of the indicated parameters. (E) Comparison of BayesOpt against other strategies using
the toy model as a benchmark. Shown are the results for random sampling (N = 1, 000 samples), grid search (N = 40, 000), a genetic
algorithm34 (N = 100 individuals, N = 1000 generations), and a gradient-based optimizer to find optimal continuous parameter values
for each architecture35. Lower objective function values are better.

the second term penalizes total amount of enzyme ex-
pressed during the culture; the weight ↵ can be used to
control the balance between costs and benefits of express-
ing the heterologous pathway.

We considered the four control architectures shown
in Figure 1C, which include open loop control as well
as three different implementations of negative feedback
control using a metabolite-responsive transcription fac-
tor. Negative feedback is widely employed in gene cir-
cuits as it has substantial benefits in terms of robust-
ness and performance, and their properties have been
extensively studied in the literature37,38. To illustrate
the challenge of jointly optimizing circuit architecture

and parameters, in Figure 1D we show a schematic of
the design space. The four control architectures under
consideration reside at different discrete points in the ar-
chitecture space. Within each architecture the continu-
ous performance landscape computed as a function J of
the dose-response parameters pc shows substantial vari-
ations. We observe cases with convex landscapes with a
clear optimum (e.g. dual control) and landscapes with
flat basins where most optimization algorithms would
struggle to find the optimum (e.g. downstream activa-
tion). When searching over the space of architectures
and parameters simultaneously, the problem becomes a
mixed-integer, non-convex optimization that is extremely
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challenging to solve with traditional approaches.
We implemented a BayesOpt routine to jointly com-

pute the architecture (pd) and dose-response parameters
(pc) that minimize the performance objective in Eq. (3).
We benchmarked its performance against several other
methods, including a random search, an exhaustive grid
search, a gradient based method, and a genetic algorithm
(Figure 1E). The algorithm was able to compute optimal
solutions rapidly (average 27 seconds per run across 100
runs) and robustly (standard deviation less than 2.5% of
the mean optimal objective function value). BayesOpt
runs significantly faster than the other methods, and
provides over a 30-fold improvement over a genetic al-
gorithm. The accuracy of the optimum, quantified by
the minimal value of the objective function, is on aver-
age 11.4% worse than the genetic algorithm, but this falls
within the variation of the latter across several runs. We
also note that the traditional gradient-based optimizer
proved unreliable and failed to converge on 14.5% of runs.

One key advantage of Bayesian methods is that they
are not gradient-based, and therefore are not constrained
to navigate the space smoothly in the direction of steep-
est descent. Gradient-based methods can get trapped in
local minima and struggle to find the global optimum,
especially in highly nonconvex landscapes like the ones
presented here. In contrast, BayesOpt does not converge
by chasing minima directly but rather by modelling the
entire objective function landscape, which results in rapid
and reliable results. The method can perform multi-
ple "jumps" between distant locations in the discrete-
continuous search space without incurring any penalty.
Each subsequent sample is selected to maximize the ex-
pected improvement on the best sample found so far, with
no spatial relationship implied between adjacent samples.

The speed of our approach enables the computation
of large solution ensembles under model perturbations
such as sweeps of key model parameters. In addition,
our method can search high-dimensional mixed-integer
design spaces. We next illustrate the versatility of the
approach in a range of relevant real-world pathways that
require solving the optimization problem for large sam-
ples of parameter values.

B. Robustness of control circuits to uncertainty in enzyme
kinetic parameters

A challenge in building pathway models is the sub-
stantial uncertainty on the enzyme kinetic parameters;
this is particularly critical for pathways that include reg-
ulatory mechanisms such allostery or product inhibition,
which are often poorly characterized. Databases such as
BRENDA40 often have insufficient data on enzyme ki-
netics for a particular host strain or substrate of interest.
Since pathway dynamics can strongly depend on enzyme
kinetics, the parametric uncertainty requires extensive
sweeps of kinetic parameters to determine the robustness
of a specific control architecture deemed to be optimal.

