
Towards Universal Cell Embeddings: Integrating
Single-cell RNA-seq Datasets across Species with

SATURN
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Abstract

Analysis of single-cell datasets generated from diverse organisms offers unprecedented op-

portunities to unravel fundamental evolutionary processes of conservation and diversifica-

tion of cell types. However, inter-species genomic differences limit the joint analysis of cross-

species datasets to orthologous genes. Here, we present SATURN, a deep learning method

for learning universal cell embeddings that encodes genes’ biological properties using protein

language models. By coupling protein embeddings from language models with RNA expres-

sion, SATURN integrates datasets profiled from different species regardless of their genomic

similarity. SATURN has a unique ability to detect functionally related genes co-expressed

across species, redefining differential expression for cross-species analysis. We apply SAT-

URN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets.

We show that cell embeddings learnt in SATURN can be effectively used to transfer annota-

tions across species and identify both homologous and species-specific cell types, even across

evolutionarily remote species. Finally, we use SATURN to reannotate the five species Cell
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Atlas of Human Trabecular Meshwork and Aqueous Outflow Structures and find evidence

of potentially divergent functions between glaucoma associated genes in humans and other

species.
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Introduction
Cell mapping consortia efforts have generated large-scale single-cell datasets comprising hundreds

of thousands of cells with the goal of uncovering underlying cellular processes. In-depth analysis

of diverse datasets generated across different species through global efforts such as the Human Cell

Atlas [1, 2], the Mouse Cell Atlas [3] and the Fly Cell Atlas [4, 5] has broadened our understand-

ing of cell biology characterizing many cell types for the first time. However, current analyses

remain limited in their ability to jointly analyze datasets generated across different species. Such

joint analysis offers great potential to unravel fundamental evolutionary processes and explain how

cellular diversity links to anatomical and physiological variation across species.

A variety of linear [6] [7] and, more recently, deep learning approaches [8–10] have been

developed to learn low-dimensional representations of single-cell RNA expression data (cell em-

beddings). However, existing methods represent genes only as columns of an RNA expression

matrix and thus, do not account for the biological properties of genes. This severely limits their

usability when analyzing datasets generated from different species in which only a subset of genes

can be matched as one-to-one orthologs. While sequence alignment methods have been explored

to incorporate weighted relationships between genes across species [11], they are dependent on

arbitrary alignment thresholds and do not capture remote orthologues. Recent advances in pro-

tein language models trained on hundreds of millions protein sequences [12–14] suggest strong

potential in addressing these issues by learning informative representations of the proteins a gene

encodes. This is evidenced through the remarkable ability of protein representations to encode

protein structure, function, molecular properties [12] and orthology [15]. However, so far, the

representational power of these models has not been exploited to learn cell representations that

capture functional similarity of genes.

We present SATURN (Species Alignment Through Unification of Rna and proteiNs), a deep

learning approach that integrates cross-species scRNA-seq datasets by coupling gene expression

with protein embeddings generated by large protein language models. By leveraging language

model protein embeddings, SATURN introduces a concept of macrogenes defined as groups of

functionally related genes. The strength of associations of genes to macrogenes are learnt to reflect

the similarity of their corresponding protein embeddings. SATURN is uniquely able to perform

multi-species differential expression analysis revealing functionally related groups of genes co-

expressed across species. By mapping single-cell datasets generated with different genes to a joint

embedding space, SATURN takes major steps towards universal cell embeddings.
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We apply these embeddings to diverse tasks such as integration of cross-species cell atlas

datasets, discovery of species specific cell types, reannotation and cross-species label transfer, as

well as identification of protein differences across species. In particular, we apply SATURN to

integrate Tabula Sapiens [2], Tabula Microcebus [16], and Tabula Muris [3] cell atlas datasets,

creating a mammalian cell atlas of 335, 000 cells across 9 common tissues. We further apply SAT-

URN to integrate frog and zebrafish embryogenesis datasets [17]. Our results show that SATURN

successfully transfers annotations even across evolutionarily remote species and finds homologous

and species-specific cell types, outperforming existing cross-species integration methods by a large

margin. Finally, we apply SATURN to reannotate the five species Cell Atlas of Human Trabecu-

lar Meshwork and Aqueous Outflow Structures [18]. We find that SATURN identifies glaucoma

associated macrogenes that have potentially divergent functions across species.

Results
Overview of SATURN. The major challenge of cross-species integration is that different datasets

have different genes that may not have common one-to-one orthologs. Subsetting each species’

set of genes to the common set of one-to-one orthologs leads to losing a large portion of biologi-

cally relevant genes. Increasing the number of species exacerbates this problem, since a gene must

have an ortholog in each species in order to be considered for integration. SATURN overcomes

this problem by using large protein language models to learn cell embeddings that encode biolog-

ical meaning of genes. SATURN maps cross-species datasets in the space of functionally related

genes determined by protein embeddings. SATURN ’s use of protein language models allows it

to represent functional similarities even between remotely orthologous genes that are missed by

integration methods that rely on sequence based similarity [11].

