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Spatially resolved molecular assays provide high dimensional

genetic, transcriptomic, proteomic, and epigenetic information

in situ and at various resolutions. Pairing these data across

modalities with histological features enables powerful studies

of tissue pathology in the context of an intact microenviron-

ment and tissue structure. Increasing dimensions across molec-

ular analytes and samples require new data science approaches

to functionally annotate spatially resolved molecular data. A

specific challenge is data-driven cross-sample domain detection

that allows for analysis within and between consensus tissue

compartments across high volumes of multiplex datasets stem-

ming from tissue atlasing efforts. Here, we present MILWRM –

multiplex image labeling with regional morphology – a Python

package for rapid, multi-scale tissue domain detection and an-

notation. We demonstrate MILWRM’s utility in identifying his-

tologically distinct compartments in human colonic polyps and

mouse brain slices through spatially- informed clustering in two

different spatial data modalities. Additionally, we used tissue

domains detected in human colonic polyps to elucidate molecu-

lar distinction between polyp subtypes. We also explored the

ability of MILWRM to identify anatomical regions of mouse

brain and their respective distinct molecular profiles.
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cence | Tissue Domain | Multiplex | Adenoma | Colorectal Cancer | Brain |

Polyp
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Introduction

The advent of spatially resolved molecular assays has en-
abled access to high dimensional genetic, transcriptomic,
proteomic, and even epigenetic information in situ while
preserving the spatial information lost in single-cell or bulk
molecular assays (17, 23, 42, 50). Spatially resolved data can
provide powerful insight into interactions between cell types,
progressive changes in tissue architecture in diseases such as
cancer, or interactions between different structures in tissue
such as lymphoid follicles and blood vessels (29, 48, 53). Bi-
ological insights can be derived from recurring spatial pat-
terns extracted using quantitative analysis on spatial data.
Many current methods attempt to complement single-cell

analyses, essentially taking a bottom-up approach to recon-
struct tissue domains, architectures, and communities from
individual cells. In general, individual cells can be identi-
fied from high dimensional imaging data by segmentation.
Cellular segmentation and annotation are the most challeng-
ing step in this kind of approach. There are various meth-
ods available for cellular segmentation (25, 40), annotation
(39) and neighborhood analysis (20, 34, 59). Widely used
lower resolution imaging data such as spatial transcriptomics
(ST) and imaging mass spectrometry data are analyzed us-
ing cellular deconvolution algorithms to approximate single-
cell composition. Most of these algorithms require a parallel
single-cell dataset for use as reference (11, 18). Different
cell types are then arranged into interaction networks based
on their spatial distributions and/or molecular interactions,
and these networks are assembled into larger spatial struc-
tures that identify tissue- or organ-level domains. This type
of analysis has been used for identifying cellular communi-
ties in various cancer types associated with patient prognosis
(12, 31, 33, 51).
Another perspective comes from the pathology field, where
spatial domains and architectures are first identified, followed
by instances of cell identification by morphology, which is
known as the top-down approach (38). Since this approach
focuses directly on pixel-level information instead of recon-
struction from single-cell data, it can identify both extracellu-
lar structures and cellular communities over a range of micro-
to macro-scale. Pixel-based analysis also forms the basis of
modern artificial intelligence learning from imaging, and thus
paves the way for more complex learning algorithms to be ap-
plied to multiplex tissue data (10, 45, 61).
Various methods are currently available for pixel-based spa-
tial domain detection from ST data (8, 55, 63). However,
they lack the scalability to work across batches and samples.
Attempts to apply these methods across samples fail to yield
global consensus domains, and instead identify regional do-
mains that are sample-specific or confounded by batch ef-
fects. To decipher true emergent properties within spatial
tissue domains, it is imperative that findings can be gener-

Kaur & Heiser et al. | bioR‰iv | February 2, 2023 | 1–19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.02.526900doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.02.526900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. The workflow of MILWRM pipeline. (A) MILWRM begins with constructing a tissue labeler object from all the sample slides that undergoes data preprocessing,
serialization and subsampling to create a randomly subsampled dataset used for Kmeans model construction. This subsampled data is used to find optimal number of tissue
domains – K selection using adjusted inertia method. Finally, a Kmeans model is constructed, and each pixel is assigned a tissue domain. Each tissue domain has a distinct
domain profile describing the molecular feature. MILWRM also provides quality control metrics such as confidence score.

alized across many samples at different resolutions. Here,
we present multiplex image labeling with regional morphol-
ogy (MILWRM) that is designed specifically for consensus
tissue domain characterization across large sample sets with
potential differing orientations and resolutions.