We focused on a pathway for synthesis of glucaric acid
in E. coli (Figure 2A), a key precursor for many down-
stream products31. The pathway branches from glucose-
6-phosphate (g6p) in upper glycolysis and contains three
enzymatic steps (Ino1, SuhB, and MIOX). Doong and
colleagues implemented a dynamic control circuit using
the dual transcriptional regulator IpsA which responds
to the intermediate myo-inositol (MI)20. The pathway
enzyme MIOX is allosterically activated by its own pre-
cursor, and one intermediate, MI, can be exported to the
extracellular space. We employed a previously developed
ODE model10 that was parameterized using a combina-
tion of enzyme kinetic data and omics measurements,
and considered the same four control architectures as in
the previous example, including various alternative im-
plementations of negative feedback control.

The results in Figure 2B show a typical run of the opti-
mizer when using the cost-benefit performance objective
in (3), together with the fraction of samples in which
the algorithm explored each control architecture across
the successive iterations. The optimal architecture (dual
control in this case) was found quickly and the algorithm
was able to further decrease the value of the objective
function by exploring the space of dose-response param-
eters of IpsA. We observe that as the iterations progress,
the algorithm shows a remarkable ability to explore other
architectures despite their larger objective function val-
ues, thus highlighting the global nature of the algorithm.

To explore the impact of uncertain enzyme kinetics,
we perturbed the parameters of the rate-limiting MIOX
allosteric reaction:

VMIOX =
Vm, effMI

km,MIOX + MI
,

given Vm, eff = Vm,MIOX

1 + aMIOXMI
ka,MIOX + MI

,
(4)

where Vm,MIOX is the maximum rate of reaction,
km,MIOX is the Michaelis-Menten constant, and ka,MIOX

and aMIOX are allosteric activation constants. We solved
the optimization problem for 1000 combinations of these
three parameters, which took under 16 hours in a stan-
dard laptop machine. Perturbing the kinetic parameters
of the glucaric acid pathway did not significantly affect
the minimum objective function value achieved, indicat-
ing that the optimum is robust to uncertainty in the ki-
netic parameters (Figure 2C). However, the mean opti-
mal objective function value was not significantly higher
among the perturbed samples. We found that the dual
control architecture was chosen as optimal in more than
85% of samples (Figure 2D). As a result, we examined
the optimal dose-response parameters found for this dom-
inant architecture in more detail. The maximal enzyme
expression rates (k) and regulatory thresholds (✓) control
the shape of the dose-response curves. The distribution
of optimal k and ✓ parameter values is similar for the
perturbed and background optimization runs, so we will
consider only the perturbed distributions in Figure 2E.
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FIG. 2. Robustness optimal circuits to parameter uncertainty. (A) Schematic of a dynamic pathway for production of glucaric
acid in Escherichia coli20. The pathway includes allosteric inhibition and export of an intermediate to the extracellular space. The core
pathway components myoinositol (MI) and glucaric acid (GA) are modelled explicitly, as are the enzymes Ino1 and MIOX. The enzyme
SuhB is not rate-limiting and is not modeled explicitly. (B) Sample run of the BayesOpt algorithm for 1,000 iterations of the loop in Figure
1B. Black line shows the descent on the value of the objective function. Dots show all samples colored by architecture; pie charts show the
fraction of architectures explored by the algorithm, and the fraction of samples taken from the majority architecture (dual control). The
first quarter of the run had the most exploration of architectures other than dual control, with 38.6% of samples coming from non-majority
architectures. This percentage steadily decreased over the iterations but did not drop below 20%, illustrating the global nature of the
optimization routine. (C) To examine the robustness of the optimal solutions to parameter uncertainty, we computed optimal solutions
for many perturbed parameters of the allosteric activation of MIOX by its substrate myo-inositol (MI). Strip plot show the best objective
function values achieved for background and perturbed kinetic parameters (Vm,MIOX, aMIOX, ka,MIOX) in Eq. (4). Kinetic parameters
were perturbed using Latin Hypercube sampling39 on the range (-100%, +100%) of the nominal values (Supplementary Information). We
observed little difference between between background and perturbed values; dashed line denotes the mean value of the objective function.
Only one of the N = 100 runs for perturbed parameters failed to converge the optimum. (D) Optimal architectures across runs with
background and perturbed parameter values. Both background and perturbed systems resulted in over 80% of runs selecting dual control
as the optimal architecture. (E) Average dose-response curves and distribution of optimal parameters for the dual control architecture with
perturbed allosteric parameters. The repressive and activatory loops have substantially different mean dose-response curves on average.
The distributions of the dose-response parameters (right) show important variations in their mean and dispersion. The parameter ki and
✓i determine the maximal enzyme expression rate and regulatory threshold, respectively.