In particular, SATURN integrates scRNA-seq datasets generated from different species with

different genes by mapping them to a joint low-dimensional embedding space using gene expres-

sion and protein representations. SATURN takes as input: (i) scRNA-seq count data from one or

multiple species, and (ii) protein embeddings generated by a large protein embedding language

model like ESM2 [14]. The language model takes a sequence of amino acids and produces a pro-

tein representation vector (Fig. 1a). Given gene expression and protein embeddings, SATURN

learns an interpretable feature space shared between multiple species. We refer to this space as

a macrogene space and it represents a joint space composed of genes inferred to be functionally
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related based on the similarity of their protein embeddings. The importance of a gene to a macro-

gene is defined by a neural network weight – the stronger the importance, the higher the value of

the weight that connects the gene to the macrogene.

Given the shared macrogene expression space across different species, SATURN then learns

to represent cells across multiple species as nonlinear combinations of macrogenes. The neural

network in SATURN is first pretrained with a conditional autoencoder with zero inflated nega-

tive binomial (ZINB) loss, regularized to reconstruct protein embedding similarities using gene

to macrogene weights (Methods). Using the pretrained network as initialization, SATURN then

learns a mapping of all cells to the shared embedding space with a weakly supervised metric learn-

ing objective. This allows SATURN to calibrate distances in the embedding space to reflect cell

label similarity. In particular, the objective function in SATURN consists of two main components:

(i) forcing different cells within the same dataset far apart using weak supervision; and (ii) forc-

ing similar cells across datasets close to each other in an unsupervised manner (Methods). This

objective enables SATURN to integrate cells across different species, while preserving cell type

information within each species’ dataset.

SATURN creates multi-species cell atlases. We applied SATURN to integrate large-scale single

cell atlas datasets generated from human (Tabula Sapiens), mouse lemur (Tabula Microcebus) and

mouse (Tabula Muris), creating the first mammalian cell atlas of 335, 000 cells (Fig. 1b). We found

that major cell types aligned well across three species such as granulocytes, myeloid and epithelial

cells; and then analyzed the alignment on a per-tissue level. For example, in muscle, we found

a small subcluster of cells labeled as mouse macrophages that grouped with human and lemur

granulocytes while the rest of cells labeled as mouse macrophages aligned with human and lemur

macrophages (Supplementary Fig. 1). To investigate whether this alignment is indeed correct,

we checked the expression of known granulocyte marker Cd55 [19] [20]. Interestingly, we found

that this small subcluster labeled as mouse macrophage indeed expresses Cd55, indicating that this

small cluster was wrongly annotated as macrophages while it should be annotated as granulocyte

(Supplementary Fig. 2).

In spleen, SATURN separated out human naive B cells from human memory B cells, but

aligned human memory B cells with cells annotated as B cells in mouse and lemur (Supplemen-

tary Fig. 3). To investigate whether this alignment is meaningful, we checked the marker genes

and found that indeed mouse and lemur B cells express Cd19, a B cell marker known to be pref-
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erentially expressed in memory B cells, which was only weakly expressed in human naive B cells

(Supplementary Fig. 4) [21]. This indicates that mouse and lemur B cells are correctly clustered

with human memory B cells, which is additionally confirmed by strong expression of Cd19. Thus,

SATURN can be used to obtain fine-grained level annotations when cell atlases have been anno-

tated with different granularity levels. Additionally, we found that SATURN correctly identified

cell types specific to a single species within the integrated datasets. For instance, in muscle tissue,

SATURN separated human epithelial and mesothelial cells from all other cell types (Supplemen-

tary Figure 1). These cell types are indeed absent in mouse and lemur datasets. In spleen, SATURN

separated human erythrocytes (Supplementary Figure 3).

We next applied SATURN to a multi species dataset of frog (97, 000 cells) and zebrafish

(63, 000 cells) embryogenesis [17]. SATURN aligned evolutionary related cell types between these

two remote species (Fig. 1c). We further inspected small clusters that are aligned by SATURN,

but their ground-truth cell type annotations differ. We find that these clusters indeed correspond

to related cell types. For example, SATURN integrated zebrafish macrophages and frog myeloid

progenitors which can differentiate into macrophages. These cell types are embedded close to

blood cells which further demonstrates that local distances in SATURN ’s embedding space are

meaningful.