Results

The MILWRM pipeline generates consensus tissue domains
across specimens. Whereas most spatial analysis algorithms
focus on individual specimens, MILWRM aims to iden-
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tify consensus tissue domains across samples with spa-
tially resolved molecular data (e.g., multiplexed immunoflu-
orescence [mIF] and ST). The MILWRM pipeline can be
broadly categorized into three major steps: data preprocess-
ing, tissue domain identification, and tissue domain analy-
sis (Figure 1). To generalize pixel neighborhood informa-
tion across batches, data preprocessing incorporates down-
sampling, normalization, data smoothing, and dimensionality
reduction. Preprocessing steps differ slightly for mIF and ST
(Methods). After preprocessing, tissue domains are identi-
fied using unsupervised K-means clustering by subsampling
data across all samples (Methods). The number of tissue do-
mains is adjusted by inertia analysis (21). Each pixel is as-
signed a tissue domain based on the nearest centroid. Domain
profiles are calculated by MILWRM from the initial feature
space to molecularly describe each tissue domain, which is
useful for downstream annotation. Finally, MILWRM com-
putes a variety of metrics to assess the quality of identified
tissue domains (Methods). Overall, MILWRM is a compre-
hensive, easy to use pipeline for tissue domain detection, pro-
viding interpretable results for biological analysis and quality
assessment.

MILWRM identifies canonical tissue layers of the colonic mu-
cosa. We applied MILWRM to mIF data generated for the

Human Tumor Atlas Network (HTAN) consisting of human
normal colon and different colonic pre-cancer subtypes (con-
ventional adenomas – AD and serrated polyps – SER) (19).
These data comprised multichannel fluorescent images from
37 biospecimens consisting of tissues with different mor-
phologies and pathological classification confirmed by two
pathologists (Table S1). We performed low resolution ap-
plication of MILWRM using a smoothing parameter (‡) of
2 after downsampling the images to an isotropic resolution
of 5.6 µm/pixel and the penalty parameter of 0.05 that re-
sulted in three tissue domains according to adjusted inertia,
as illustrated by three representative samples (Figure 2A-B;
Figure S1A). According to domain profiles (Figure 2C), the
epithelial monolayer compartment was identified by markers
such as CDX2, —-catenin, Na+-K+ ATPase, and proliferative
marker PCNA, consistent with a high turnover hind-gut ep-
ithelium (28, 41). The mucus layer was enriched in MUC2, a
secreted mucin (9, 32, 56). The lamina propria region, where
stromal cells are prominent, was identified by Vimentin and
Collagen (58). The results from MILWRM analysis are con-
sistent with the tissue architecture of the colonic mucosa, as
well as other mucosal tissues in the body.
MILWRM consistently identified these regions across the 37
tissue samples (Figure 2D), and pixel level data over the sam-

Fig. 2. MILWRM detects canonical tissue domains in human colon mIF data. (A) Three representative colon mIF images with labelled tissue domains (– = 0.05) (B) Estimated
number of tissue domains in Adjusted inertia plot (C) Domain profile describing marker composition of each tissue domain (D) Proportion of each tissue domain across 38
samples (E) UMAP of pixel data used for model building with batch labels (F) Percentage variance explained by Kmeans (G) Three representative colon mIF images with
confidence score overlayed (H) mean confidence score in each image for each tissue domain.
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ples intermixed in UMAP-embedded space illustrating re-
moval of batch effects between images (Figure 2E), demon-
strating the ability of MILWRM to identify consensus regions
over multiple samples. MILWRM was able to capture about
80% of the variance in the multidimensional imaging data
without any notable outliers, demonstrating that information
within the imaging data is retained after MILWRM analysis
(Figure 2F). To assess the quality of tissue domain identifica-
tion, MILWRM calculates a modified silhouette-based confi-
dence score per pixel, which evaluates the deviation of each
pixel from the centroid of the matched tissue domain rela-
tive to the closest Kmeans centroid. Most pixels across all
samples have high confidence scores apart from a few in the
epithelial and mucus tissue domains (Figure 2G-H; Figure
S2A-B). Low confidence scores can be attributed to inher-
ent biological heterogeneity within epithelial domains, as the
analysis is performed over samples from mixed pathological
categories (normal, AD, SER). Thus, MILWRM performed
on a cohort of 37 biospecimens was able to provide physio-
logically relevant tissue domains with high confidence.