We found that the upstream repressive loop and
downstream activatory loop had different optimal dose-
response curves, corresponding to different optimal val-
ues of the continuous parameters. Optimal values of the
upstream repression threshold ✓1 are low (mean value
0.64) and compressed into a narrow range compared to
the optimal values of downstream repression threshold ✓2
(mean value 7.24). The larger standard deviation on ✓2
values is reflected in the wider confidence interval over
the dose response curve for the downstream loop as com-
pared to the upstream loop. Experimental fine-tuning of
a dual control circuit might target parameters with op-
timal values with a wide range, such as k1, as varying
these parameters is less likely to impair circuit function.
Overall, these results show the robustness of the glucaric

acid dual control system to kinetic parameter uncertainty
and demonstrate the possibilities enabled by the speed
of BayesOpt. We next demonstrate the stability of the
method in more challenging scenario with objective func-
tions that display flat basins at the optimum.

C. Consistency of optima across flat performance landscapes

A potential challenge in circuit design arises when the
objective function is relatively flat across large domains
of the parameter space. This happens when different
values of the decision variables result in similar values of
the objective function. This is common in biochemical
systems, because they often have steady states that are
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insensitive to some parameters41. Here, we examine the
impact of this property on the performance of our algo-
rithm, using a model of fatty acid synthesis under various
modes of feedback regulation.

Fatty acids are an essential energy source and cellu-
lar membrane component. In addition, hydrocarbons
derived from fatty acids have attracted attention as a
potential biofuel source18,42. Recent work engineering
metabolic and genetic control loops showed that negative
feedback control could speed up the rise to steady-state
conditions28. The pathway built in literature expressed
a thioesterase under transcriptional control, shown as
the negative metabolic loop (NML) architecture in Fig-
ure 3A. In addition to transcription-factor mediated neg-
ative feedback loops, this model also includes individually
implemented direct genetic loops where a repressor is ex-
pressed on the same promoter as the enzyme. These two
different scales of loops interface with different levels of
cellular organization.

We explore several control architectures previously
proposed in the literature28 (Figure 3A; open loop archi-
tecture not shown). A representative optimization run
(Figure 3B) shows that the negative gene loop (NGL,
green) and negative metabolic loop (NML, orange) ar-
chitectures perform, on average, better than the other
three architectures. BayesOpt samples taken from the
two open-loop architectures were, on average, two orders
of magnitude worse than samples taken from NML and
NGL architectures. Despite such hierarchy of loss val-
ues across the five architectures, the method effectively
explores all architectures throughout the optimization
run. We next aimed to explore how stable these architec-
tural differences were across many simulations. We ran
BayesOpt 100 times and found the NML architecture to
be optimal on 76% of runs. The remaining 24% of runs
found the NGL architecture to be optimal.

The performance landscapes differ significantly in their
shape between architectures (Figure 3C). For instance,
the open loop intermediate landscape is a linear plane,
while the NML landscape is much flatter with a sin-
gle area of exponentially higher losses as the promoter
binding affinity Rtl increases for low values of the re-
pressor binding affinity Rtl, tetR. Representative optima
found by the single-architecture optimizations, shown in
white, occurred along the boundaries of the parameter
space. Some parameters, like Rtl for the layered nega-
tive metabolic loop circuit, find their optima on a very
narrow range of values. However, some parameters, like
the tesA promoter binding affinity (RFL’) of the nega-
tive gene loop, were optimal along an entire boundary of
the parameter space. These “wider” optima correspond
to flatter basins in the performance landscape, where
sweeping the parameters around the optimum does not
significantly change the objective function value. Despite
this landscape property, BayesOpt converges reliably on
a narrow range of optimal losses associated with each
architecture.