SATURN performs differential expression on macrogenes. SATURN extends differential ex-

pression analysis to a multi species setting. Instead of performing differential expression analysis

on individual genes, which is highly limited when datasets do not share genes, SATURN performs

differential expression on macrogenes, which enables characterization of cell-type specific macro-

genes across different datasets. To perform differential expression on macrogenes, SATURN first

aggregates the contributions of individual genes to macrogenes using gene-macrogene neural net-

work weights (Fig. 2a). The aggregated values can be seen as macrogene expression for each

individual cell. Like in conventional differential expression analysis, SATURN then performs dif-

ferential expression on cell clusters, such as those determined by cell type label. The difference

compared to conventional differential expression is that in SATURN the statistical test is performed

on the macrogenes. Finally, to interpret the biological meaning of a macrogene, SATURN consid-

ers genes with the highest weight to the macrogene.

By performing macrogene differential expression SATURN has two major advantages over

existing integration methods. First, SATURN can identify differentially expressed genes that lack
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a one-to-one ortholog. This is in contrast to existing methods that rely on one-to-one orthologs

and therefore ignore unmapped genes. Second, differentially expressed macrogenes provide nat-

ural gene modules that aid in interpretation, since they rely on groups of related genes instead of

individual genes. This can lead to identification of shared gene programs across species.

We conduct macrogene differential expression analysis in frog and zebrafish embryogenesis

datasets. We demonstrate examples for the macrophage/myeloid progenitor cluster (Fig. 2b) and

for the ionocytes cluster (Fig. 2b). In particular, we show the top five differentially expressed

macrogenes and their corresponding highly weighted genes that characterize them, and we name

each macrogene according to the gene with the highest weight to that macrogene. We focus on

genes with known annotations.

For both macrophage/myeloid progenitors and ionocyte cell types we find that highly ex-

pressed macrogenes indeed capture groups of related genes that are known to have the function

associated with these cell types. In particular, for macrophage/myeloid progenitors, the top dif-

ferentially expressed macrogenes include Arghdi, Cebp, Ptp, Cybb and Lcp1 (Fig. 2b). All these

macrogenes contain genes associated with functions in blood cells. For example, the Arghdi macro-

gene contains frog and zebrafish orthologs of Arhgdig, as well as frog specific paralogs such as

Arhgdib and Arhgdia, which are involved in Rho protein signal transduction and RacGTPase bind-

ing activity [22,23]. RhoGTPases play an important role in hematopoietic stem cell functions [24].

Similarly, the Cebp macrogene contains frog and zebrafish orthologs of Cebpd, Cebpb and Cebpa.

Cebpa is associated with zebrafish hemopoiesis and Cebpb is known to be expressed in zebrafish

macrophages [22, 23].

For ionocytes, SATURN ranks Foxi, Dmr2, Cldn, Ubp and Atp6v0 as top five differentially

expressed macrogenes (Fig. 2b). Indeed, we find that all these macrogenes contain genes that

are known to be associated with ionocytes. Foxi consists of Fox transcription factors that are

known ionocyte markers [25]. The Dmrt2 macrogene contains Dmrt2 and Dmrt2a. Dmrt2 is

a known ionocyte marker in human pulmonary ionocytes [26]. The Cldn macrogene contains

various claudins, which are found in gill ionocytes of teleost fish like zebrafish [27].

Moreover, macrogene differential expression can also be used to find species-level differ-

ences between cell types conserved across species. For example, when comparing zebrafish and

frog ionocytes a macrogene represented by Gnpda1, Apip, Paics and a macrogene represented by

Ppp1r14b and Fosab are specific to zebrafish, while a macrogene represented by Gadd45g, Aen,

and Msgn1 is highly expressed in frog ionocytes but not in zebrafish (Fig. 2c).
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Macrogenes capture orthology. We find that macrogenes generated by SATURN recapture

sequence-based gene orthologs. In particular, we computed the proportion of macrogenes with

an orthologous gene pair between zebrafish and frog among their top ranked genes. To assess

gene orthology, we use BLASTP, which determines gene orthologs based on protein amino acid

sequence similarity [28]. We find that even with only two top ranked genes, 56% macrogenes in

SATURN recapture gene orthology information, while by considering ten top ranked genes 91.2%

of macrogenes recapture gene orthology information (Fig. 2d). In comparison, random assignment

of genes to macrogenes results in orthologous pairs in only 0.25% of macrogenes when consider-

ing two top ranked genes and in only 18.8% macrogenes when considering ten top ranked genes.

Altogether, these results not only indicate that macrogenes in SATURN recapture orthology infor-

mation, but that they can also be used to reveal functional similarities between genes even when

these genes are not considered as orthologs by sequence based similarity tools such as BLASTP.

SATURN outperforms other methods by a large margin. We quantitatively assess the perfor-

mance of SATURN on the alignment of frog and zebrafish embryogenesis datasets. We evaluate

performance by measuring how well labels can be transferred from zebrafish to frog. In particular,

we first integrate the datasets using SATURN and then use the cell-type annotations of cells from

a reference species, zebrafish, to train a logistic classifier to predict cell types [29] (Supplementary

Note 3). The classifier’s performance is then tested on the embeddings of the query species, frog

(Fig. 3a). Predictions are assessed as correct if they match the known frog cell type. Since not

all frog cells can be mapped to zebrafish cells, the maximum possible accuracy of such a model is

93%.