MILWRM identifies tissue domains that molecularly distin-
guish disease subtypes. To obtain more refined tissue do-
mains that appropriately stratify the heterogenous patho-
logical categories of our samples (normal, AD, SER), we
next performed MILWRM with a reduced penalty parame-
ter (a = 0.02). We obtained nine tissue domains that fur-
ther broke down the epithelial compartment into stem (SOX9,
PCNA, CDX2), differentiated (Na+-K+ ATPase, PANCK, b-
catenin), mucus (MUC2), abnormal (MUC5AC+/PANCK+),
and crypt lumen (OLFM4+), and the non-epithelial compart-
ment into smooth muscle, pericryptal stroma, and proximal
and deep lamina propria (Figure 3A-C; Figure S3A). These
refined tissue domains were spatially localized appropriately.
For instance, the stem and crypt lumen regions were located
at the crypt base while the differentiated regions were located
at the colonic surface. Interestingly, pericryptal stroma was
identified with a mixture of epithelial and stromal markers
and labeled a thin layer of fibroblasts that comprise telocytes
constituting the stem cell niche (Figure 3A-C; Figure S4A-E)
(13, 52).
We then asked whether the two pre-cancer subtypes, AD
and SER, have any differences in organization of MILWRM
tissue domains. We used generalized estimating equations
(GEE) to model the association of MILWRM tissue domain
proportions with tumor type and found a significant associ-
ation between MILWRM proportions for crypt lumen, ab-
normal, and stem classes (Table 1; Figure 3D). Specifically,
ADs were associated with higher proportions of pixels la-
belled as stem and crypt lumen classes, consistent with their
characteristic increased stemness driven by WNT-signaling
(14, 19). In contrast, serrated polyps were associated with
increased pixel proportions of the abnormal class marked by
MUC5AC; MUC5AC is a foregut endoderm mucin charac-
teristic of metaplasia associated with serrated polyps (49).
AD arises from stem cell expansion which inevitably fill the
entirety of abnormal crypts (19). Thus, we also hypothe-
sized that the stem MILWRM domain will be significantly

more connected compared with SER tissues. We again used
GEE to estimate the population average effect of pre-cancer
subtype on MILWRM the maximum size of tissue-connected
components (Table 2; Figure 3E) and found a significant as-
sociation between connectedness of stem and mucus tissue
domains and pre-cancer type. Stem domain was expectedly
more connected in AD subtype whereas higher connected-
ness in mucus domain was associated with SER pre-cancer
type. ADs have defects in differentiation of goblet cells that
inherently depletes the mucus layer (16, 22, 37, 46, 47, 62).
This aligns with association of AD with decreased connected
mucus components (Figure 3E). There was no such associa-
tion observed for connectedness of the abnormal MUC5AC+
domain since it comprises sporadic abnormal cells associated
with secretion. These results align with recent atlas results
demonstrating that ADs arose from stem cell expansion and
serrated polyps from pyloric metaplasia (19, 49).