D. Scalability to large pathway models

Our previous case studies have been limited to cir-
cuits with a single metabolite controlling gene expres-
sion and a relatively small number of control architec-
tures. We now study a large model for the synthesis
of p-aminostyrene (p-AS), an industrially relevant vinyl
aromatic monomer, in E. coli (Figure 4A)43. This model
has two possible metabolites that can regulate gene ex-
pression, namely p-amminocinnamic acid (p-ACA) and
p-aminophenylalanine (p-AF), both of which can act as
ligands for aptazyme-regulated expression device (aRED)
transcription factors44, and three genes to be controlled.
The aRED transcription factors can also act as dual reg-
ulators (activators or repressors) on any of the three pro-
moters involved in the pathway. For simplicity, we limit
the design space to control architectures without positive
feedback loops, as these are prone to bistability33. This
results in 27 possible control architectures and 19 con-
tinuous parameters to be optimized. The model also has
a number of additional complexities. It contains operon-
based gene expression commonly found in bacterial sys-
tems (genes papA, papB, and papC are expressed on the
papABC operon), it includes a detailed description of
mRNA dynamics and protein folding, which results in a
large model with 23 differential equations, and it can also
display oscillatory dynamics.

In addition to expression of heterologous enzymes,
the accumulation of toxic intermediates is another ma-
jor source of genetic burden to host organisms. The p-
AS model has several sources of toxicity present in the
pathway29,43. The intermediate p-ACA and the efflux
pump used to remove p-ACA from cells are both cyto-
toxic, while another intermediate, p-AF, leaks from cells.
The pathway enzyme L-Amino Acid Oxidase (LAAO) de-
pletes key aromatic amino acid metabolites and creates
toxic hydrogen peroxide as a byproduct. The model in-
corporates these various types of toxicity in the form of
a toxicity factor tau. This toxicity factor is of the form

⌧ =
ki

ki +
pACA

ta
+ Pefflux

tp
+ LAAO

tl

, (5)

where tl, ta, and tp are chemical-specific toxicity factors.
Enzyme-induced toxicity tl scales the key metabolite de-
pletion rate driven by the enzyme LAAO. Metabolite-
induced toxicity ta scales the impact of toxic intermedi-
ate p-ACA concentration. Finally, protein-induced toxi-
city tp reflects the toxicity caused by efflux pump expres-
sion. The toxicity factor acts as a scaling coefficient on
the pathway synthesis, degradation, and folding reaction
rates.

Despite the complexity and size of the p-AS model,
we observe that BayesOpt explores many of the 27 pos-
sible architectures and converges to a low value of the
objective function (Figure 4B); this was also achieved at
a reasonable computational cost (mean run time under
two minutes). We do not explicitly name the architec-
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FIG. 3. Performance landscapes of fatty acid synthesis pathway. (A) Pathway diagrams with various control architectures
implemented in Escherichia coli28 (open loop architecture, red, not shown). The metabolic loop employs a metabolite-responsive tran-
scription factor, whereas the gene loop includes only a repressor expressed on the same promoter as the enzyme. (B) Representative
run of BayesOpt showing the best objective function value (black line). All samples are colored by their architecture. Pie charts of each
quarter of the run show continued exploration of all architectures despite clear stratification in losses. (C) Performance landscapes of
four architectures, computed over a regular grid with N = 400 samples. The marginal distributions of optimal parameter values were
computed over 100 single-architecture. White dots are representative optimal parameter value samples in the landscape, showing that
some parameters, such as RFL’, have a large variation, and thus are indicative of a landscape with a flat basin at the optimum.