We compare the performance of SATURN to another single cell multi species integration

method, SAMap [11], and unsupervised integration methods Harmony [6], scVI [8] and Scanorama

[7]. SAMap is run in a weakly supervised mode in which cell neighborhoods are determined by a

cell type, which is the same setting as SATURN. SAMap is initialized with a gene graph based on

protein sequence similarity as determined by BLASTP. For the unsupervised methods, the input

genes for each species are taken as the one-to-one orthologs as determined by ENSEMBL [30]. We

found that SATURN achieves 85.8% median accuracy in cell label transfer from zebrafish to frog,

achieving remarkable 119% performance gain over the next best performing method, SAMap (Fig.

3b). We obtain similar performance gains when transferring labels from frog to zebrafish (Sup-

plementary Figure 5). Performance gains of SATURN are retained using other evaluation metrics,
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such as F1-score, precision and recall (Supplementary Fig. 6). To test whether choice of protein

language model for obtaining protein embeddings affects SATURN’s performance, we compared

ESM2 embeddings [14] to ESM1b [12] and ProtXL [13]. The results show that SATURN is highly

robust to the choice of protein language model (Supplementary Fig. 7), as well as to the number

of macrogenes (Supplementary Fig. 8).

We further compare SATURN ’s ability to generate cell clusters that reflect conserved cell

types across species, to the best baseline approach (SAMap). For each frog cell type we analyze

its cross-species neighborhood by computing the cell type frequency of its nearest cross-species

neighbors in the embedding space. We find that SATURN generates cell clusters that are both

species heterogeneous and cell type homogeneous (Fig. 3c). For the most commonly occurring

cell types, SATURN ’s neighborhoods are consistently highly homogeneous. On the other hand,

this is not the case for SAMap where the neighborhoods are typically cell type heterogeneous.

For example, forebrain/midbrain, hindbrain, optic and eye primordium clusters are intermixed

using SAMap but clearly distinguished using SATURN. SATURN aligns rare cell types such as

notoplate, which only has 339 frog cells and 115 zebrafish cells. For a few very rare cell types,

such as germline, which has only 33 frog cells and 53 zebrafish cells, SATURN and SAMap both

fail to align. SATURN and SAMap fail to directly align additional rare cell types such as olfactory

placode and hatching gland. However, SATURN aligns these cell types to functionally related cell

types: 77% of olfactory placode cells are mapped to placodal area for SATURN (37% for SAMap)

and 66% of hatching gland cells are mapped to another component of the EVL, the periderm,

which is not case with SAMap (36% epidermal progenitor, 33% blastula).

We visually inspected low-dimensional embeddings produced by SATURN and other base-

lines by projecting them into a two-dimensional UMAP space [31]. We find that in SATURN

’s embedding space different cell types form separate clusters while cell types conserved across

species are mixed together (Fig. 3d). On the other hand, existing methods are not able to produce

biologically meaningful cell embeddings that reflect evolutionary signatures. In particular, Har-

mony, scVI and Scanorama fail to integrate datasets across remote species. While SAMap is able

to integrate datasets across species, the cell type information in its embedding space is no longer

preserved and different cell types intermingle.

SATURN integrates five species from the Aqueous Humor Outflow cell atlas. SATURN scales

to large datasets and it can handle multiple datasets at once. We apply SATURN to integrate five
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species Cell Atlas of Human Trabecular Meshwork and Aqueous Outflow Structures (AH atlas)

[18]. The AH atlas contains 50, 000 cells from human, cynomolgus macaque, rhesus macaque,

mouse and pig. SATURN jointly aligns different species in the embedding space, identifying

many conserved cell types between these species (Fig. 4a). SATURN embeddings suggest that

cell types including melanocytes, macrophages, and ciliary muscle align in all species, as do cell

types that are present only in a subset of species like fibroblasts and collector channel.

SATURN can be used to reannotate cell types and correct for incomplete annotations by

aligning datasets across multiple species. To demonstrate that, we use SATURN to regroup cell

types from the original AH atlas in a multi-species context. We focus on beam cells (beam

A/B/X/Y), fibroblasts, JCT (juxtacanalicular tissue) cells, and corneal endothelium cells, due to

their differential conservation across the five species profiled in the atlas.

Among these 21 cell types, SATURN found 5 broad clusters. The first cluster contains mouse

beam cells and fibroblasts from pig, human and rhesus macaque, which we relabel as fibroblasts.