MILWRM applied to spatial transcriptomics reliably iden-
tify tissue domains across different mouse brain cross-sec-
tions. We applied MILWRM to a publicly available 10X Ge-
nomics Visium dataset comprising seven mouse brain sam-
ples including three coronal, two sagittal anterior, and two
sagittal posterior slices (Figure 4A; Figure S5A-B) (1–7). We
used the penalty parameter 0.02 for high resolution domain
detection similar to the above for mIF data to distinguish
functionally relevant brain regions (Figure 3B). We identified
thirteen tissue domains in the brain ST data, and manually an-
notated them using histological information with a reference
atlas from the Allen Brain Institute (Figure 4A – middle col-
umn) (54). Confidence score overlays demonstrate high qual-
ity and robust identification of most tissue domains (Figure
4A – right column). Notably, MILWRM identified consen-
sus domains despite differences in the orientations and cuts
of brain slices. For example, MILWRM was able to capture
tissue domains that are unique only to certain slices, such as
cerebellum specific to sagittal-posterior cut, as well as do-
mains with diverse shapes and sizes due to orientation differ-
ences, such as the striatum that is small in the coronal slice,
large in the sagittal-anterior slice, and absent in the sagittal-
posterior cut (Figure 4A-B). The MILWRM model captures
approximately 70% of variance in ST data, similar to mIF re-
sults (Figure 4C; Figure S5C).
After histologically annotating the tissue domains using the
reference atlas, we evaluated the ability of MILWRM to iden-
tify known domain distinguishing genes for potential use in
unsupervised analysis. To achieve that, we curated a refer-
ence gene list for the corresponding histological regions from
differential expression lists available at the Allen Brain Atlas
obtained from ISH data 52. Reference lists for histological
regions not available in Allen Brain Atlas were curated from
the molecular atlas of mouse brain (43), which was generated
from ST data. We first compared MILWRM domain-specific
gene lists to curated reference gene lists for the corresponding
histological regions. To validate the reference gene lists, we
computed a signature score for each curated reference gene
list per brain region, and then overlaid these signatures onto
ST data. Reference gene signatures were expectedly highly
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Fig. 3. MILWRM tissue domains describe the molecular distinction between human colon adenoma pre-cancer subtypes. (A) Three representative colon mIF images with
labelled tissue domains (– = 0.02) (B) Estimated number of tissue domains in Adjusted inertia plot (C) Domain profile describing marker composition of each tissue domain
(D) GEE model results for association between tissue domains and pre-cancer subtype (E) GEE model results for association between size of connected components in
tissue domains and pre-cancer subtype.

specific to their respective brain regions (Figure 4D – left col-
umn; Figure S6A-G). In a similar vein, we also computed
and overlaid MILWRM domain-specific signature scores and
found that they were highly specific and accurately marked
each histological brain region (Figure 4D – right column;
Figure S7A-G). To quantify the performance between ref-
erence gene signatures and MILWRM signatures, we calcu-
lated a spot-by-spot correlation of the two sets of signature
scores across all slides. High correlation between the MIL-

WRM and reference scores was observed on a brain region-
specific basis (Figure 4E). These results illustrate that the
MILWRM approach can be effectively applied to genome-
scale ST data for extracting tissue domain-specific molecular
information.

MILWRM performs favorably when compared to SpaGCN.
While there is a paucity of methods to identify and enu-
merate spatial domains across samples, we compared MIL-
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Fig. 4. MILWRM detects consensus tissue domains in ST data from different mouse brain cross-sections. (A) MILWRM detected tissue domains (at – = 0.02, middle) in
mouse brain ST data (H&E, left) and confidence scores (right) (B) Proportion of tissue domains in slides (C) Percentage variance explained by Kmeans (D) Reference (left)
and MILWRM scores (right) for Thalamus, Striatum and Cerebellum (top to bottom respectively) (E) Overall correlation between MILWRM and reference scores for each
tissue domain and anatomical region across all spots.

WRM to recently published SpaGCN, which is one of the
only algorithms that can detect spatial domains on ST data
over multiple samples (30). MILWRM and SpaGCN were
performed on five brain ST slides analyzed above with ef-
fectively the same resolution (MILWRM – = 0.01, SpaGCN
res = 0.52, p = 0.5) (Figure 5A). MILWRM was able to fur-
ther sub-classify previously detected tissue domains into sub-
regions. For instance, isocortex was divided into three addi-
tional layers and cerebellum into two layers, which corre-
sponded to brain anatomy in the reference atlas (Figure 5A
- middle column, Figure 5B). These finer sub-classifications
were detected across multiple slices by MILWRM. In con-
trast, SpaGCN was unable to detect consensus spatial do-
mains across all slides. Only common domains detected in
similarly oriented cuts were identified, whereas the same do-
main across uniquely sliced slides were identified separately
(Figure 5A – right column). SpaGCN, when performed at
varying resolutions, was also unable to identify consensus
domains across replicates slides (Figure 5C - Colored ar-
rows). Although a consensus can be reached by searching
for the right parameters, it is not consistent for all domains.
These results further illustrate the ability of MILWRM as one