tures but rather specify them based on the function (e.g.
repression, R) and ligand (e.g. p-ACA, 1) at each con-
trol point. The best architecture selected in the sample
run was R2-R2-A2, but there is no clear best architec-
ture when the optimization is run many times. No ar-
chitecture is optimal for more than 15% of test runs,
demonstrating that there are combinations of architec-
tures and parameter values that achieve similar optimal
losses. This broad distribution of optimal architectures
appears even if the optimal loss achieved is much smaller
than the mean. Several architectures of the model can
display oscillatory solutions. We chose to exclude these
undesirable solutions from search by applying Scipy peak
detection35 and adding a large regularization term to the
objective function of oscillatory solutions.

In order to investigate the robustness to chemical toxi-
city, we perturbed the metabolite-induced toxicity ta and
protein-induced toxicity tp in (5). The optimal loss val-
ues were found to be comparable between perturbed and
background systems (Figure 4C). Additionally, when pro-
jected onto a 2-dimensional space using principal com-
ponent analysis, the distribution of background param-
eter values was similar to the distribution of perturbed
solutions, indicating that the perturbation did not sig-
nificantly affect the optimal parameters selected (Figure
4D)45. The p-AS pathway approaches an upper limit
on the complexity of dynamic control systems currently
possible to implement experimentally.

III. DISCUSSION

Synthetic biologists enjoy an unprecedented level of
control over biological components. This has allowed the

construction of circuits on increased complexity and act-
ing across various levels of biological organization. How-
ever, large design spaces and multiple scales of biological
organization can become substantial challenges for the
rapid design of functional systems.

Gene circuits designed to control metabolic pathways
provide an excellent example of such challenges, as they
integrate fast metabolic timescales with the much slower
dynamics of gene expression. Moreover, the choice of
regulators, control points, and control architectures adds
multiple degrees of freedom that are infeasible to explore
experimentally. Computational methods can aid the de-
sign of such systems prior to implementation and serve
as tools for in silico screening of competing designs that
may have similar performance but entail different cost of
wetlab implementation.

Previously implemented metabolic control systems
have been built primarily based on application-specific
knowledge of pathway features21,22, and there is a lack
of computational methods that can accelerate the de-
sign cycle. In this paper we presented the applica-
tion of a machine learning method widely for deep neu-
ral networks for the joint optimization of biological ar-
chitectures and parameters. We showed the efficiency
and scalability of the method in several real-world case
studies from metabolic engineering. The p-aminostyrene
pathway is more complex than systems typically imple-
mented in literature, which suggests that the method is
applicable across real-world design tasks. The method
is particularly well suited for cases in which the multi-
ple scales prevent efficient simulation of ODE models in
many locations of the design space. We anticipate sev-
eral novel applications of this work to other problem areas
where discovery or tuning of multiscale models has been
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FIG. 4. Bayesian optimization in a complex pathway. (A)

Schematic of pathway for production of p-aminostyrene29. Two
intermediates can act as ligands for metabolite-dependent riboreg-
ulators, and three promoter sites of control. The optimization
problem has 16 continuous decision variables and 32 circuit ar-
chitectures. The substrate S is converted by enzymes A, B, and
C to X1, which is then converted by E to X2. The toxic sub-
strate X2 is then pumped out of the cell via an efflux pump to
form the product P . Both X1 and X2 can act on the transcription
factors TF1 and TF2. (B) Representative run of the BayesOpt
algorithm; the method samples many architectures before settling
on the optimal one. Pie charts show continued exploration of a
large number of architectures. The winning architecture, R2-R2-
A2, is shown as an inset. (C) The p-aminostyrene pathway has
several forms of substrate, protein, and enzyme toxicity expressed
via a toxicity factor ⌧ (see Equation 5). To explore the effects of
protein and metabolite toxicity, we perturbed the toxicity factor.
Metabolite-induced toxicity was perturbed on the nominal range
(10E-3, 10E-4) and protein-induced toxicity on the range (10E-4,
10E1) respectively. Both ranges were selected to match the ranges
provided in the literature29. Latin Hypercube sampling was used
to generate N = 100 perturbed parameter values, and the optimal
solutions were compared to an equal number of background solu-
tions using the nominal parameter values. (D) Visualization of
the optimal solutions; scatter plot of principal components of the
optimal parameter values for the model with perturbed toxicity
parameters (N=100). Contour plots show the background distri-
bution of parameter values.