The reannotated mouse beam cells are indeed characterized as having high expression of fibroblast

marker genes (Supplementary Fig. 9, Supplementary Table 1). The second cluster contains beam

A cells from pig, human, rhesus macaque and a mouse uveal cluster, which we reannotate as beam

A cells. The third and fourth clusters contain beam X, beam B and JCT cells, which we reannotate

as JCT cells, as beam X cells were only found in the two macaque species and beam B cells were

only found in human. The fifth cluster contains the human Schwalbe line cells, and pig and mouse

corneal endothelium cells. Within these new cell type groupings, we find differentially expressed

macrogenes that recapture specific cell type marker genes (Supplementary Fig. 9, Supplementary

Table 1).

SATURN discovers orthologous genes with different functions across species. SATURN fa-

cilitates analysis of protein embeddings through the creation of macrogenes. We investigate the

macrogenes corresponding to glaucoma related genes from each species in the AH atlas (Fig. 4d).

While pig, mouse, cynomolgus and rhesus macaque Myoc gene are expectedly linked to the same

macrogene, we find that the human Myoc gene is not linked to that macrogene. Interestingly, the

human Myoc gene has the highest weight to a macrogene containing human A2m, which is a non

orthologous gene that has also been associated with glaucoma [32], and a number of different non

human species’ genes such as mouse Folr1, mouse Fbln2, mouse Srgn, and pig SCP2d1. A2m

genes from non-human species have the highest weights to the same macrogene. This analysis
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demonstrates that protein embeddings in SATURN and their association to macrogenes can be

used to find sequence-based gene orthologs with potentially different functions across species.

Discussion
SATURN represents the first model that combines protein embeddings generated using large pro-

tein language models with gene expression from scRNA-seq datasets. By coupling protein em-

beddings with gene expression, SATURN learns universal cell embeddings that bridge differences

between individual single-cell experiments even when they have different genes.

SATURN has a unique ability to map heterogeneous datasets to an interpretable space of

macrogenes defined as groups of functionally related genes. In SATURN, every gene has a weight

to a macrogene which defines an importance of that gene to a macrogene. This enables SATURN to

perform differential expression in the macrogene space and identify gene programs shared across

different datasets. SATURN represents cells as nonlinear combinations of macrogenes. To inte-

grate datasets, the objective function introduced in SATURN learns distance metrics from weakly

supervised data which forces cells to cluster according to their cell types.

SATURN allows for integration of datasets generated across multiple different species. SAT-

URN is a scalable approach which makes it applicable to large-scale cross-species cell atlas datasets.

Our approach also has important implications for the creation of new multi-omic machine learning

methods, including those that incorporate protein assay information (e.g. CITE-seq [33]), geno-

type, or those that assay a limited section of the transcriptome (e.g. MERFISH [34]).

Finally, SATURN generates cell embeddings that can be used for many downstream tasks.

These tasks include but are not limited to dataset integration, discovery of conserved and species-

specific cell types, differential macrogene expression analysis, cell type reannotation, signature

set enrichment, gene module determination [35], RNA velocity [36], or trajectory inference [37].

As single cell transcriptomics is applied to an increasing number of species, we expect SATURN

will be an important tool for comprehending conservation and diversification of cell types across

species and revealing fundamental evolutionary processes.
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Methods
Overview of SATURN. SATURN takes multiple single cell RNA expression count datasets gen-

erated from S species Xs1 ,Xs2 ...XsS where Xsi ∈ N+Csi×|Gsi | where Csi is the number of cells

in species si and Gsi is the set of genes in species si. Besides count matrices, SATURN also takes

as input p- dimensional protein embeddings P ∈ R|G|×p generated from large protein language

models where G = ∪S
i=1Gsi .

SATURN maps multi-species expression data to a joint low dimensional macrogene expres-

sion space by learning a set of macrogenes M with weights W ∈ R+|G|×M where Wg,m ∈ R+

is a weight from a macrogene m ∈ M to a gene g ∈ G. SATURN generates final k-dimensional

latent cell embeddings by combining macrogenes using an encoder neural network f : R|M| → Rk.

Macrogenes initialization. SATURN initializes macrogenes by soft-clustering protein embed-

dings. In particular, SATURN first clusters protein embeddings using the K-Means algorithm [38].

Given a matrix that stores protein embeddings for all genes P ∈ R|G|×p, SATURN applies K-

Means to learn a set of centroids M = {mi ∈ Rp}NM
i=1 where NM defines the number of cen-

troids/macrogenes. K-means minimizes the within-cluster sum of squares:

∑
g∈G

minm∈M(||Pg −m||2), (1)

where Pg denotes a row protein embedding vector of matrix P. Here, each centroid m represents

a different macrogene. SATURN then defines an initial set of weights {{Wg,m ∈ R+}|G|g=1}
|M|
m=1

from each gene g to each macrogene m as:

Wg,m = 2 ∗
(
log

(
1

rdm,g

+ 1

))2

, (2)

where rdm,g : N → N represents the ranked euclidean distance from gene g to a macrogene m and

rdm,g = 1 for the nearest gene to a macrogene. This initialization function is arbitrarily chosen

so that genes have the highest weights to the macrogenes they are closest to. Gene to macrogene

weights are strictly positive, differentiable and updated during pretraining. We multiply by two so

that the highest weights are close to 1.