of the only algorithms to robustly identify consensus tissue
domains across slides with pixel information.
While SpaGCN was only designed for ST data, we still com-
pared its performance on mIF data, as there are currently no
existing algorithms for domain detection for more than one
sample in mIF data. To enable SpaGCN which only works on
low resolution ST data, we performed SpaGCN spatial detec-
tion on two mIF slides downsampled to 1/32 resolution with
p = 0.5, res = 0.5. While the entire tissue in pixel space was
classified into MILWRM domains, there were missing tissue
portions in domains detected by SpaGCN (Figure 5D – left
column). Additionally, SpaGCN detected twelve consensus
spatial domains across MxIF slides, but many of these do-
mains were spurious; only three domains predominantly rep-
resented real tissue regions. Furthermore, SpaGCN was un-
able to capture tissue domains that classify disease tissue sub-
types (SER versus normal, for example), which was apparent
in the MILWRM analysis across the two slides (Figure 5D –
right column). Overall, MILWRM offers a robust and flexible
approach for consensus domain identification across speci-
mens that is generally applicable to different spatial molecu-
lar data types.
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Fig. 5. MILWRM performs better than SpaGCN. (A) MILWRM (middle) and SpaGCN (right) detected tissue domains in mouse brain ST data (B) Stratified layers in Isocortex
and Cerebellum from Allen brain atlas (top) and MILWRM domains (bottom) (C) SpaGCN domains at different resolutions (res 0.3, 0.52 and 1), colored arrows point the
domains that should be consensus (D) SpaGCN (left) and MILWRM domains (right) in two colon mIF specimens

Discussion

Pixel-based tissue domain detection forms the basis of the
top-down approach to spatial data analysis. Current methods
of tissue domain detection are either based on a bottom-up
approach, that is, building cellular neighborhoods using seg-
mented single-cell data (20, 34, 59) and/or lack scalability
across samples (8, 30, 55, 63). Here, we addressed this gap by
developing MILWRM, an algorithm to detect spatial domains
across samples through a top-down, pixel-based approach.
We demonstrated applicability of MILWRM to find relevant
biological phenotypes in multiple data modalities (MxIF and

ST) in an unsupervised way without manual thresholding and
annotation.
An important demonstration of MILWRM is its ability to
discern organizational differences in tissue domains related
to disease subtypes. While abnormal tissues can be dis-
tinguished from normal tissues within a slide using other
methods, MILWRM application across slides has significant
value. There are specimens that are completely composed
of abnormal tissues. In those circumstances, comparison be-
tween specimens (normal vs abnormal) is the only way to
distinguish between disease states. In addition, MILWRM’s
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ability to identify consensus tissue domains across specimens
makes it possible to classify patients into disease subtypes
based on tissue features. Finally, MILWRM was able to iden-
tify consensus domains and gene lists that match with organ
anatomical features despite different cuts and orientations.
This is important because the tissue structure from individual
cuts may appear morphologically different but is functionally
identical. These examples showed the real-world application
of MILWRM in pathological diagnosis of disease subtypes
and anatomic classification and characterization.
mIF data present additional pixel analysis obstacles. First,
due to lower marker dimensionality, marker selection and
management is of utmost importance. Unlike ST data where
vectors of genes define programs and phenotypes, mIF phe-
notypes are usually defined by single markers. Highly ex-
pressed markers may mask lower expression markers if sub-
optimal preprocessing is performed, thus preventing some
tissue domains from being detected. Secondly, high resolu-
tion microscopy data are generally incompatible with pixel-
based algorithms built for low resolution ST data, such as
SpaGCN. Creation of image tiles or large-scale downsam-
pling is needed to satisfy speed and memory requirements.
In contrast to most state-of-the-art methods for pixel-based
analysis that are data type-specific, MILWRM is adaptable to
multiple imaging data types and is scalable to many samples.
While SpaGCN is a scalable method for spatial domain de-
tection, it failed to discern disease-specific differences in tis-
sues from the tissue domains it identified. Additionally, the
domains identified by SpaGCN in ST data were not robust
since they failed to reach consensus at different clustering
resolutions. Additionally, MILWRM also provides various
QC metrics which can be used to assess the quality of domain
detection and ability to perform tissue clustering at different
levels of smoothing, downsampling, and cluster resolution.