previously infeasible. For instance, this method could
be employed to fit temporal circuit dynamics to data
or discern which of several discrete circuit mechanisms
most closely matches observed behavior. Computational
methods such as this one can accelerate the design of bi-
ological circuits by directing experimental research with
cheaper in silico screening.

IV. METHODS

A. Bayesian optimization

We employed the Bayesian Optimization routine im-
plemented in the Python HyperOpt package32. Bayesian
optimization is commonly employed for hyperparameter
tuning in deep neural networks. We employed Expected
Improvement as an acquisition function and a tree-
structured Parzen estimator (TPE) as a non-parametric
statistical model for the loss landscape. We performed a
grid search over the TPE hyperparameter � which con-
trols the balance between exploration and exploitation
but found little impact on the algorithm performance
(Supplementary Figure S1). As a result, we used the
default value of � = 15 (Supplementary Figure S1).

Constraints on the continuous and discrete decision
variables were incorporated directly into the HyperOpt
search space. At each run of the Bayesian optimization
routine, the initial guess for the continuous decision vari-
ables were sampled from uniform distributions, with up-
per and lower bounds were taken from literature10,29,42.
Architectures were chosen uniformly from the set of ar-
chitectures without positive feedback loops.

B. Model pathways

We considered four exemplar pathways modelled via
ordinary differential equations (ODEs): the toy system
in Figure 1C, the glucaric acid pathway in Figure 2A, the
fatty acid pathway in Figure 3A, and the p-aminostyrene
pathway in Figure 4A. Table I contains a summary of the
four considered models. In all cases, pathway models in-
clude ODEs for both metabolites and pathway enzymes.
In each case, we define the various control architectures
and incorporate them as discrete decision variables in
the optimization problem, i.e. pd in Eq. (1); the contin-
uous decision variables, i.e. pc in Eq. (1), appear in the
expression rates of the pathway enzymes. For the toy
model and the glucaric acid pathway, enzyme expression
was parameterized using a lumped Hill equation model
to describe the interaction between a regulatory metabo-
lite and a transcription factor. For the fatty acid and
p-aminostryrene pathways, expression rates were param-
eterized with bespoke nonlinear functions describing spe-
cific biochemical processes. The discrete control architec-
tures were defined in two different ways. For the toy, glu-
caric acid, and p-aminostyrene models, the architectures
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were defined using a binary matrix to encode the mode
of transcriptional control. For the fatty acid model we
instead defined each architecture as a categorical choice
and switched between model functions correspondingly.
We note that the p-aminostyrene pathway also contains
ODEs for mRNA abundance and folded/unfolded pro-
teins. All models and their parameters are described in
the Supplementary Information.

The ODE models were solved with scikit-odes, a
Python wrapper for the sundials suite of solvers46. In all
cases, the initial concentrations of heterologous pathway
enzymes were assumed to be zero. Initial concentrations
for native metabolites were determined by first solving
a model without the heterologous enzymes up to steady
state. Simulation times and initial conditions are detailed
in the Supplementary Information for each model.

C. Loss function

In all cases we employed the loss function J in Eq. (3)
instanced to each specific pathway. The loss is defined
as a linear combination of costs and benefits of pathway
activity so as to balance opposing design goals commonly
found in applications. Since both components of the loss
function have different magnitudes, for each model we
first swept the weights ↵1 and ↵2 across many model
simulations, and chose values that led to similar values
for both components; this prevents the optimizer to bias
the search towards low loss values caused by the scaling
effects.

CODE AVAILABILITY

Python code for this paper is available on the Github
repository.
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