Pretraining with conditional autoencoder. Following macrogene initialization, SATURN pre-

trains a network using a conditional autoencoder with zero inflated negative binomial (ZINB)

loss [8]. The conditional autoencoder is composed of encoder and decoder modules. The en-
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coder module first aggregates expression values using macrogene weights. In particular, for a cell

c from species s with count values Xs
c ∈ N+|Gs|, genes g ∈ Gs and macrogenes m ∈ M, SATURN

defines macrogene expression values ec ∈ R+|M| as follows:

ec = ReLU(LayerNorm(exp(logWT
s )log(X

s
c + 1))) (3)

WT
s =


W1,1 ... W1,|Gs|

... ... ..

W|M|,1 ... W|M|,|Gs|,

 , (4)

where ReLU denotes the rectified linear unit used as the activation function and defined as ReLU(·) =
max(0, ·) and LayerNorm is layer normalization [39]. The encoder module f consists of two fully

connected neural network layers with ReLU activation, layer normalization and dropout, and takes

as an input ec ∈ R+ and outputs a low dimensional embedding zc ∈ Rk:

zc = f(ec). (5)

A one hot representation of the species s is concatenated to the embedding (zC ||1s) and passed

forward to the decoding module. The decoding module outputs three distinct heads, parameterizing

|G| zero inflated negative binomial distributions with µc ∈ R+|G|,Oc ∈ R|G|,θ ∈ R+|G|.

µc = Softmax(WsDµ(DS(zC ||1s)))
∑

Xs
c (6)

Oc = DO(DS(zC ||1s)) (7)

θ, (8)

where DS , Dµ and DO represent fully connected neural network layers. DS and Dµ have ReLU

activation, dropout and layer normalization. θ is a differentiable parameter of the model.

The autoencoder reconstruction loss Lrc, is calculated as the negative log likelihood of a zero

inflated negative binomial distribution [8] parameterized as:

ZINBc,g ≈

Poisson(Gamma(θg,θg/µcg)), if Bernoulli( expOcg

1+expOcg
) = 0

0, otherwise
(9)

Lrc =
∑
g∈Gs

− log(P(ZINBc,g = Xcg)), (10)
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where P denotes probability. To ensure that gene to macrogene weights reflect similarity in protein

embedding space, we add an additional loss term Ls defined as follows:

Ls = MSE(sim(B,Bshuffled), sim(P,Pshuffled)), (11)

where B = Q(W) and Q : N+|M| → Nn is a fully connected neural network layer with ReLU

activation, layer normalization and dropout, that encodes macrogene weights. MSE denotes mean

squared error and sim is the cosine similarity. The encoded macrogene weights B ∈ R|G|×n and

protein embeddings P are jointly shuffled row-wise (gene-wise).

The final pretraining loss Lp that SATURN optimizes is defined as:

Lp = τLs +
1

|c ∈ batch|
∑

c∈batch

Lrc, (12)

where τ is a regularization parameter and it is set to 1 in all experiments.

Metric learning across species. To automatically learn a distance metric across species, SAT-

URN fine-tunes pretrained cell embeddings with a weakly supervised metric learning objective. In

particular, SATURN relies on the triplet margin loss function:

Lt = max(D(za, zp)−D(za, zn) +m, 0), (13)

where D is a cosine distance, a, p and n denote an anchor cell, a positive cell and a negative

cell, respectively, and the margin m is a tunable hyperparameter that we set to 0.2 in all experi-

ments. Triplets are mined using semi-hard online mining in a weakly supervised fashion. To mine

triplets, SATURN iterates over the species specific cell-type annotations, but no cross-species an-

notations are ever used. These within species annotations can be predetermined or generated in an

unsupervised manner with clustering techniques like Leiden clustering [40]. For each annotation,

SATURN selects all cells with that annotation from the same species as candidate anchor cells.

Then for each anchor cell, SATURN selects candidate positive cells as mutual 1-nearest neighbors

measured using cosine distance in the embedding space. Here, mutual means that if cell x from

species s1 selected as its cross-species nearest neighbor cell y from species s2, SATURN finds the

nearest neighbor x′ of cell y in species s1. If cells x and x′ from species s1 have the same anno-

tation, then positive pairs are generated. The anchor cells and positive cells are pooled, and then

matched such that each anchor cell candidate has a corresponding randomly selected positive cell
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candidate from a different species. Finally, negative cells are randomly selected such that they have

a different label than either the anchor label or the positive label. Triplets are semi-hard filtered

such that:

D(za, zp) < D(za, zn) < D(za, zp) +m. (14)

During the fine-tuning stage, macrogene weights are not updated.