Methods

Resource availability.

Lead Contact. Request for further information and requests
for resources should be directed to and will be fulfilled by the
corresponding authors, Ken Lau (ken.s.lau@vanderbilt.edu)
and Simon Vandekar (simon.vandekar@vumc.org)

Materials Availability. This study did not generate any new
unique reagents.

Data and Code Availability. The package is available to be in-
stalled directly from pyPI website (https://pypi.org/
project/MILWRM/). The source code for the package
and code for the figures can be found on github (https:
//github.com/Ken-Lau-Lab/MILWRM).

MILWRM workflow details.

Data preprocessing. Spatial-omics data differ in their acqui-
sition and technological artifacts across modalities, so these
preprocessing steps are data type specific. It is important for
the user to understand and apply methods that are reasonable

for their modality before using MILWRM, otherwise results
can be corrupted by batch effects.

A. Multiplex Immunofluorescence (mIF). Prior to preprocess-
ing, mIF data were scaled from uint8 (0 to 255) to float (0 to
1) and downsampled by a factor 1/16th resolution to speed
computation and normalization process. There is no sacrifice
in the quality of the neighborhood identification by down-
sampling as mIF data have subcellular spatial resolution and
MILWRM is designed to identify broad tissue domains. Af-
ter downsampling we created tissue masks for each image as
described in mIF tissue mask generation with MILWRM. Fi-
nally, we applied image normalization at slide-level using the
formula y = log x

µx
+1, where x is the unnormalized data and

µx is the mean of non-zero pixels in the image, per marker.
This normalization was a modification of an existing method
evaluated in segmented mIF data. Here, we implemented
the mean of non-zero pixels to accommodate channels with
sparse signal intensities (27). The downsampling performed
on images prior to this normalization step also aligns with
the unbiased grid-based normalization framework described
by Graf et al., 2022 (24). In order to incorporate broader spa-
tial information within each pixel, after normalization, we
applied gaussian smoothing. The radius of blurring can be
controlled by adjusting ‡ parameter in MILWRM for mIF
modality. Here, we use ‡ = 2 for smoothing.

B. Spatial Transcriptomics (ST). The above-described steps
differ slightly between mIF and ST modality. For ST data
the first step is to reduce the dimensionality of the transcrip-
tomics data. For the analysis shown in this paper, we used
Principal Component Analysis (PCA) for dimensionally re-
duction, but other methods can also be used with MILWRM
such as Non-Negative Matrix Factorization (NMF) (36). We
used Harmony (35) to correct technical variation between the
samples. As in mIF, blurring is applied to the ST slides to
preserve spatial information. To perform blurring, each cen-
tral spot is assigned the average value for the selected re-
duced components (PCs in this case) across the spots within
the neighborhood of the central spot. The spatial neighbor-
hoods are computed using the squidpy Python package
(44). The neighborhood distance can be controlled by ad-
justing the n_rings parameter. Here, we use n_rings =
1 for smoothing in ST data.

Identification of tissue domains. The tissue domains in the
data are identified across slides by performing unsupervised
K-means clustering on the preprocessed data. MILWRM
reduced computation time by randomly subsampling pixels
for mIF modality. The fraction of pixels (default 0.2, used
here) and all the spots are serialized to build the K-means
model. If the dimension reduction is performed, then the in-
put data are the PCs, otherwise the input is the batch-adjusted
marker channels. Prior to performing K-means, the data are
Z-normalized to ensure that the mean and variances are sim-
ilar across the different channels/PCs of the input data. The
k-selection for K-means is done by estimating adjusted iner-
tia metric. Adjusted inertia is inertia weighted by a penalty
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parameter that controls the number of clusters (21). For MIL-
WRM, the parameter can be adjusted to control the resolution
of tissue domains identified.
After performing K-means classification, tissue domains are
identified in the full dataset by assigning the tissue domain
for the closest cluster centroid from the K-means model. The
mean and variance computed for subsampled data is used
to Z-normalize the original image data. By performing K-
means model estimation in the subsample, MILWRM can re-
duce computational demand for mIF modality. Kmeans is
performed on entire dataset in ST modality.

