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Figure 4 (preceding page): SATURN discovers new cell types and facilitates the analysis of protein embeddings

for the Aqueous Humor Outflow cell atlas. (a) SATURN successfully aligns 50, 000 cells from the Aqueous Humor

(AH) Outflow cell atlas consisting of five species: human, cynomolgus macaque, rhesus macaque, mouse, and pig.

UMAP visualization of SATURN ’s embeddings where colors denote cell types (left) and species (right). (b, c) We

apply SATURN to regroup cell types in a multi-species context. By clustering SATURN ’s embeddings, we find five

broad cell types. (b) Heatmap and dendrogram of reannotated cell types using SATURN. Labels on the right side show

original cell type annotations while on the bottom we show reannotations obtained using SATURN. These clusters

include cell types originally labeled as fibroblast and beam A/Y cells (cluster 1), beam A and uveal cells (cluster

2), JCT and beam cells (cluster 3 and cluster 4), and corneal endothelium cells (cluster 5). Across 30 independent

experiments, we regroup cluster 1 as fibroblast cells, cluster 2 as Beam A cells, clusters 3 and 4 as JCT cells, and

cluster 5 as corneal endothelium cells. We specifically reannotate mouse beam A and beam Y cells, which have high

expression of fibroblast markers such as Pi16, FBn1, and Mfap5 as originally noted [18]. We additionally regroup

human beam B cells, which were not found in other species, as JCT cells. Finally, we map beam X cells, which were

unique to Rhesus and Cynomolgus macaque, to two JCT clusters. (c) UMAP visualizations of reannoted cell types.

Cells are colored according to annotations inferred by SATURN (left) and species information (right). (d) SATURN

facilitates the analysis of protein embeddings by creation of multi-species macrogenes. Human Myoc has highest

weight to a different macrogene than the other four species’ Myoc variants. The human gene A2m also has highest

weight to the human Myoc macrogene. We can investigate this discrepancy by visualizing the protein embeddings of

Myoc and A2m from all five species using PCA. This analysis offers potential to point to similar function in A2m as

Myoc which would otherwise not be identified by sequence based orthology, as well as potential differences in human

Myoc and Myoc in the other four species.
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Data availability

All analyzed datasets are publicly available. Tabula Sapiens is available at CellXGene. Tabula

Microcebus is available at FigShare. Tabula Muris is available at FigShare. For embryogenesis

datasets, frog is available with accession code GSE113074 and zebrafish is available in h5ad format

at KleinTools. The five species aqueous humor outflow pathway atlas datasets are available with

accession code GSE146188.

Code availability

SATURN was written in Python using the PyTorch library. The source code is available on Github

at https://github.com/snap-stanford/saturn.

Acknowledgements

We gratefully acknowledge the support of DARPA under Nos. HR00112190039 (TAMI), N660011924033

(MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF un-

der Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), NIH under

No. 3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative, Wu Tsai Neurosciences

Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper Networks, KDDI,

NEC, and Toshiba. M.B. acknowledges the EPFL support.

Author information

M.B., Y.RH. and J.L. conceived the study. Y.RS., M.B., Y.RH. and J.L. performed research,

contributed new analytical tools, designed algorithmic framework, analyzed data and wrote the

manuscript. Y.RS. performed experiments and developed the software. K.S. and Z.L. contributed

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.03.526939doi: bioRxiv preprint 

https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5
https://figshare.com/articles/dataset/Tabula_Microcebus_v1_0/14468196?file=31777475
https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/5968960/2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113074
https://kleintools.hms.harvard.edu/paper_websites/wagner_zebrafish_timecourse2018/WagnerScience2018.h5ad
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146188
https://github.com/snap-stanford/saturn
https://doi.org/10.1101/2023.02.03.526939
http://creativecommons.org/licenses/by-nc-nd/4.0/


to code.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.03.526939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.526939
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Regev, A. et al. The Human Cell Atlas. eLife 6 (2017).

2. Tabula Sapiens Consortium et al. The Tabula Sapiens: A multiple-organ, single-cell transcrip-
tomic atlas of humans. Science 376, eabl4896 (2022).

3. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula
Muris. Nature 562, 367–372 (2018).

4. Li, H. et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science
375, eabk2432 (2022).

5. Lu, T.-C. et al. Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution.
bioRxiv (2022).

6. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony.
Nature Methods 16, 1289–1296 (2019).

7. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcrip-
tomes using Scanorama. Nature Biotechnology 37, 685–691 (2019).

8. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for
single-cell transcriptomics. Nature Methods 15, 1053–1058 (2018).

9. Amodio, M. et al. Exploring single-cell data with deep multitasking neural networks. Nature
Methods 16, 1139–1145 (2019).
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