Generation of protein embeddings. Protein embeddings are generated by applying a pretrained

protein embedding language model on each species’ reference proteome. Protein embeddings

generated by the ESM2 model [14] were used for all experiments. The ESM2 protein embedding

model accepts a sequence of amino acids as an input and outputs a p = 5120 dimensional vector

representing the embedding of the protein. To obtain a protein embedding for a gene, the protein

embeddings of all proteins available for the gene are averaged. Any protein embedding model, or

any model that outputs numerical representations of genes, can be used as an input to SATURN

(Supplementary Figure 7).

Differential macrogene expression. Differential expression on macrogene values is performed

using a Wilcoxon rank sum test as implemented in SCANPY [41]. For a cell type annotation t,

with cells c ∈ t (from any species), the test statistic Um for macrogene m is calculated as:

Um = Rm − |c ∈ t|(|c ∈ t|+ 1)

2
(15)

Rm =
∑
c∈t

Rank (m)[c], (16)

where R(m) is the rank sum of cells with label t for macrogene m.

Determining gene orthologs. BLASTP with default settings was applied to publicly available

reference proteomes from ENSEMBL. BLASTP orthology results were used to find ortholog gene

pairs within the genes with highest weight to each macrogene (Fig. 2e). BLASTP results are also

used for SAMap alignment (Fig. 3). The ENSEMBL orthology API was queried to determine

one-to-one gene orthologs.
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Figure 1 (preceding page): SATURN incorporates protein sequences and gene expression to embed single cells.

(a) Overview of SATURN. SATURN takes as input scRNA-seq datasets generated from one or more species and

the amino acid sequences of proteins present in these species. SATURN then maps each species’ genes to a joint

feature space by learning “macrogenes”– groups of functionally related intra- and inter-species genes. Finally, in the

shared macrogene space SATURN integrates datasets across species by learning a joint cell embedding space in which

cell types conserved across species are aligned with each other. (b) UMAP visualization of a joint embedding space

across three distinct species. We apply SATURN to integrate cell atlas datasets of 335, 000 cells from Tabula Sapiens

(human), Tabula Microcebus (mouse lemur) and Tabula Muris (mouse), creating a mammalian cell atlas. Colors

denote coarse-grained cell type annotations (top) and species annotations (bottom). Only cell types with more than

350 cells were included. (c) UMAP visualization of SATURN ’s integration of datasets from frog (97, 000 cells) and

zebrafish (63, 000 cells) embryogenesis. Colors denote different major cell types (top) and different species (bottom).

In SATURN ’s embedding space, cell types conserved across species align well (e.g., frog/zebrafish neural crest) while

species-specific cell types form separate single species clusters (e.g., frog goblet cells). Cell types not directly mapped

between both species share similar ontology, for example the zebrafish dorsal organizer and frog Spemann organizer

(inset 1). Epidermal cell types including periderm, epidermal progenitor, and rare epidermal cell types are also aligned,

as are specialized epithelial cells such as goblet cells and ionocytes (inset 2). Finally, myeloid cell types including

macrophages and myeloid progenitors cluster together (inset 3).
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Figure 2 (preceding page): SATURN enables multi species differential expression analysis in the macrogene

space. (a) Overview of SATURN ’s differential expression analysis on macrogenes. Every gene is connected to a

macrogene with a corresponding weight that represents the importance of that gene for a given macrogene. Thus, each

cell has corresponding macrogene values calculated as the weighted and normalized sum of its gene expression values.

Since SATURN operates in the macrogene space, differential expression for resulting cell clusters gives the set of

differentially expressed macrogenes of a given cell type. Finally, the genes with the highest weights to a macrogene are

used to determine the biological interpretation of that macrogene. (b) Differentially expressed macrogenes on frog and

zebrafish embryogenesis datasets for (left) macrophage and myeloid progenitors and (right) ionocytes. Differential

expression is performed by comparing these cell types with all other cell types. We show only cell types that are similar

to target cell types determined as expressing a subset of the top differentially expressed macrogenes. We assign names

to macrogenes based on the set of genes with the highest weight in the given macrogene. The tables show the top

5 differentially expressed macrogenes and the top weighted genes in each macrogene. Genes are shown in a black

color if a gene is included in the top genes for both species in a given macrogene, and blue or orange if the gene is

frog or zebrafish specific, respectively. (c) Macrogene differential expression can also be used to find species-level

differences between cell types conserved across species. Example of differentially expressed macrogenes between

frog and zebrafish ionocytes. (d) SATURN macrogenes contain a far higher proportion of ortholog gene pairs than

what is expected by chance, demonstrating that SATURN recaptures sequence based orthology. Purple curve shows

the proportion of SATURN macrogenes which contain, within their top ranked frog and top ranked zebrafish genes, at

least one ortholog gene pair, vs the top N number of genes. Orthology is determined according to BLASTP results.