Quality control and tissue labeling. Once the regions are
identified it is useful to label the tissue domains based on their
marker expression profile and assess the quality of cluster-
ing. The cluster centroids for each tissue domain are plotted
in marker or PCA component space to label the tissue clus-
ter based on its expression profile. The centroids can also be
plotted in gene space for ST modality or other dimensionally
reduced components. The quality of clustering is assessed
at the whole slide and pixel levels. To assess the whole slide
fit, we compute the variance explained and mean square error
within each slide. These metrics allow the user to flag slides
for manual review where the overall fit might be bad. We
also compute pixel-level confidence score using the formula
y = distx,c2≠distx,c

distx,c2 where dist is the Euclidean distance
between pixel or spot, x, assigned centroid, c, and the sec-
ond closest centroid c. The confidence scores take values
between zero and one where higher values indicate smaller
distance between the assigned centroid and closest centroid
thus, better fit. This metric is a fast simplification of the Sil-
houette index.

mIF tissue mask generation with MILWRM. MILWRM has
a designated function to perform creation of tissue masks
through the MILWRM pipeline described above. Each pre-
processing step is performed on individual images including
log normalization and smoothing with a gaussian filter (‡ =
2). Finally, the mask is created using Kmeans clustering with
n = 2. The Kmeans cluster centers are then z-normalized and
the cluster center with a mean smaller or equal to zero is set
as background.

Imaging data, acquisition, and basic image process-

ing. The mIF data were generated for the Human Tumor At-
las Network (HTAN) consisting of human normal colon and
different colonic pre-cancer subtypes (conventional adeno-
mas - AD and serrated polyps - SER) (19). These data com-
prised multichannel fluorescent images from 37 biospecimen
consisting of tissues with different morphologies and patho-
logical classification, as confirmed by 2 pathologists (Supple-
mentary Table 1). Cyclical antibody staining, detection, and
dye inactivation was performed as described previously (23).
In brief, fluorescent images were acquired at 200x magnifi-
cation on a GE In Cell Analyzer 2500 using the Cell DIVE
platform. Exposure times were determined for each antibody.
Dye inactivation was accomplished with an alkaline peroxide
solution, and background images were collected after each

round of staining to ensure fluorophore inactivation. Staining
sequence, conditions, and exposure times are as described
in (19). Following acquisition, images were processed as de-
scribed (41). Briefly, DAPI images for each round were regis-
tered to a common baseline, and autofluorescence in staining
rounds was removed by subtracting the previous background
image for each position.

Method evaluation and statistical analysis. In order
to assess the sensitivity of MILWRM regions to biologi-
cal differences between precancer subtypes we computed
tissue proportions and connected component statistics for
each tissue domain within the tumor region of each im-
age and used generalized estimating equations (GEEs)
to model how these variables were associated with pre-
cancer subtypes. Connected components were estimated
for each image in Python using the label function in
scipy.ndimage.measurements module. For the tis-
sue proportions, we modeled each tissue proportion sepa-
rately using a binomial family model assuming that images
from the same slide had an exchangeable correlation struc-
ture. We modeled the maximum connected component size in
order to quantify how the size and connectedness of different
tissue domains differed across precancer subtypes. In these
analyses, we used log transformation in a gaussian family
model with a log transformation on the maximum connected
component size and included log of the total tissue volume
as a covariate. In all models, we weighted each region by
its total image size so that results were not affected by noisy
estimates from smaller images. Statistical analyses were per-
formed in R using the geepack package (26). We per-
formed plot all results with unadjusted significant p-values
and report adjusted p-values using the Benjamini-Hochberg
procedure and a robust effect size index (15, 57) (Tables 1
and 2).

Tissue domain signature scores for ST data. The man-
ual annotation for tissue domains in ST data were verified
by generating signature gene scores specific to each brain re-
gion. For this purpose, we extracted differentially expressed
genes from Allen brain atlas for all available brain regions
and molecular atlas of adult mouse brain for fiber tract and
ventricles. MILWRM also identified a set of genes for each
tissue domain. We computed a score for both reference sig-
nature set and MILWRM gene set using scanpy (60).
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