The black curve shows the proportion obtained by a null model in which the same number of genes are randomly

selected without replacement from both species. Error bars are the standard error from 30 independent experiments

and they are nearly zero so not visible.
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Figure 3 (preceding page): SATURN embeddings capture shared cell type identity in frog and zebrafish em-

bryogenesis. (a) Explanation of how multi-species embeddings are scored. A joint embedding space, containing

cells from multiple species, is split by species into a training set and a test set. A classification model to predict cell

types is trained on a single species training set, and evaluated on the test set of another species. The maximum test

set accuracy achievable will be lower than 100% if the test set species contains specific cell types that can not be

predicted by a classifier trained on the training species. Blue color denotes frog, while orange denotes zebrafish. (b)

Median performance of SATURN compared to alternative methods. The performance is evaluated using the predic-

tion accuracy of a logistic regression model trained to differentiate zebrafish cell types and tested on predicting the

cell type annotations of frog cells. Higher values indicate better performance, and 0.93 is the maximum accuracy that

can be reached by label transfer on this dataset. SAMap represents a version of the SAMap method in which cell-type

annotations are used to integrate datasets. Vertical position of scatter plot points represents the median accuracy score

across 30 runs for each method. Error bars represent standard error. For batch correction methods (Harmony, scVI

and Scanorama), the input genes are selected as the one to one orthologs determined by ENSEMBL. (c) SATURN

produces more homogenous clusters than SAMap, and these clusters contain accurate multi species cell types. Bars

represent the percentage of cells from zebrafish that are nearest neighbors of frog cells of the given cell type conserved

across these two species. Cell types are ordered by frequency. (d) Comparison of UMAP visualizations of integrated

frog and zebrafish embryogenesis datasets generated by SATURN and alternative methods. In SATURN ’s embed-

ding space different cell types naturally form clusters and cells from different species align well. On the other hand,

alternative baselines either do not preserve cell type information (SAMap) or can not integrate two species (Harmony,

scVI, Scanorama).
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Figure 4 (preceding page): SATURN discovers new cell types and facilitates the analysis of protein embeddings

for the Aqueous Humor Outflow cell atlas. (a) SATURN successfully aligns 50, 000 cells from the Aqueous Humor

(AH) Outflow cell atlas consisting of five species: human, cynomolgus macaque, rhesus macaque, mouse, and pig.

UMAP visualization of SATURN ’s embeddings where colors denote cell types (left) and species (right). (b, c) We

apply SATURN to regroup cell types in a multi-species context. By clustering SATURN ’s embeddings, we find five

broad cell types. (b) Heatmap and dendrogram of reannotated cell types using SATURN. Labels on the right side show

original cell type annotations while on the bottom we show reannotations obtained using SATURN. These clusters

include cell types originally labeled as fibroblast and beam A/Y cells (cluster 1), beam A and uveal cells (cluster

2), JCT and beam cells (cluster 3 and cluster 4), and corneal endothelium cells (cluster 5). Across 30 independent

experiments, we regroup cluster 1 as fibroblast cells, cluster 2 as Beam A cells, clusters 3 and 4 as JCT cells, and

cluster 5 as corneal endothelium cells. We specifically reannotate mouse beam A and beam Y cells, which have high

expression of fibroblast markers such as Pi16, FBn1, and Mfap5 as originally noted [18]. We additionally regroup

human beam B cells, which were not found in other species, as JCT cells. Finally, we map beam X cells, which were

unique to Rhesus and Cynomolgus macaque, to two JCT clusters. (c) UMAP visualizations of reannoted cell types.

Cells are colored according to annotations inferred by SATURN (left) and species information (right). (d) SATURN

facilitates the analysis of protein embeddings by creation of multi-species macrogenes. Human Myoc has highest

weight to a different macrogene than the other four species’ Myoc variants. The human gene A2m also has highest

weight to the human Myoc macrogene. We can investigate this discrepancy by visualizing the protein embeddings of

Myoc and A2m from all five species using PCA. This analysis offers potential to point to similar function in A2m as

Myoc which would otherwise not be identified by sequence based orthology, as well as potential differences in human

Myoc and Myoc in the other four species.
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Data availability

All analyzed datasets are publicly available. Tabula Sapiens is available at CellXGene. Tabula

Microcebus is available at FigShare. Tabula Muris is available at FigShare. For embryogenesis

datasets, frog is available with accession code GSE113074 and zebrafish is available in h5ad format

at KleinTools. The five species aqueous humor outflow pathway atlas datasets are available with

accession code GSE146188.

Code availability

SATURN was written in Python using the PyTorch library. The source code is available on Github

at https://github.com/snap-stanford/saturn.
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